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Main idea

A very simple, yet very powerful constraint on new models

There are well known Grand Unified
Theories (GUTs) based on the simple
groups SU(5), SO(10), E6
What is their fermion content ?
. (]
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In every case we have the
SM fermions plus (maybe)
vector fermions

One should only introduce more vector
fermions, not chiral ones: these would

only get an EW scale mass and so
should have been seen already

Renato Fonseca o



Beyond the standard scenarios

Scanning thoroughly the possibilities
Are there other combinations of GUT ® ? We do not want more
1 representations (1 or more) which yield fermions remaining massless
| the SM fermions (4 vector particles)? & until the EW scale is broken

In order to check this, one should make a triple scan over ...

Representations Embeddings

Groups

There is more than one way
to embed the SM group
in the GUT group

Use one or more GUT group
fermion representations

Any simple one which has
| complex representations

Non-trivial and often
overlooked in the literature
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Why bother with this?

Non-standard fermion representations may have important consequences.
Two examples ...

1. Gauge coupling unification

Usually g1 = 1/5/39",92 = 9,93 = gs Imagine then an SU(7) model
ek where
This is a consequence of putting 7 = (5, 1, %n) I+|(1’ 2, —%n) + (1,2, O)I
d® and L in the 5 of SU(5) e Two SU(2)
Recall: (anti)triplet doublets
SRR R R et
Y =n x diag 373730 975 The correctly normalized SU(2)
| i generators are 5750 “ instead of 2o
TIsr, = dlag <Oa 0,0, 57 _5) m
B 2 i
Tr (Y7) = Tr (T5) = Inl = v/3/5 91 = /5/39 .92 = V29,93 = gs
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Why bother with this?

Non-standard fermion representations may have important consequences.
Two examples ...

1. Gauge coupling unification

SM

<«— Wrong

Correct line for the
<—— SU(2) gauge coupling
constant in this simple

SU(7) GUT

O |
102104 109108 100 10221014 1016 108
E (GeV)
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Why bother with this?

2. Explain flavor

“Standard” GUTs can relate the different SM Yukawa matrices,

(e-g) Yi;16;16;10 = Yi; QuiH + Yij QidSH + Yy; LieSH + Y LiNSH
but

Y is still a free 3 by 3 matrix. Nature’s replication of the
families and the associated structure are not explained

1. The problem: fermions are 2. The (obvious) solution: distribute the
placed on three copies of the families by different GUT representations (the
same representation (16) gauge group then discriminates the families)

3. Ideally (family unification):
put (really) all SM fermions in
one GUT representation R:

4. The (new) problem: recall that we
can’t have more chiral fermions in R, so
what are the possibilities? This is a

yRRS simple but very powerful constraint!
' So let us be humble and allow for more
than one GUT representation

One number controlling the
whole the Yukawa sector
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A small example with SU(5)

We know that three copies of 5 + 10 works.

It is obvious that adding real or conjugate pairs of
complex representations will also work.

Are there other non-trivial combinations of SU(5)
representations smaller than 36 which contain the SM ‘?
fermions + vector fermions only? &

c1(5) 4+ ¢2(10) 4+ ¢3(15) + ¢4 (35)

Let’s check it, assuming the standard i’ 1‘0 1‘5 3‘5
hypercharge normalization: (3\ /010 0\=@LD
; ; 3 AR R S ) Solution:
(3,1,—7) i+ (1,2,—) 0 0 0-10
3 2 0 R a2 s ce (c1,c2,c3,¢4)
g e 1 | 3 A i i il
(3?1, 3) + (3.2, )+(1,1,1) - ] e E &
6.1 2 321 131 0 0 pHEe 0 B fem ;3 (_3370*0)
ey o & ot g ) 0 0 0-10 : There is no other
: ; 0 AT et T ¢ :
35 — (10,1,1) + (6,2, é) g (3,3,—2) o8 (1,4,—3) 0 A Smcfeﬁl? ntuus.p?ce
: ‘ : 0 is trivia
L 1Y0 0/
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SU(5): generalizing the calculation

Bigger representations and different hypercharge normalizations

The previous example was quite simple On the other hand, we assumed the
but interestingly it is very easy to usual hypercharge normalization.
include (much) bigger representations We can drop this assumption
f For SU(5) this is not a big problem. But

it can be messy for bigger ones
— (related to the problem of scanning over
different embeddings of the SM group)

Use the Susyno program
(a package for Mathematica)
to do it automatically

When we do this generalization, we find
that the answer is the same as before:

In SU(5), the only solution is the well
know one (plus trivial variations)

(considering representations up to size 1.000.000)
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RF, Comp.Phys.Com.

About Susyno 183 (2012) 2298

Performing and automating group theory calculations

TUTORTAL: GROUP THEORY WITH SUSYNO

0. Getting started

* Susyno is a Mathematica package which can make various calculations related to Lie groups and
Ignore the name the permutation group Sn (even though the main aim of the program is a different one, a

substantial part of the code is group theory related). This page shows some examples.

To get started, the program needs to be installed: it can be download here @. Decompressing the
downloaded zip file will generate a folder Susyno. This folder should be placed in a directory

visible to Mathematica (typing $Path in Mathematica shows a list of the possible locations). A

good choice is to place it (the whole Susyno folder and not just its contents!) in

*SUSY related

(Mathematica base directory)/AddOns/Applications Linux, Mac OS
(Mathematica base directory)|AddOns|Applications Windows

Once this is done the package is installed. To load Susyno, type in the front end

I <<Susyno”

The program's reference is

SUSYN o) Cont alms various "Renato M. Fonseca, Calculating the renormalisation group equations of a
SUSY model with Susyno, Computer Physics Communications 183 (2012) 2298"

group theory functions
ready to be used

For help, there is an easy-to-use built-in documentation for each of the functions described in the
following text (and other ones as well); it becomes accessible from within Mathematica once the

package is installed. For questions, comments or bug reports, please contact me at

renato.fonseca@ific.uv.es

@ renatofonseca.net /susyno/group_ theory_ tutorial.php
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RF, Comp.Phys.Com.

About Susyno 183 (2012) 2298

Performing and automating group theory calculations

1. Working with representations of a Lie group
To indicate a group, just use it's name:
B v su2, sus, sus, sote, Es, EB, G2, ...

* Ifa group is the product of U(1)'s and/or simple groups, a list of the factor groups should be given.
Ignore the name For example, the groups SU(3) x SU(2) x U(1), SU(5) x SU(5) and SO(10) x U(1) are written
as follows:

{sU3,5U2,U1}

{5U5,5U5}
I {so1e,u1}

In fact, even groups with a single factor might have the brackets {} around. For example, one might

*SUSY related write SU(2) as

B o

To indicate a representation of each factor group one needs to write its Dynkin coefficients
(unless it is a U(1), in which case the charge [i.e., one number] is enough). These are a list of n
non-negative integers, where n is the group's rank. In turn, the group's rank corresponds to the

maximal number of elements of the group's algebra which can be made simultaneously diagonal,

SUSYN 0 Contalns various and in practice this can be obtained with Susyno by typing
group theory functions B Lengthi<groups]

ready to be used suchas
B Lengtn[sus)

oufil= 4

@ renatofonseca.net /susyno/group_ theory_ tutorial.php
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RF, Comp.Phys.Com.

About Susyno 183 (2012) 2298

Performing and automating group theory calculations

2. Dimension, Casimir, Dynkin index and triangular anomaly
Given a representation R, its dimension d(R), Casimir C(R) and Dynkin index T(R) can be

calculated with the functions DimR, Casimir and DynkinIndex:

Casimir[s01@, {8, @, 8, @, 1}]
DynkinIndex[S018, {@, @, 8, @, 1}]

Ignore the name*

I DimR[S018, {0, B, 8, 0, 1}]

oufgl 16

out[g)= 45
T g

Out[10)= 2

*SUSY I’elated (Recall that C(R) and T(R) are defined by the relations C(R)Id=3,T*T" and

T(R)§* = Tr (T“T") where T'* are the representation matrices of the algebra generators.)
These functions actually accept symbolic Dynkin coefficients. For example, the SU(2)
representation {d — 1} has dimension d and its Casimir is %(d —1)(d+1):

DimR[SU2, {d - 1}]
Casimir[SU2, {d - 1}]

Out[11]= d

SUSYNO contains various oz L C1ed) (Led
4

group theory functions
ready tO be used Tr ({T",T"} Tc) = x(R)d™ where the symmetric tensor d** can be taken to be fixed (for a

given group) while k(R) depends on the representation. It should be noted that the only groups

Gauge triangular anomalies are known to be associated to the quantity

for which there might be anomalies are those with SU(n > 2) and/or with U(1) factors, so at least

one of the indices a, b and ¢ must refer to one of these groups.
; _ )

@ renatofonseca.net /susyno/group_ theory_ tutorial.php
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RF, Comp.Phys.Com.

About Susyno 183 (2012) 2298

Performing and automating group theory calculations

3. Products of representations

The decomposition of products of representations can be achieved with ReduceRepProduct:

tripletSU3 = {1, @};
ReduceRepProduct[SU3, {tripletSU3, tripletSU3, tripletSU3}]

Ignore the name* ougzsl {{{3, O}, 1}, ({1, 1}, 2}, {{0, O}, 1}}
In this case, the output is saying that 3 x 8 x 3 in SU(3) (note that {1,0} is the 3) contains the
representation {3,0} once, {11} twice, and {0,0} once. If desired, the option UseName -> True can

be used to convert these Dynkin coefficients into the names of the representations:

I ReduceRepProduct[SU3, {tripletSU3, tripletSU3, tripletSU3}, UseName -> True]

outeel= {{10, 1}, {8, 2}, {1, 1}}

% SUSY related The group can have various factors, for example:
uc = {-2/3 , {0}, {6, 1}};

Q= {1/6 , {1}, {1, @}};

H={1/2 , {1}, {8, @}};
ReduceRepProduct[{U1, SU2, SU3}, {uc, Q, H}, UseName -> True]

ouwz3= {{0®3®8, 1}, (0®3®l, 1}, {0®1®8, 1}, {(0®lel, 1}}
Also, there is no limit to the number of representations being multiplied:
SUSYNO contains various I reple = {1, 8, 8, @, 8);

ReduceRepProduct[S018, {repl®, repl®, repl®, repl®, repl®}, UseName -> True]

group theory functions
ready to be used

oups= {{1782, 1}, {4608, 4}, {210', 10}, (4410, 5}, (4312, &), {320, 20},
{10, 15}, {2970, 5}, {1728, 4}, (120, 10}, {126, 1}, (126, 1}}

Sometimes, the product of representation being calculated contains repeated representations,

such as the 3 x 3 x 3 example above. In those cases, there is a permutation symmetry involved: for

example, it is well known that the singlet in 3 x 3 x 3 is completely anti-symmetric. To calculate

@ renatofonseca.net /susyno/group_ theory_ tutorial.php
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About Susyno 183 (2012) 2298

Performing and automating group theory calculations

5. Group invariant combinations of representations

Often one needs to know how to contract, in a group invariant way, the components of a product
of representations. The simplest example would be two SU(2) doublets --- let us call them
D = (Dy,D3)F and D' = (D'y, D'3)": it is well known that the combination Dy IV g — Dy IV is left

invariant under the action of the SU(2) group. To calculate group invariant combinations with

IgnOI'e t he name < Susyno, use the Invariants function:

I Invariants[SU2,{{1},{1}}] (*product of two SU(2) doublets*)

oural= {a[2] b[1] -a[1]b[2]}

The syntax is Invariants[<group>{<repl>, <rep2>, ..}], with an arbitrary number of

representations. In the output, the program considers that the components of <repl> are named

a[l], a|2], etc., that those of <rep2> are b[1], b[2], etc., and so forth.
*SUSY related ’

Notice that the output above is not just a[2] b[1] - a[1] b[2]; this expression is surrounded by curly
brackets. The reason is, in general, there might more than one independent way of contracting the
representations in an invariant way. To illustrate this point, consider the product of four SU(2)
doublets, which is known to have two independent invariants (this statement can be confirmed

with the ReduceRepProduct function, by counting the number of singlets in the product of four

doublets):
SUSYNO Contalns various I Invariants[SU2, {{1}, {1}, {1}, {1}}] (*product of four SU{2) doublets*)
group theory fullCtIOIlS Oulidd]= {—a[2] b[2] e[1]d[1] +a[l]b[2] c[2]d[1] +a[2] b[1] c[1] d[2]
. al[2]b[2] e[1]d[1] 2a[2]b[1]c[2]d[l]
-a[l]lk[l]c[2]d[2], -
ready to be used a c e e
,alllb(2]e[2]d[1] a[2]b[1]c[1]d[2] _2a[1]b[2]c[1]d[2]
V3 vE) V3

Lalilbil)el2]d[2]y

@ renatofonseca.net /susyno/group_ theory_ tutorial.php
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About Susyno 183 (2012) 2298

Performing and automating group theory calculations

7. Symmetry breaking: branching rules and more

Concerning symmetry breaking, one usually wants to know how a given representation of a group
breaks into irreducible representations of some subgroup. This can be calculated with

DecomposeRep, which requires 3 elements from the user:

Ignore the name* L the group G
2. the subgroup H C G;

3. information on how H is embedded in G — the so-called projection matrix, to be specific;
4. the representation R of G to be decomposed.

(1), (2) and (4) are trivial to provide, while (3) might require a little bit of work, but not much (more

on this later). In any case, the user needs to figure out (3) only once for a given symmetry breaking

*SUSY related pattern G — H.

Consider the simple case where SU(3) breaks into STU(2) x U(1). The projection matrix in this

(i )

We may then go ahead and see, for example, how does the triplet of SU(3) decomposes:

case can be chosen to be

SUSYNO contains various group={sU3};
. rep={{1,@}}; (* 3 of SU(3) *)
group theory functions subgroup={SU2, U1} ;

prjMat = {{1, @}, {1, 2}};

ready to be used

DecomposeRep[group, rep, subgroup, prijMat,UseName->True]

ouse= {2@1, 1@-2}

@ renatofonseca.net /susyno/group_ theory_ tutorial.php
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What about SO(10) GUTs?

Scanning over different embeddings Without entering into too many details, the
of the SM group becomes more

non-abelian part of the SM group might be
complicated than in SU(5) embedded in more than one way in SO(10)

N and
The SM h h f
In sny case, one can sl o s T ot of s Tt
handle the problem "

contained in SO(10)

The standard solution (3 x 16) is not unique
but ... “almost”
The other ones require many more fields
Result of (and huge representations!)
the scan

It is actually possible not to use the spinor
representation

(more details on the paper)
Renato Fonseca



Bigger groups

The bigger the group ... the harder it is to analyze it

Z
=)
W
=
9]
an
E
=
o]
)
o
=
[4b]
o
—
[«b]
e
=
=
Z.

The number of embeddings It nqight not be en01:1gh to
grows exponentially with the consider .the embeddings of
size of the GUT group SU(5) in a GUT group
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List of interesting results®

[Reminder| Just from forbidding extra chiral fermions!

The only .non-SU(N) s.imple In the case of SU(5) and E(6) the
groups with any solution at only solutions are the well known
all are SO(10) and E(6) ones (plus trivial variations)

SU(N>5) and SO(10) For the SU(15>N>5) groups,

appear to have infinite the only valid branching rule is
solutions i R S e S R

For SU(N>14) two more 91 =/5/39" .92 = 9,95 = gs
branching rules lead to This standard relation is universal
valid solutions ... (one cannot get a different one)
\ *Keeping in mind that the scan is
. necessarily finite (even though very
J P R D n TR [NeXt Shde} large representations were considered)... 11
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List of interesting results®

[Reminder| Just from forbidding extra chiral fermions!

For SU(N>14) two more
branching rules lead to
valid solutions ....

b

[Next slide]

11



Family Unification with SU(19)

Notation:
F = fundamental representation of SU(N)
K = representation corresponding to the
anti-symmetric part of F' X F

“Standard” branching rules from a F—=5+(N-5)1

SU(N) — SU(5) viewpoint: (N —5) (N — 6)

K 10+ (N —5)5+ 5

1

Renato Fonseca i



Family Unification with SU(19)

Notation:
F = fundamental representation of SU(N)
K = representation corresponding to the
anti-symmetric part of F' X F

“Standard” branching rules from a F—=58+(N-5)1

SU(N) — SU(5) viewpoint: N —5)(N —6)

2

K—+10+(N—5)5+( 1

For N > 15 the following new branching rule is possible as well:
F—+5+10+ (N~ 15)1
(N =15) (N = 16)1
2

K 345 4+ 45 + (N - 15)5+ 5+ (N —15)10 + 10 +
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Family Unification with SU(19)

Notation:
F = fundamental representation of SU(N)
K = representation corresponding to the
anti-symmetric part of F' X F

“Standard” branching rules from a F—=5+(N-5)1

SU(N) — SU(5) viewpoint:

K—>10+(N—5)5+(

For N > 15 the following new branching rule is possible as well:

F—>5+10+ (N =15)1
iR

K545 +45+ (N —-15)5+5+ (N —15)10+ 10+
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Family Unification with SU(19)

Notation:
F = fundamental representation of SU(N)
K = representation corresponding to the
anti-symmetric part of F' X F

“Standard” branching rules from a S R

SU(N) — SU(5) viewpoint:

K 10+ (N —5)5+

For N > 15 the following new branching rule is possible as well:

it Sy ) Rl Vel G

i Hrs ot Ty, 2 il o
K%45+45+(N15)5+5+(N15)10+10+(

Meaning that for SU (16 + N’) ! ; :
K SU(19 SO(10
K contains exactly N’ SM From a (19) — (10) viewpoint,

families plus vector fermions only | 171 — 3(16) + 120 + 3 (1)

However, there is a gauge anomaly

Renato Fonseca ® i 7



Summary

To do so requires putting the
SM families in different GUT
representations
(or, ideally, in a single one)

GUTs have been around for 40
years, yet they do not explain
the flavor problem

Is this possible? One cannot
introduce new chiral fermions!
(There was no systematic
answer to this question)

Yes, it is possible: family
unification can be achieved
with the 171 of SU(19)

Tl s

Renato Fonseca
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Extra

SO(10): other solutions T

All we have to do is consider non-trivial

Note that we do know combinations of representations which we

one solution: 3 x 16 can add to this solution and which do not
introduce more chiral fermions

True for a fixed embedding
of the SM group in SO(10)

The smallest such nontrivial combinations:

— 126 — 144 — 1200 + 2772 + 3696 — 4950 — 6930’ + 7920 + 8064 + 11088 — 15120

— 17280 + 17325 4 30800 — 34992 — 38016 + 48114 { 49280,
— 16 + 126 — 560 + 8064 + 20592 — 20790 + 23760 + 25200 — 29568 — 48114 — 50050
— 90090 — 102960 — 124800 — 128700 — 144144 + 164736 + 196560 — 199017 .

Huge representations are needed!

Renato Fonseca 14



