SEARCHING FOR NEW PHYSICS IN HIGGS TO FOUR LETPONS

DANIEL STOLARSKI

DS, R. Vega-Morales, Phys.Rev.D.86, 117504 (2012) [arXiv:1208.4840]. Yi Chen, DS, R. Vega-Morales, Phys.Rev.D.92, 053003 (2015) [arXiv:1505.01168], and work in progress.

DESY Workshop October 1, 2015

THE HIGGS

Rate measurements current state of the art to characterize the Higgs.

See talk by G. Quast.

KINEMATIC DISTRIBUTIONS

Study $h \to 4e/4\mu/2e2\mu$:

Each event is characterized by five different variables.

Compare to $h\to\gamma\gamma$.

KINEMATIC DISTRIBUTIONS

Distributions encode information about tensor structure.

DS, R. Vega-Morales, Phys.Rev.D.86, 117504 (2012) [arXiv:1208.4840].

LOOP PROCESSES

Kinematic distributions can reveal more than just rates measurements can.

Put this to use with loop processes.

LOOP PROCESSES

Kinematic distributions can reveal more than just rates measurements can.

Put this to use with loop processes.

TOP YUKAWA

Start with just top, keep all other couplings fixed.

Can probe CP nature of top Yukawa coupling.

EDM BOUNDS

Can place strong bounds on CP violation from EDMs.

Brod, Haisch, Zupan, [arXiv:1310.1385].

EDM BOUNDS

Depend on knowing Higgs coupling to first generation.

Brod, Haisch, Zupan, [arXiv:1310.1385].

SENSITIVITY

Measurement gets better with more events.

Better sensitivity to pseudo-scalar coupling.

Need large number of events.

Chen, DS, Vega-Morales, Phys.Rev.D.92, 053003 (2015) [arXiv:1505.01168].

 $L^{14 \text{ TeV}} \times \in (\text{fb}^{-1})$ 10² 10^{3} $\sigma(\boldsymbol{y}_t)$ or $\sigma(\widetilde{\boldsymbol{y}}_t)$ y, (float ZZ couplings) y_{t} (fix ZZ couplings) 10 \widetilde{y}_{t} (float ZZ couplings) $\widetilde{y}_{_{\star}}$ (fix ZZ couplings) 10² 10³ 10⁴ N_{S}

EXPERIMENTA

CMS cuts optimized for discovery:

 $M_1 > 40, \ M_2 > 12, \ M_{\ell\ell} > 4$

Want to gain sensitivity to NLO effects.

EXPERIMENTAL CUTS

CMS cuts optimized for discovery: $M_1 > 40, M_2 > 12, M_{\ell\ell} > 4$

Modified "Relaxed - Υ " $M_{\ell\ell} > 4,$ $M_{\ell\ell}(\text{OSSF}) \notin (8.8, 10.8)$

S/B gets worse, but sensitivity improves.

10⊧ - Total Madgraph $--Z \rightarrow 4I$ $--ZZ \rightarrow 4I$ $Z\gamma \rightarrow 4I$ 10^{-1} $\gamma\gamma \rightarrow 4$ ---- Example signal 10⁻² 10⁻³ 1 10⁻⁴ 10⁻⁵ 10⁻⁶ 150 100 250 300 200 M_{41}

Chen, Harnik, Vega-Morales, [arXiv:1503.05855].

11 DANIEL STOLARSKI October 1, 2015 DESY Workshop

SENSITIVITY

HIGH LUMINOSITY

8,000 events ~ 3,000 fb⁻¹

Better constraint.

If there is anomaly, will help characterize.

100 TEV?

CUSTODIAL SYMMETRY

Can measure deviations from custodial symmetry.

Can rule out $\lambda_W = -1$ at LHC.

Work in progress with R. Vega-Morales and Y. Chen.

STOP LOOPS

Searching for loop effects much more model independent.

Independent of decay, do not have to carry color.

Work in progress with R. Vega-Morales and Y. Chen.

CONCLUSIONS

- Kinematic distributions in $h \to 4\ell$ can provide information that is independent from and complimentary to rate measurements.
- NLO contributions make this channel sensitive to large Higgs couplings.
- Can measure CP violation or modified values in top Yukawa coupling.
- Use to place model-independent bounds (or discover) deviations from SM prediction.

THANK NORTH

DETAILS

- 115 GeV $< M_{4\ell} < 135$ GeV
- $p_T > (20, 10, 5, 5)$ GeV for lepton p_T ordering,
- $|\eta_{\ell}| < 2.4$ for the lepton rapidity,
- $M_{\ell\ell} > 4 \text{ GeV}, M_{\ell\ell}(\text{OSSF}) \notin (8.8, 10.8) \text{ GeV},$

L	$\mu(tth)$	$\mu(h o \gamma \gamma)$	$\mu(h \to Z\gamma)$
Current	2.8 ± 1.0 [5]	1.14 ± 0.25 [103]	NA
300 fb^{-1}	1.0 ± 0.55 [105]	1.0 ± 0.1 [104]	1.0 ± 0.6 [106]
3000 fb^{-1}	1.0 ± 0.18 [105]	$1.0 \pm 0.05 \ [104]$	1.0 ± 0.2 [106]

$$\mu(tth) \simeq y_t^2 + 0.42 \,\tilde{y}_t^2$$

$$\mu(h \to \gamma \gamma) \simeq (1.28 - 0.28 \, y_t)^2 + (0.43 \,\tilde{y}_t)^2$$

$$\mu(h \to Z\gamma) \simeq (1.06 - 0.06 \, y_t)^2 + (0.09 \,\tilde{y}_t)^2,$$

MATRIX ELEMENT METHOD

For a given $h \to 4\ell$ event, can compute probability of that even given underlying theory.

$$P(\vec{\phi} | a_i) = \frac{|\mathcal{M}(\vec{\phi})|^2}{\int d\vec{\phi} |\mathcal{M}(\vec{\phi})|^2}$$

MATRIX ELEMENT METHOD

For a given $h \to 4\ell$ event, can compute probability of that even given underlying theory.

MATRIX ELEMENT METHOD

For a given $h \to 4\ell$ event, can compute probability of that even given underlying theory.

$$P(\vec{\phi} | a_i) = \frac{|\mathcal{M}(\vec{\phi})|^2}{\int d\vec{\phi} |\mathcal{M}(\vec{\phi})|^2}$$

For *N* events, can compute likelihood for different underlying theories.

