

Karlsruher Institut für Technologie

3rd Anniversary

of Higgs Boson Discovery

- what we know today

Günter Quast

Fakultät für Physik **DESY Theory Workshop 2015** Institut für Experimentelle Kernphysik 2012 Local p_0 £ > ATLAS 2011 - 2012 ATLAS and CMS VKV - Obs. discovery √s = 7 TeV: ∫Ldt = 4.6-4.8 fb⁻¹ LHC Run 1 Preliminary ---- Exp. or √s = 8 TeV: ∫Ldt = 5.8-5.9 fb⁻¹ t1σ Ĕ Observed ----- SM Higgs boson LL V 1σ 10 2σ 10-3 3σ 10-2 10 4σ 10 10 10⁻³ 5σ 10 10 10 6σ 10^{-1} measurement 10 10 10^{2} 135 145 150 10^{-1} 140 110 115 120 125 130 10 1 2015 m_н [GeV] Particle mass [GeV]

KIT – Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

www.kit.edu

Higgs Hunt @ the LHC

LHC Run 1: pp-collisions at E_{CM} of 7 and 8 TeV

- * Peak Luminosity: $7 \times 10^{33} \text{ cm}^{-2} \text{ s}^{-1}$
- Integrated Luminosity: 5 fb ⁻¹ (2011@7 TeV) (5+15) fb ⁻¹ (2012@8 TeV)
- * time between bunches: 50 ns \Rightarrow 9–21 overlayed pp-interactions on average

Where are we now – in 2015 ?

Individual Channels: $H \rightarrow bosons$

The original "discovery channels" - updated to full Run1 luminosity, final and published

DESY Theory Workshop 2015

Günter Quast, Karlsruhe

Individual Channels: Higgs -> fermions

Individual Channels: ttH

directly probing the largest Higgs-boson coupling using associated production with tt

~ compatible with SM, but both experiments see an excess at the 2-3 σ level, to be watched !

Individual Channels: rare H decays

	95% C.I	_ limits	
rare decays modes:	ATLAS	CMS	Not a "failure to
$\mathrm{H} \rightarrow$			observe", but
$\mu(\mu\mu)$	7.0(7.2)	7.4(6.5)	confirmation that
$\mu(ee)$		$\simeq 3.7 \cdot 10^5$	
$\mu(\mathrm{Z}\gamma)$	11 (9)	9.5 (10)	
$\mu(\ell\ell\gamma)_{(m_{\ell\ell}<20GeV)}$		7.7(6.4)	()=expected
$\mathrm{Br}(\mathrm{J}/\Psi\gamma)$	$1.5 \cdot 10^{-3}$	$1.5 \cdot 10^{-3}$	
$\mathrm{Br}(au\mu)$	0.019	0.015	
$\overline{ \operatorname{Br}(\Upsilon_{(1S,2S,3S)}\gamma)}$	(1.3, 1.9,	$1.3) \cdot 10^{-3}$	_

In particular in the VBF an VH production channels,

a sensitive search for **"invisible" H decays** is possible:

$$Br_{inv} < \begin{bmatrix} ATLAS & CMS \\ 28\% & (31\%) & 36\% & (30\%) \end{bmatrix}$$

subm JHEP, arXiv:1508.07869 CSM PAS HIG-15-012

Günter Quast, Karlsruhe

Spin – CP (methods)

sufficiently high statistical precision and cleanliness of di-boson channels allows exploitation of kinematic variables for discriminating spin-parity hypotheses

Spin – CP (results)

ATLAS and CMS exclude non-SM spin-0 models and spin-2 models with >99.9 % C.L.

first constraints on non-SM contributions to the tensor structure of HVV coupling in S^{CP}=0⁺ (parameterised as K_{HZZ}/K_{SM} , K_{AZZ}/K_{SM} ·tan α (ATLAS) resp. Λ , a_1 , a_1 (CMS)) PRD 92 012004

DESY Theory Workshop 2015

Günter Quast, Karlsruhe

11

Differential H cross section measurements

CMS

Data

 $\sigma_{SM}(H \rightarrow \gamma \gamma)$ from LHC Higgs XS WG

High-resolution channels H $\rightarrow \chi \chi$ / 4ℓ offer good precision for differential measurements of Higgs-boson y and p_{T} , jet multiplicity, leading jet p_{T} , $\Delta y(H, jet)$

- measurements within (rather complex) fiducial region to minimise (model-dependent) acceptance corrections
- unfolded to particle level

19.7fb⁻¹ (8TeV

Searches for additional Higgs Bosons

Combined exclusion limits from W W, ZZ

CMS up to 5.1 fb⁻¹ (7 TeV) + up to 19.7 fb⁻¹ (8 TeV)

for SM-like couplings

 10^{3}

V V final state is particularly sensitive to (additional) high-mass Higgs bosons (such an object would be an additional, non-SM H-like state)

different assumptions on signal properties:

- $-\Gamma << \exp$. resolution,
- Γ scaling with mass (complex pole scheme)
- intermediate scenario

BSM Higgs searches

Is the SM-like Higgs-Boson *in fact* a first sign of new physics ?

- 1. Deviations from SM in precision measurements of couplings *needs a lot more data ...*
- 2. Part of an extended Higgs sector:
 - 2 charged and 2 additional neutral ones in **MSSM** h, H, A = Φ (neutral), H⁺ and H⁻ bosons, m_A and tan β as tree-level parameters
 - 2 charged and 4 additional neutral H bosons in **NMSSM** \rightarrow direct search for additional Higgs bosons
 - more general 2 Higgs-doublet models (type I and type II) also require 4 additional Higgs bosons

Numerous searches performed on Run 1 data set @ LHC:

- large tan β : $\Phi \rightarrow \mu\mu$, $\tau\tau$ and bb are sensitive
- small tan β : search for decays of heavy Higgs bosons to lighter ones A \rightarrow Z+h(125), H/A \rightarrow Z+A/H
- light Higgs bosons possible in NMSSM: h(125) \rightarrow aa $\rightarrow \mu\mu\tau\tau$, 4y
- direct searchs for H[±]

only a few most recent results shown here

(some) latest Results from (N)MSSM Searches

DESY Theory Workshop 2015

Part 2 Combination of ATLAS and CMS Results on SM Higgs measurements

combination of results: ATLAS and CMS

Results based on integrated luminosities of ~5/fb @ 7 TeV (2011) and ~20/fb @ 8 TeV (2012) per experiment for the "big five" H \rightarrow ZZ, $\chi\chi$, WW, $\tau\tau$ and bb + some (rare) others

Higgs-Boson Mass

Now available: Combination of ATLAS & CMS results

(first task of LHC Higgs Combination Group, "LHC-HCG")

Method: combination at the level of mass distributions

- identify correlated uncertainties (i.e. the associated nuisance parameters)
- then profile combined likelihood for $m_{\rm H}$

statistical and experimental systematic uncertainties (γ , e, μ energy scales) dominate

PRL 114 (2015) 191803

$$m_{\rm H} = 125.09 \pm 0.21_{(stat.)} \pm 0.11_{(scale)} \pm 0.02_{(other)} \pm 0.01_{(theory)} \,{
m GeV}$$

correlated errors are negligible

ATLAS & CMS Higgs Mass Measurements

Couplings from Combination of ATLAS & CMS data

 Combination of Measurements of Higgs-Boson Production by ATLAS and CMS in

production modes

in the decay Channels $H \rightarrow ZZ, \gamma\gamma, WW, \tau\tau$ and **bb** (and $\mu\mu$) *note:* $\gamma\gamma$ proceeds though W, t & b loop

- individual results corrected to common Higgs-boson mass of 125.09 GeV (and latest theory predictions, common treatment of background models etc. in some cases)
- gain factor $\sim \sqrt{2}$ in precision *w.r.t.* the individual results, as measurements are dominated by independent errors

Results are preliminary, see – ATLAS-CONF-2015-044 – CMS-PAS-HIG-15-002 on the collaborations web sites publication in preparation

Signal parametrisations

In the narrow width approximation, which decouples production and decay, a measurement of $\sigma \cdot Br$ in the process $i \to H \to f$ is characterised by signal strength modifiers μ : $\mu_i^f = \frac{\sigma_i}{(\sigma_i)_{\rm SM}} \cdot \frac{{\rm Br}^f}{({\rm Br}^f)_{\rm SM}} = \mu_i \cdot \mu^f$ i = ggF, VBF, VH, ttH, ..., f = bb, WW, (gg), $\tau\tau$, cc, ZZ, $\gamma\gamma$, $Z\gamma$, $\mu\mu$ Or, at (LO) coupling level, introduce alternatively: loops resolved to contributing particles, $t \to t$ coupling modifiers κ: $\sigma_i \cdot \operatorname{Br}^f = \frac{\sigma_i(\{\kappa\}) \cdot \Gamma^f(\{\kappa\})}{\Gamma_H(\{\kappa\})}$ *e.g.* ggF: $\kappa_a^2 \simeq 1.06\kappa_t^2 + 0.01\kappa_b^2 - 0.07\kappa_t\kappa_b$ $\kappa_i^2 = \frac{\sigma_j}{\sigma_i^{\text{SM}}} \text{ or } \kappa_f^2 = \frac{\Gamma^J}{\Gamma_{\text{CM}}^f}$ SM particles only: with BSM-contributions: $\kappa_H^2 = \sum_{f} \operatorname{Br}_{\mathrm{SM}}^f \kappa_f^2 \quad | \quad \Gamma_H = \kappa_H^2 \frac{\Gamma_H^{\mathrm{SM}}}{(1 - \operatorname{Br}_{\mathrm{RSM}})}$ $\kappa_H^2 = \frac{\Gamma_H}{\Gamma_H^{\rm SM}}$

as a reminder: H Production and Decay in κ - Framework

Production	Loops	Interference	Multip	olicative factor
$\sigma(ggF)$	\checkmark	b-t	$\kappa_{\rm g}^2 \sim$	$1.06 \cdot \kappa_{\rm t}^2 + 0.01 \cdot \kappa_{\rm b}^2 - 0.07 \cdot \kappa_{\rm t} \kappa_{\rm b}$
$\sigma(VBF)$	_	_	~	$0.74 \cdot \kappa_{\rm W}^2 + 0.26 \cdot \kappa_{\rm Z}^2$
$\sigma(WH)$	_	_	\sim	$\kappa_{\rm W}^2$
$\sigma(qq/qg \to ZH)$	_	_	\sim	κ_Z^2
$\sigma(gg \to ZH)$	\checkmark	Z-t	\sim	$2.27 \cdot \kappa_Z^2 + 0.37 \cdot \kappa_t^2 - 1.64 \cdot \kappa_Z \kappa_t$
$\sigma(ttH)$	_	_	\sim	$\kappa_{\rm t}^2$
$\sigma(gb \to WtH)$	_	W-t	\sim	$1.84 \cdot \kappa_{\rm t}^2 + 1.57 \cdot \kappa_{\rm W}^2 - 2.41 \cdot \kappa_{\rm t} \kappa_{\rm W}$
$\sigma(qb \to tHq)$	_	W-t	\sim	$3.4 \cdot \kappa_t^2 + 3.56 \cdot \kappa_W^2 - 5.96 \cdot \kappa_t \kappa_W$
$\sigma(bbH)$	_	_	\sim	$\kappa_{\rm b}^2$
Partial decay width				
Γ^{ZZ}	_	_	~	κ_Z^2
Γ^{WW}	_	_	\sim	$\kappa_{ m W}^2$
$\Gamma^{\gamma\gamma}$	\checkmark	W-t	$\kappa_{\gamma}^2 \sim$	$1.59 \cdot \kappa_{\rm W}^2 + 0.07 \cdot \kappa_{\rm t}^2 - 0.66 \cdot \kappa_{\rm W} \kappa_{\rm t}$
$\Gamma^{ au au}$	_	_	~	κ_{τ}^2
Γ^{bb}	_	_	\sim	$\kappa_{\rm b}^2$
$\Gamma^{\mu\mu}$	_	_	\sim	κ_{μ}^2
Total width for $BR_{BSM} = 0$				
				$0.57 \cdot \kappa_{\rm b}^2 + 0.22 \cdot \kappa_{\rm W}^2 + 0.09 \cdot \kappa_{\rm g}^2 +$
$\Gamma_{ m H}$	\checkmark	_	$\kappa_{\rm H}^2 \sim$	$+ 0.06 \cdot \kappa_{\tau}^2 + 0.03 \cdot \kappa_Z^2 + 0.03 \cdot \kappa_c^2 +$
				$+ 0.0023 \cdot \kappa_{\gamma}^2 + 0.0016 \cdot \kappa_{Z\gamma}^2 +$
				$+ 0.0001 \cdot \kappa_{s}^{2} + 0.00022 \cdot \kappa_{u}^{2}$

Combination Procedure

Construct combined likelihood of all measurements, each measurement consisting of

- one or more signal regions, designed to select Higgs production mode *i* and decay channel *f* often further broken down to different "categories" (e.g. low or high p_T)
- distribution of a (multivariate) discriminant, composed of signal and a large number of background contributions

Input Channels for Combination

Decay / Production	untagged	VBF	VH	ttH]
f / i	mainly ggF				
$H \rightarrow ZZ$	\checkmark				
$ m H ightarrow \gamma \gamma$	\checkmark				
$H \rightarrow WW \rightarrow 2\ell 2\nu$	\checkmark			\checkmark	
$H \rightarrow \tau \tau$	\checkmark			-	
$H \rightarrow bb$	large bkg.				
$\mathrm{H}\!\!\rightarrow\mu\mu$	()	()	very lo	w rate	
$H \rightarrow inv.$	not included in combination				

CMS VBV H(bb) came too late for combination

some other production modes not explicitly selected, but their contribution is included in the signal model *(e.g. tHq and tHW picked up by ttH analyses)*

O(100) categories C per experiment with number of signal events n_s given by

$$n_s^C = L^C \times \sum_i \sum_f \mu_i \,\sigma_i^{(SM)} \times \mu_f \operatorname{Br}_f^{(SM)} \times A_{if}^C \times \epsilon_{if}^C$$

i: production process, f: final state, L: integ. luminosity, A: acceptance, ε : efficiency *Note:* typically, many production channels contribute to a category, while the decay channels can be identified cleanly

Treatment of systematics

Sources of systematic errors are treated as nuisance parameters in profile likelihood formalism

• already used for combination within each experiment

The challenge addressed by LHC-HCG:

- identify common errors between ATLAS & CMS
- ensure common treatment
 - \rightarrow individual measurements were adjusted prior to the combination (same Higgs mass, latest theory predictions, common background models etc.)

 $heta_{\mathrm{QCDscale}}$ correlated between ATLAS & CMS

Full ATLAS and CMS combination:

- ~580 signal and control regions (ATLAS and CMS)
- ~4200 nuisance parameters related to systematic uncertainties

Parametrisation as ratios of σ and Br

with **minimal assumptions**, express not dependent on $\Gamma_{\rm H}$, exp. & theor. all measured Higgs production rates as systematics largely cancel ATLAS ATLAS and CMS Preliminary $\sigma_i \cdot \mathrm{BR}^f = \sigma(gg \to H \to ZZ) \times \left(\frac{\sigma_i}{\sigma_{ggF}}\right) \times \left(\frac{\mathrm{BR}^f}{\mathrm{BR}^{ZZ}}\right)$ CMS LHC Run 1 ATLAS+CMS $\sigma(gg \rightarrow$ 1σ 2σ $H \rightarrow ZZ$ Th. uncert. with $(gg \rightarrow H \rightarrow ZZ)$ as the reference $\sigma_{VBF} / \sigma_{ggF}$ channel (cleanest, smallest systematics) $\sigma_{WH}^{\prime}/\sigma_{ggF}^{\prime}$ The 9 parameters of the σ and Br ratio model $\sigma(gg \to H \to ZZ)$ $\sigma_{\text{ZH}}^{}/\sigma_{\text{ggF}}^{}$ $\sigma_{VBF}/\sigma_{ggF}$ $\sigma_{ttH}^{\prime}/\sigma_{ggF}^{\prime}$ σ_{WH}/σ_{ggF} BR^{WW}/BR^{ZZ} σ_{ZH}/σ_{ggF} $\sigma_{ttH}/\sigma_{ggF}$ $BR^{\gamma\gamma}/BR^{ZZ}$ BR^{WW}/BR^{ZZ} BR^{ττ}/BR^{ZZ} $BR^{\gamma\gamma}/BR^{ZZ}$ BR^{bb}/BR^{ZZ} $BR^{\tau\tau}/BR^{ZZ}$ BR^{bb}/BR^{ZZ} -1 Parameter value norm. to SM prediction

> towards legacy representation of LHC Higgs results presently missing piece : correlation matrix (expected for publication)

DESY Theory Workshop 2015

Günter Quast, Karlsruhe

Result of σ and Br model

- consistent with SM value of 1
- largest discrepancy of ~2.4 σ in Br^{bb} / Br^{ZZ}
 but:

– denominator > SM due to ttH \rightarrow leptons & σ_{ZH}

numerator <SM due to small VH(bb)

negLog \mathcal{L} is strongly non-Gaussian:

Alternative: coupling-strength ratios

Overall Signal Strength **µ**

only one fit parameter

assumption: $\mu_i = \mu_f := \mu$

$$\mu = 1.09^{+0.11}_{-0.10} = 1.09^{+0.07}_{-0.07} \text{ (stat)} {}^{+0.04}_{-0.04} \text{ (expt)} {}^{+0.03}_{-0.03} \text{ (thbgd)} {}^{+0.07}_{-0.06} \text{ (thsig)}$$

most precise measurement, theoretical error as large as the statistical one !

Fermion- and Boson-mediated production modes

H Couplings to Fermions and Bosons

1. assume universal scaling factors for couplings to fermions and bosons: κ_F and κ_V

2. only SM physics in loops

Fermion couplings

 κ_{ℓ} and κ_q

leptons and quarks

assume universal coupling modifiers for leptons and quarks separately

$$\lambda_{\ell u} = \frac{\kappa_{\ell}}{\kappa_{q}}, \ \lambda_{Vq} = \frac{\kappa_{V}}{\kappa_{q}}, \ \kappa_{qq} = \frac{\kappa_{q} \cdot \kappa_{q}}{\kappa_{H}}$$

Beyond SM ?

Total Higgs boson width depends on invisible (or undetected) H decays, but not known precisely enough experimentally.

Alternative:

Physics beyond SM in loops ?

κ_q and κ_γ **Test for new physics in loops** in ggF and $H \rightarrow \gamma \gamma$: assume $_{BSM} = 0$ and $\kappa_i = 1$ \mathbf{k}_{g} new physics my enter through ATLAS ATLAS and CMS effective couplings κ_{γ} and κ_{g} 1.8 CMS LHC Run 1 ATLAS+CMS Preliminary 1.6 1.4 1.2 0.8 0.6 * SM -68% CL + Best fit --- 95% CL 0.40.4 0.6 0.8 1.2 1.4 2 1.6 18 κ_{γ} p-value for compatibility of data and SM is 82%

Higgs Couplings (in SM)

Assumption: No other than SM particles couple to Higgs boson, $Br_{BSM} = 0$

remark: low value of κ_b reduces total width $\Gamma_H \Rightarrow all \kappa_i$ come out a bit low

DESY Theory Workshop 2015

Conclusion, Summary & Outlook

- H(125) is (so far) the only one of its kind
- Combination of ATLAS & CMS measurements from LHC run 1 reaches a new level of precision: ~√2 better than individual ones ⇒ constraints on couplings at the level of ~10%
- tests of relations between Higgs couplings to SM particles show no significant deviations from SM predictions

LHC run 2 @ 13 TeV just started (need patience ...)

- higher energy (~2 x larger parton luminosity),
- larger integrated luminosity (~30fb⁻¹/y in 2016/'17/'18)
- progress in precision of theoretical calculations
- and the ability to go beyond the κ -framework will allow more stringent tests of H couplings

expect factor ~3 higher precision on H rates

Some obvious immediate tasks remain, e.g.

- clarify excess in ttH production
- measure $H \rightarrow bb$

Searches for additional Higgs Bosons (in (N)MSSM and more general models)

may see something sooner !

Keep eyes open !

Backup Material

Systematic Errors in H Mass Determination

	Uncertainty in ATLAS		Uncertainty in CMS		Uncertainty in	
	results	results [GeV]: results [GeV]:		combined result [GeV]:		
	observed	(expected)	observed (expected)		observed (expected)	
	$H o \gamma \gamma$	$H \to ZZ \to 4\ell$	$H ightarrow \gamma \gamma$	$H \to ZZ \to 4\ell$	ATLAS	CMS
Scale uncertainties:						
ATLAS ECAL non-linearity /						
CMS photon non-linearity	0.14 (0.16)	—	0.10 (0.13)	_	0.02 (0.04)	0.05 (0.06)
Material in front of ECAL	0.15 (0.13)	_	0.07 (0.07)	_	0.03 (0.03)	0.04 (0.03)
ECAL longitudinal response	0.12 (0.13)	_	0.02 (0.01)	_	0.02 (0.03)	0.01 (0.01)
ECAL lateral shower shape	0.09 (0.08)	_	0.06 (0.06)	_	0.02 (0.02)	0.03 (0.03)
Photon energy resolution	0.03 (0.01)	_	0.01 (<0.01)	_	0.02 (<0.01)	< 0.01 (< 0.01)
ATLAS $H \rightarrow \gamma \gamma$ vertex & conversion reconstruction	0.05 (0.05)	_	-	_	0.01 (0.01)	_
$Z \rightarrow ee$ calibration	0.05 (0.04)	0.03 (0.02)	0.05 (0.05)	_	0.02 (0.01)	0.02 (0.02)
CMS electron energy scale & resolution	_	_	_	0.12 (0.09)	_	0.03 (0.02)
Muon momentum scale & resolution	_	0.03 (0.04)	_	0.11 (0.10)	< 0.01 (0.01)	0.05 (0.02)
Other uncertainties:						
ATLAS $H ightarrow \gamma \gamma$ background modeling	0.04 (0.03)	-	-	_	0.01 (0.01)	_
Integrated luminosity	0.01 (<0.01)	< 0.01 (< 0.01)	0.01 (<0.01)	< 0.01 (< 0.01)	0.01 (<0.01)
Additional experimental systematic	0.03 (<0.01)	<0.01 (<0.01)	0.02 (<0.01)	0.01 (<0.01)	0.01 (<0.01)	0.01 (<0.01)
uncertainties						
Theory uncertainties	< 0.01 (< 0.01)	< 0.01 (< 0.01)	0.02 (<0.01)	< 0.01 (< 0.01)	0.01 (<0.01)
Systematic uncertainty (sum in quadrature)	0.27 (0.27)	0.04 (0.04)	0.15 (0.17)	0.16 (0.13)	0.11	(0.10)
Systematic uncertainty (nominal)	0.27 (0.27)	0.04 (0.05)	0.15 (0.17)	0.17 (0.14)	0.11	(0.10)
Statistical uncertainty	0.43 (0.45)	0.52 (0.66)	0.31 (0.32)	0.42 (0.57)	0.21	(0.22)
Total uncertainty	0.51 (0.52)	0.52 (0.66)	0.34 (0.36)	0.45 (0.59)	0.24	(0.24)
Analysis weights	19% (22%)	18% (14%)	40% (46%)	23% (17%)		_

in parantheses: errors expected fom pre-fit Asimov dataset

Higgs Boson Mass (2)

Result of 2D-Likelihod scan with signal strength as additional parameter ...

Combination of Couplings in all Channels

Mass combination was the test case for the more complex combinations Systematic errors and their treatment in common fits carefully studied

DESY Theory Workshop 2015

Summary of event generators used to model Higgs boson production and decays in the ATLAS and CMS experiments.

Production	Event	generator
process	ATLAS	CMS
ggF	Роwнед [28–32]	Powheg
VBF	Powheg	Powheg
WH	Рутніа8 [33]	Рутніа6.4 [<mark>34</mark>]
$ZH: q\bar{q} \rightarrow ZH$	Ρυτηία8	Ρυτηια6.4
$ggZH: gg \rightarrow ZH$	Powheg	See text
ttH	POWHEL [42]	Ρυτηια6.4
$tHq: qb \rightarrow tHq'$	MadGraph [44]	AMC@NLO [23]
$tHW: gb \rightarrow WtH$	AMC@NLO	AMC@NLO
bbH	Ρυτηία8	Pythia6, aMC@NLO

Adjustments to ATLAS and CMS inputs

Adjustments made to individual ATLAS and CMS measurements prior to combination:

- All ATLAS & CMS channels modified to assume a Higgs boson mass of 125.09 GeV (the value of the combined mass)
- CMS includes bbH, tH, ggZH production processes, where relevant
- ATLAS now uses Stewart-Tackman prescription of jet-bin uncertainties for the H → WW channel (⇒ understandable correlations with CMS)
- CMS adopts signal cross-section calculations from YR3 for all channels
- CMS adopts unified prescription of treatment of Higgs boson p_T
- Cross section values for dominant backgrounds estimated from simulation harmonised between ATLAS & CMS
- ATLAS & CMS adopted same correlation scheme for theory uncertainties on signal

Statistical Method

developed jointly by ATLAS and CMS, used also for the individual combinations

Central values and confidence intervals of parameters of interest (α) are estimated using the profile likelihood ratio as the test statistic.

Likelihood \mathcal{L} is constructed from products of probability density functions of signal and background distributions

experimental and theoretical uncertainties represented by a set of "**nuisance parameters**" (θ)

Choice of parameters of interest depends on the signal parametrisation, e.g.

- signal strengths (μ) or
- coupling strength modifiers (κ)

In general many more nuisance parameters than parameters of interest !

DESY Theory Workshop 2015

Günter Quast, Karlsruhe

Individual Results from Combined Analysis

Overview of the signal strengths						
of Higgs decay channels from	Channel	Signal stre	ength [μ]	Signal sign	ificance [σ]	
combined analysis		from results in this paper				
		ATLAS	CMS	ATLAS	CMS	
	$H \rightarrow \gamma \gamma$	$1.15^{+0.27}_{-0.25}$	$1.12^{+0.25}_{-0.23}$	5.0	5.6	
		$\binom{+0.26}{-0.24}$	$\binom{+0.24}{-0.22}$	(4.6)	(5.1)	
	$H \rightarrow ZZ \rightarrow 4\ell$	$1.51_{-0.34}^{+0.39}$	$1.05^{+0.32}_{-0.27}$	6.6	7.0	
		$\binom{+0.33}{-0.27}$	$\binom{+0.31}{-0.26}$	(5.5)	(6.8)	
	$H \rightarrow WW$	$1.23^{+0.23}_{-0.21}$	$0.91^{+0.24}_{-0.21}$	6.8	4.8	
		$\binom{+0.21}{-0.20}$	$\binom{+0.23}{-0.20}$	(5.8)	(5.6)	
	$H \to \tau \tau$	$1.41_{-0.35}^{+0.40}$	$0.89^{+0.31}_{-0.28}$	4.4	3.4	
		$\binom{+0.37}{-0.33}$	$\binom{+0.31}{-0.29}$	(3.3)	(3.7)	
	$H \rightarrow bb$	$0.62^{+0.37}_{-0.36}$	$0.81_{-0.42}^{+0.45}$	1.7	2.0	
		$\binom{+0.39}{-0.37}$	$\binom{+0.45}{-0.43}$	(2.7)	(2.5)	
	$H ightarrow \mu \mu$	-0.7 ± 3.6	0.8 ± 3.5			
		(±3.6)	(±3.5)			
	ttH production	$1.9^{+0.8}_{-0.7}$	$2.9^{+1.0}_{-0.9}$	2.7	3.6	
		$\binom{+0.72}{-0.66}$	$\binom{+0.88}{-0.80}$	(1.6)	(1.3)	

Very close to results from individual publications

(selected) Combined Significances

ggF, H \rightarrow ZZ, $\gamma\gamma$, WW already at >5 σ by each experiment individually;

selected significances from ATLAS and CMS combination				
Production process Measured significance (σ) Expected significance				
VBF	5.4	4.7		
WH	2.4	2.7		
ZH	2.3	2.9		
VH	3.5	4.2		
tt H	4.4	2.0		
Decay channel				
$H \to \tau \tau$	5.5	5.0		
$H \rightarrow bb$	2.6	3.7		

• VBF production and H $\rightarrow \tau\tau$ now at S > 5 σ

- excess over SM in ttH to be watched !
- largest decay channel (H $_{\rightarrow}$ bb) still at S< 3σ

Γ_{H} and off-shell cross-section

$\Gamma_{\rm H} \sim 4$ MeV for m_H= 125 GeV in the SM

is much smaller than experimental resolution, i.e. cannot be measured directly at the LHC However, there is a substantial (and measurable) off-shell-contribution from

(Higgs) production in gg ($_{\rightarrow}$ H) $_{\rightarrow}$ V V(V=W,Z), $\sigma_{gg \rightarrow VV}^{off}: g_{gg}g_{HZZ}$

to be compared to on-peak cross-section

are independent of the energy scale:

 μ_{off}

 $\mu_{\rm on}$

 $\Gamma_{\rm H}$

 $\overline{r_{H}^{SM}}$

New CMS result

identical technique, but explicitly allowing for non-SM couplings in g_{HZZ} with a parameter $f_{\Lambda O}(m(zz))$

