Minimal Asymmetric Dark Matter

in collaboration with S. M. Boucenna, and E. Nardi PLB 748 (2015) 191, arXiv:1503.01119

Martin B. Krauss

DESY Theory Workshop Hamburg

September 30, 2015

Motivation

How is dark matter produced in the early universe?

WIMP scenario:

Thermal freez-out of weakly interacting massive particle.

ADM scenario:

Asymmetry between DM particle χ and its antiparticle $\overline{\chi}$. Relic density due to χ excess (similar to baryogenesis). Usually requires new symmetries.

 \rightarrow Minimal asymmetric dark matter (MADM): use SM gauge symmetries to transfer asymmetry to multiplet DM

The MADM model

- Particle content: $SM + SU(2)_L$ multiplet χ (c.f. Minimal Dark Matter [Cirelli, Fornengo, Strumia (2006)])
- Non-zero hypercharge *y*
- lacktriangledown Not self-conjugate ightarrow can carry asymmetry
- Neutral component with $t_3 = -y$ if isospin t = y + k, for non-negative integer k
- Non-minimal multiplets for k > 0
- Neutral component has to be the lightest state
- $\blacksquare \ \ \mathsf{Matter} \ \mathsf{parity} \ \mathsf{to} \ \mathsf{stabilize} \ \chi$

Transfer operator

Transfer operator

$$\mathcal{O}^{\phi} = \frac{1}{\Lambda^{4y-x}} \chi \chi \phi^{4y}$$

 ${\sf x}={\sf 1}$ (2) if χ is fermion (boson)

The operator \mathcal{O}^{ϕ} plays two roles:

- At T > T_{EW}, enforces chemical equilibrium between φ and χ, communicates asymmetry.
- At $T < T_{EW}$: Generates mass splitting

$$\delta m_0^{\mathsf{x}} = \frac{\mathsf{v}^{4\mathsf{y}}}{\mathsf{\Lambda}^{4\mathsf{y}-\mathsf{x}}}$$

between the two real degrees of freedom $\chi^0_{1,2}$ of the neutral χ component

Other possible operator $\frac{1}{\Lambda^{3y-x}}\chi\chi(e_Re_R)^y$ for asymmetry transfer for integer y.

Mass splitting of χ^0

Consequences of splitting:

- χ_1^0 does not couple to Z boson
- Inelastic transition $\chi_1^0 \to \chi_2^0$ kinematically forbidden if

$$\delta \textit{m}_0 = 2 \textit{m}_\chi \left(\frac{\textit{v}}{\Lambda}\right)^{4\textit{y}} \left(\frac{\Lambda}{2\textit{m}_\chi}\right)^{\textit{x}} \gtrsim \delta \textit{m}^{\min}$$

• $\delta m^{\min} \sim (1+0.2y) imes 175 \, {\sf keV}$ for m_χ of order few TeV

[Nagata, Shirai (2015)]

Timeline

Steps required to produce DM:

- For $T \gg T_{\rm EW}$: in-equlibrium reactions via \mathcal{O}^{ϕ} feed asymmetry between SM and χ sector
- At $T_a > T_{\rm EW}$ chemical decoupling of χ , the asymmetry in the abundances $Y_{\Delta\chi} \equiv Y_\chi Y_{\overline{\chi}}$ remains conserved $(T_a \sim \frac{m_\chi}{10})$
- Symmetric component annihilates via $\chi \overline{\chi} \to SM$ until $T_s < T_a$ ($T_s \sim \frac{m_\chi}{25}$)
 Asymmetric component can restart annihilation after EWPT $\to T_s > T_{\rm EW}$. $Y_{\overline{\chi}} \ll Y_{\Delta\chi} \approx Y_{\chi}$ at $T_s \to {\rm relic}$ abundance dominated by initial asymmetry.
- lacksquare At $T \ll T_{\rm EW}$ all χ components will decay to χ^0_1
- Present DM density is then

Chemical decoupling

Equilibrium via $\chi\chi \to \phi^{4y}$ (s-channel)

and $\chi \phi^* \to \chi^* \phi^{4y-1}$ (t-channel)

Reaction rates

$$\Gamma_{\chi\chi} = n_{\chi}^{0} \langle \sigma | v | \rangle_{\chi\chi}, \qquad \Gamma_{\chi\phi} = n_{\phi}^{0} \langle \sigma | v | \rangle_{\chi\phi}$$

Chemical decoupling when $\Gamma_{\chi\chi}$, $\Gamma_{\chi\phi} \lesssim H(T_a)$

For $y>\frac{1}{2}$ the relevant contribution is $\Gamma_{\chi\chi}$ ($T_a\sim\frac{m_\chi}{10}$)

MADM with different hypercharge I

Fermions

$$f = \Omega_\chi/\Omega_{\mathsf{DM}}$$

■ For y=1: $\Lambda\lesssim 17\,\mathrm{TeV}$ from DD constraints, and $m_\chi\lesssim 10\,\mathrm{TeV}$ $(T_s\sim \frac{m_\chi}{25}\gtrsim T_\mathrm{EW}).$

Low $\Lambda
ightarrow$ rather large neutral-charged splitting $\delta m^{
m v} \sim 1~{
m GeV}$

 \mathcal{O}^{e_R} present $\rightarrow y=1$ multiplet still viable within $2.5\,\text{TeV} \lesssim m_\chi \lesssim 6.7\,\text{TeV}$

• $y = \frac{3}{2}$ and y = 2: allowed bands in the $m_{\chi} > \Lambda$ region

 \Rightarrow Viable DM candidate for $y = 1 \rightarrow$ minimal choice is SU(2) triplet

MADM with different hypercharge II

Scalars

Scalar multiplet with hypercharge y = 1:

$$\Lambda pprox 18 \left(rac{10}{z_a}
ight)^{1/8} \, {\sf TeV}$$

Freeze-out before T_{EW} possible for $2.5\,\mathrm{TeV} \lesssim m_\chi \lesssim 6.7\,\mathrm{TeV}$

 \mathcal{O}^{e_R} present ightarrow implies $m_\chi \lesssim 1.3\,\mathrm{TeV}
ightarrow$ not viable

■ Higher hypercharge→ FFT breakdown

MADM with different hypercharge III

For $y = \frac{1}{2}$ (minimal choice doublet, t-channel dominated):

Fermions

- DD limit: $\Lambda \lesssim 1.5 \times 10^5 \, \text{TeV}$
- correct abundance requires $\Lambda \gtrsim 4.1 \times 10^5 \left(\frac{T_a}{100 \, \text{GeV}}\right)^{1/2} \, \text{TeV}.$
- lacksquare ightarrow disagreement for $T_a > T_{EW}$

Scalars

- Transfer operator is renormalizible
- Unique since no Λ dependence, m_{χ} only new scale Keep explicit coupling constant λ
- DD limit $\frac{m_{\chi}}{\lambda} \lesssim 8 \times 10^4 \text{ TeV}$
- lacktriangle Decoupling requires $rac{m_\chi}{\lambda} \gtrsim 4.1 imes 10^5 \left(rac{T_s}{100 \, {
 m TeV}}
 ight)^{1/2} \, {
 m TeV}$
 - \rightarrow Conflicting bounds

Symmetric annihilation

Efficient $\chi \overline{\chi}$ annihilation (via gauge interactions)

- ightarrow symmetric component remains subdominant ($\Omega_{\overline{\chi}} \ll \Omega_{\chi} \sim \Omega_{DM}$)
- Sizable suppression of symmetric relic density due to Sommerfeld enhancements
- y=1 fermionic triplet relic density completely symmetric for $2.7\,{\rm TeV} \lesssim m_\chi \lesssim 2.8\,{\rm TeV}$
- relevant contribution from asymmetry marginally allowed
- y = 1 scalar triplets similar
- $\blacksquare \ \ \text{higher multiplets} \to \text{enhanced cross section}$
 - → larger masses required without asymmetry
- lacksquare E.g., thermally produced fermion quintuplet with $m_\chi \ll 10\,{
 m TeV}$
 - ightarrow contributes whole DM only with asymmetry

Phenomenological implications

Searches at colliders:

- LHC reach up to few hundred GeV \rightarrow too low for MADM
- Future e^+e^- and pp colliders probe multi TeV region only marginally

Direct detection:

- Z mediated interactions kinematically forbidden
- Loop level interactions with $\sigma \sim \mathcal{O}(10^{-47})\,\mathrm{cm}^2$ far below current bounds

Indirect detection:

- heavily depends on DM halo model
- \blacksquare Most relevant bounds from antiproton measurements and absence of $\gamma\text{-ray}$ lines towards the galactic center
- y=0 fermion triplet (wino-like) DM excluded for $1.8\,\mathrm{TeV}\lesssim m_{\widetilde{W}}\lesssim 3.5\,\mathrm{TeV}$
- Similar expected for y=1, since m_χ close to $M_W/\alpha_2\sim 2.4\,{\rm TeV}$ (see also [Chun, Park (2015)])

Conclusions

- Any new $SU(2)_L$ multiplet with $y \neq 0$ and in chemical equilibrium at $T > T_{EW}$ inherits asymmetry from SM sector
- Neutral component ADM candidate, if stable and lightest member
- Transfer operator:
 - \rightarrow enforces chemical equilibrium
 - ightarrow mass splitting of neutral component, Z interactions kinematically forbidden
- Decoupling before EWPT
- Allows do exclude all MADM candidates except y = 1 scalar/fermion multiplets
- Minimal multiplets disfavoured by symmetric annihilation and indirect detection
- Quintuplets less constrained due to enhanced annihilation
- Relaxing minimality criteria can avoid constraints (e.g, additional DM singlet, ...)