SUSY Higgs Mass and Collider Signals with a Hidden Valley

Yuichiro Nakai (Harvard)

YN, M. Reece and R. Sato, In preparation

Supersymmetry (SUSY)

Naturalness

Quadratic divergence is cancelled.

Dynamics of EWSB

EWSB is driven radiatively.

SUSY Higgs mass problem

125 GeV Higgs is light, but not so light ...

A significant radiative correction is needed in MSSM.

$$
\Delta \lambda_{H_{u}} \approx \frac{y_{t}^{4} N_{c}}{16 \pi^{2}} \ln \frac{m_{\tilde{\tilde{}}}}{m_{t}} \quad N_{c}=3
$$

A large quadratic term is also generated.

$$
\Delta m_{H_{u}}^{2} \approx-\frac{y_{t}^{2} N_{c}}{4 \pi^{2}} m_{\tilde{t}}^{2} \ln \frac{M_{\mathrm{m}}^{2}}{m_{\tilde{t}}^{2}} \quad M_{\mathrm{m}}: \text { Mediation }
$$

Fine tuning is required in MSSM.

Missing superpartner problem

Superpartners have not been observed yet.

Jets and missing P_{T} search
(Gluino mass) > 1.4 TeV
(Squark mass) > 1.6 TeV

Fine tuning

Two modules for two problems

Lift up the Higgs mass
Next-to-MSSM
Gauge extension
Vectorlike matter ...

Reduce missing energy

R-parity violation
Stealth SUSY
Compressed spectra ...

Two problems are usually treated as independent.

One module for two problems

Lift up the Higgs mass
Next-to-MSSM
Gauge extension
Vectorlike matter ...

Reduce missing energy
R-parity violation
Stealth SUSY
Compressed spectra ...

Explore a scenario that can ameliorate both problems !

Our framework : New loop contributions

Let’s look at SUSY Higgs mass problem again.

$$
\Delta \lambda_{H_{u}} \approx \frac{y_{t}^{4} N_{c}}{16 \pi^{2}} \ln \frac{m_{\tilde{t}}}{m_{t}} \quad \Delta m_{H_{u}}^{2} \approx-\frac{y_{t}^{2} N_{c}}{4 \pi^{2}} m_{\tilde{t}}^{2} \ln \frac{M_{\mathrm{m}}^{2}}{m_{\tilde{t}}^{2}}
$$

If we have new Higgs interactions larger than the top Yukawa, large SUSY breaking is not needed and fine tuning is relaxed.
$\Delta W=\lambda_{u} H_{u} \bar{\Psi}_{d} \Psi+\lambda_{d} H_{d} \Psi_{u} \bar{\Psi}+m \Psi_{u} \bar{\Psi}_{d}+m^{\prime} \Psi \bar{\Psi}$

$$
\Psi_{u}, \bar{\Psi}_{d}: \boldsymbol{S U}(\mathbf{2})_{L} \text { doublets }, \quad \mathbf{\Psi}, \overline{\mathbf{\Psi}}: \text { singlets }
$$

Our framework: New loop contributions

Large $\boldsymbol{\lambda}_{\boldsymbol{u}} \Rightarrow$ Small SUSY breaking is enough for 125 GeV Higgs.

Our framework : Avoiding Landau poles

Running of the new large Yukawa hits a Landau pole immediately ...
cf. running of top Yukawa coupling

$$
\frac{d y_{t}}{d \ln \mu} \simeq \frac{y_{t}}{16 \pi^{2}}\left(6 y_{t}^{*} y_{t}-\frac{16}{3} g_{3}^{2}\right)
$$

If we introduce a new gauge interaction to new particles, Landau poles can be avoided.
$\Psi_{u}, \Psi: S U(N)_{H}$ fundamentals $, \quad \bar{\Psi}_{d}, \bar{\Psi}$: anti-fundamentals

Our framework : Avoiding Landau poles

The new gauge theory finally confines.
Confinement scale : $\Lambda=\mathcal{O}(\mathbf{1 0}) \mathrm{GeV}$
Hidden Valley M. Strassler, K. Zurek (2006)

Gaugino mediation with a vanishing hidden gaugino mass
$\Rightarrow\left[\begin{array}{l}\text { Small SUSY breaking for new vectorlike fields } \\ \text { (Almost) supersymmetric Hidden Valley sector }\end{array}\right.$

Benchmark points

2-loop RGEs calculated by SARAH

	(A)	(B)	(C)	(D)
$M_{1}[\mathrm{GeV}]$	1865	1823	1867	1825
$M_{2}[\mathrm{GeV}]$	1893	1856	1897	1860
$M_{3}[\mathrm{GeV}]$	1971	1949	1980	1958
$-\sqrt{\left\|m_{H_{u}}^{2}\right\|}[\mathrm{GeV}]$	-158	-268	-179	-277
$m_{H_{d}}[\mathrm{GeV}]$	517	556	516	555
$m_{q_{1}}[\mathrm{GeV}]$	1227	1325	1228	1325
$m_{u_{1}}[\mathrm{GeV}]$	1152	1244	1153	1244
$m_{d_{1}}[\mathrm{GeV}]$	1139	1230	1140	1230
$m_{q_{3}}[\mathrm{GeV}]$	1202	1292	1202	1293
$m_{u_{3}}[\mathrm{GeV}]$	1094	1169	1094	1170
$m_{d_{3}}[\mathrm{GeV}]$	1139	1230	1140	1230
$m_{l}[\mathrm{GeV}]$	524	565	524	565
$m_{e}[\mathrm{GeV}]$	323	348	323	348

Small hidden
gaugino mass

	(A)	(B)	(C)	(D)
$M_{\lambda}[\mathrm{GeV}]$	38.2	44.7	26.3	30.8
$\tilde{m}_{u}[\mathrm{GeV}]$	476	510	493	529
$\tilde{m}_{d}[\mathrm{GeV}]$	470	504	485	522
$\tilde{m}_{f}[\mathrm{GeV}]$	1079	1164	1097	1184
$\tilde{m}_{f}[\mathrm{GeV}]$	1079	1164	1097	1184
$-\sqrt{\left\|\tilde{m}_{0}^{2}\right\|}[\mathrm{GeV}]$	-235	-256	-226	-240
$-\sqrt{\left\|\tilde{m}_{0}^{2}\right\|}[\mathrm{GeV}]$	-166	-191	-135	-156
$-\sqrt{\left\|\tilde{m}^{2}\right\|}[\mathrm{GeV}]$	-147	-171	-108	-126
$-\sqrt{\left\|\tilde{m}^{2}\right\|}[\mathrm{GeV}]$	-147	-171	-108	-126
$m_{h}[\mathrm{GeV}]$	125.3	125.7	125.9	125.5
$\Lambda^{\overline{M S}}[\mathrm{GeV}]$	10	10	10	10
λ_{u}	1.45	1.40	1.45	1.37
$M_{\mathrm{m}}[\mathrm{TeV}]$	50	100	50	100

Higgs interactions with a Hidden Valley

R. Kitano, M. Luty, YN (2012) , ...

Decay chain with a Hidden Valley

 cf. Stealth SUSY, J. Fan, M. Reece, J. Ruderman (2011)

A simplified model

Our HV sector is strongly interacting and difficult to analyze.
Consider a simplified model for collider phenomenology.
Include two light supermultiplets (Singlets of SM gauge groups)
(S, \tilde{S}) : Hidden gluinoball(ino) , $\quad\left(S^{\prime}, \tilde{S}^{\prime}\right):$ Hidden glueball(ino)
$W_{\text {simplified }}=\mu H_{u} H_{d}+\lambda_{S} S H_{u} H_{d}+m_{S S^{\prime}} S S^{\prime}+\frac{1}{2} m_{S} S^{2}+\frac{1}{2} m_{S^{\prime}} S^{\prime 2}$ $+\frac{1}{3} \kappa S^{3}+\left(\right.$ cubic terms with $\left.S^{\prime}\right)$

$$
m_{S} \sim m_{S^{\prime}} \sim 5 \Lambda \quad \lambda_{S} \sim 10^{-3} \quad \kappa \sim 4 \pi
$$

Decay chain (A simplified model)

- Neutralino decay $\quad \tilde{\chi}_{1}^{0} \rightarrow \tilde{S} S \Rightarrow$ Prompt.
- HV fermion decay $\tilde{S} \rightarrow S \tilde{G} \quad \tilde{S}^{\prime} \rightarrow S^{\prime} \tilde{G} \quad \tilde{G}$: Gravitino

Missing $E_{T} \sim\left(m_{\tilde{g}, \tilde{q}} / m_{\tilde{S}}\right) \delta m \quad \delta m \equiv m_{\tilde{S}}-m_{S}$
Small mass splitting suppresses missing energy.

- HV scalar decay $0^{++} \rightarrow h^{(*)} \rightarrow b \bar{b} \quad 0^{++} \subset S, S^{\prime}$

The branching fractions are the same with those of the Higgs.

Large jet-multiplicity with missing P_{T} search

ATLAS, arXiv:1308.1841
Decay table : SUSYHIT
Production cross sections at NLO : Prospino 2.1

Event generation : PYTHIA 8

Squark mass bound is weaker than MSSM !

The effect on Higgs decays

- $\boldsymbol{h} \rightarrow \gamma \gamma$: No important contributions from new exotic particles
- $\boldsymbol{h} \rightarrow \mathbf{0}^{++} 0^{++}: \quad \operatorname{Br}\left(h \rightarrow 0^{++} 0^{++}\right) \sim 0.17 \quad\left(m_{0^{++}}=50 \mathrm{GeV}\right)$

Global fit of signal strength $\Rightarrow \operatorname{Br}\left(h \rightarrow \mathbf{0}^{++} \mathbf{0}^{++}\right)<\underline{0.19}$
$h \rightarrow 0^{++} 0^{++} \rightarrow b \bar{b} \mu^{+} \mu^{-} \quad: \quad \operatorname{Br}\left(h \rightarrow b \bar{b} \mu^{+} \mu^{-}\right) \sim \underline{7 \times 10^{-5}}$
Expected bound at Run I $\Rightarrow \operatorname{Br}\left(h \rightarrow b \bar{b} \mu^{+} \mu^{-}\right) \lesssim \underline{10^{-4}}$
Deviation may be observed in future observations.

Summary

A scenario that can ameliorate both of SUSY Higgs mass problem and Missing superpartner problem.

Extra slides

SUSY Higgs mass problem

P. Draper, P. Meade, M. Reece, D. Shih (2011)

Two possible directions

- Just accept fine-tuning
- Provide new interactions to lift the Higgs mass

NMSSM, Gauge extension, Vectorlike matter, ...

Missing superpartner problem

Three possible directions

- Just accept fine-tuning
- Natural SUSY spectrum

$$
\boldsymbol{m}_{\tilde{t}}<\boldsymbol{m}_{\tilde{q}_{1,2}}
$$

- Modify usual decay chains of superpartners

Missing superpartner problem

When the gluino mass is large (> 1 TeV) ...

Naturalness requires

$$
m_{H_{u}}<m_{\tilde{t}}<m_{\lambda_{3}}
$$

Low mediation scale is needed for naturalness.
(Exception : Supersoft SUSY)

A. Arvanitaki, N. Craig, S. Dimopoulos, G. Villadoro (2012)

Our framework : Specific models

	$S U(N)_{H}$	$S U(3)_{C}$	$S U(2)_{L}$	$U(1)_{Y}$	scalar name	fermion name
Ψ_{u}	\mathbf{N}	$\mathbf{1}$	$\mathbf{2}$	$1 / 2$	ϕ_{u}	ψ_{u}
$\bar{\Psi}_{d}$	$\overline{\mathbf{N}}$	$\mathbf{1}$	$\mathbf{2}$	$-1 / 2$	$\bar{\phi}_{d}$	$\bar{\psi}_{d}$
f	\mathbf{N}	$\mathbf{3}$	$\mathbf{1}$	$-1 / 3$	ϕ_{f}	ψ_{f}
\bar{f}	$\overline{\mathbf{N}}$	$\overline{3}$	$\mathbf{1}$	$1 / 3$	$\bar{\phi}_{f}$	$\bar{\psi}_{f}$
Ψ_{i}	\mathbf{N}	$\mathbf{1}$	$\mathbf{1}$	0	ϕ_{i}	ψ_{i}
$\bar{\Psi}_{i}$	$\overline{\mathbf{N}}$	$\mathbf{1}$	$\mathbf{1}$	0	$\bar{\phi}_{i}$	$\bar{\psi}_{i}$

$$
\begin{aligned}
& W_{\mathrm{VL}}=\lambda_{u, i} H_{u} \bar{\Psi}_{d} \Psi_{i}+\lambda_{d, i} H_{d} \Psi_{u} \bar{\Psi}_{i}+m \Psi_{u} \bar{\Psi}_{d}+m_{i j}^{\prime} \Psi_{i} \bar{\Psi}_{j}+M f \bar{f} \\
& i=0,1, \ldots F-1
\end{aligned}
$$

Our framework : New loop contributions

Large $\boldsymbol{\lambda} \Rightarrow$ Small SUSY breaking is enough for 125 GeV Higgs.

Our framework : Avoiding Landau poles

Allowed (white) region of the new Yukawa and the confinement scale :
 2-loop RGEs calculated by SARAH
 Supersymmetric masses of vectorlike fields : 500 GeV
 $F=3$

Multi-fold replication of SM

Moose (quiver) of SM gauge groups is spontaneously broken by a link scalar vev.

Accelerated Unification

N. Arkani-Hamed, A. Cohen, H. Georgi (2001)

Higgs interactions with a Hidden Valley

Higgs/Higgsino interacts with HV scalar/fermion via vectorlike fields.

Hidden Valley strong dynamics

Higgsino
Vectorlike fields

$$
\Psi, \bar{\Psi} \quad \begin{aligned}
& \text { HV fermion } \\
& \text { composite }
\end{aligned}
$$

HV fermion composite

HV scalar composite

Natural SUSY models

Natural SUSY variations are naturally possible.

$$
m_{\tilde{t}}<\boldsymbol{m}_{\tilde{q}_{1,2}}
$$

Stealth SUSY from
 a Hidden Valley

Stop mass bound is even weaker.

J. Fan, R. Krall, D. Pinner, M. Reece, J. Ruderman

Discussions: (S)Quirk phenomenology

J. Kang, M. Luty (2008) , ...
(S)Quirks : $\Psi_{u}, \bar{\Psi}_{d} f=\left(\phi_{f}, \psi_{f}\right), \bar{f}$ (Colored partners of SU(5))

Quirk direct pair-production

$$
p p \rightarrow \psi_{f} \bar{\psi}_{f}, \quad p p \rightarrow Z^{(*)}, \gamma^{(*)} \rightarrow \psi_{u}^{+} \bar{\psi}_{d}, \psi_{u}^{0} \bar{\psi}_{d}^{0}
$$

Quirk-antiquirk pairs form (microscopic) bound states.

They lose energy via HV (and SM) particle emission before pair annihilation.

Discussions: (S)Quirk phenomenology

Colored (s)quirks may be produced by gluino decays at LHC Run II.

