Coannihilating Dark Matter at the LHC

Michael J. Baker

with

Joachim Brod, Sonia El Hedri, Anna Kaminska, Joachim Kopp, Jia Liu, Andrea Thamm, Maikel de Vries, Xiao-Ping Wang, Felix Yu, José Zurita

arXiv:1510.xxxxx

JGU Mainz

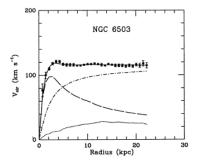
DESY Theory Workshop - 30 September 2015

Outline

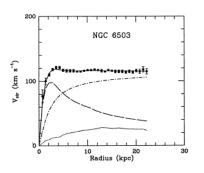
Motivation

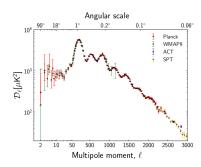
Classification of Simplified Models

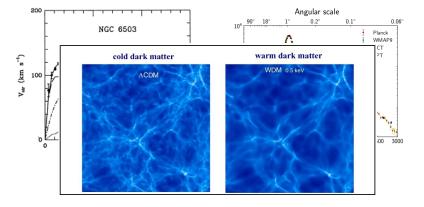
Phenomenology

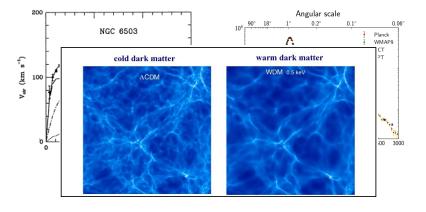

Outline

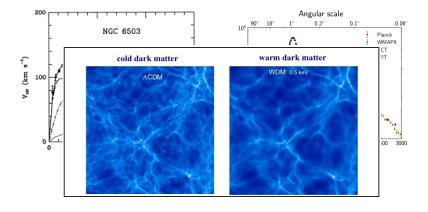
Motivation


Classification of Simplified Models


Phenomenology

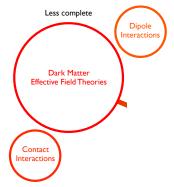

Begeman, Broeils & Sanders, 1991


Planck 2013

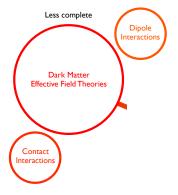


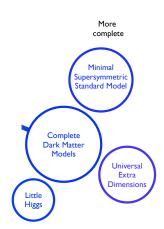
Viel, Becker, Bolton & Haehnelt, 2013

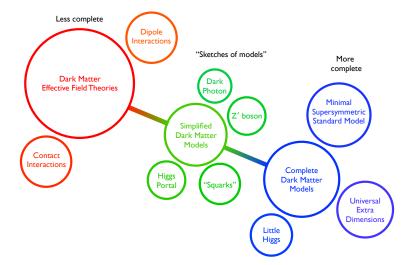
PDG, 2014


$$\Omega_{\rm nbm}h^2 = 0.1198 \pm 0.0026$$

PDG, 2014


$$\Omega_{\rm nbm} h^2 = 0.1198 \pm 0.0026 \sim \mathcal{O}(\Omega_{\rm bm} h^2)$$


Theoretical Framework


Theoretical Framework

0000

Theoretical Framework

Simplified Models

- Much recent work on simplified models of DM, e.g.,
 - Profumo et al. 1307.6277,
 - De Simone et al. 1402.6287,
 - Abdallah et al. 1506.03116, ...
- Various tensions, e.g., between relic density and direct/indirect constraints
- Coannihilating models can relieve these tensions

Simplified Models

- Much recent work on simplified models of DM, e.g.,
 - Profumo et al. 1307.6277,
 - De Simone et al. 1402.6287,
 - Abdallah et al. 1506.03116, ...
- Various tensions, e.g., between relic density and direct/indirect constraints
- Coannihilating models can relieve these tensions

Simplified Models

- Much recent work on simplified models of DM, e.g.,
 - Profumo et al. 1307.6277,
 - De Simone et al. 1402.6287,
 - Abdallah et al. 1506.03116, ...
- Various tensions, e.g., between relic density and direct/indirect constraints
- Coannihilating models can relieve these tensions

Our Goal

A complete classification of simplified coannihilation models

Our Goal

A complete classification of simplified coannihilation models

The Coannihilation Codex

Our Goal

A complete classification of simplified coannihilation models

The Coannihilation Codex

This allows us to

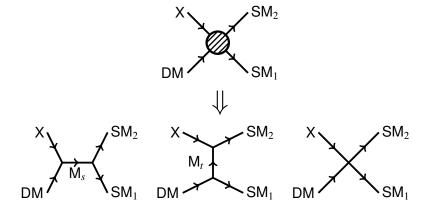
- Study connections between experimental probes
- Discuss general phenomenology of models
- Identify lesser studied scenarios
- In the event of a signal, gives a framework for the inverse problem

Outline

- Motivation
- Classification of Simplified Models

Phenomenology

Assumptions


To complete a classification we need to make some assumptions

Assumptions

To complete a classification we need to make some assumptions

- DM is a thermal relic
- DM is a colourless, electrically neutral particle in $(1, N, \beta)$
- Coannihilation diagram is 2-to-2 via dimension four, tree-level couplings
- New particles have spin 0, 1/2 or 1

Coannihilation Diagrams

Classification Procedure

- Work in unbroken $SU(2)_L \times U(1)_Y$
- Given SM field content, iterate over SM₁ and SM₂ to find all possible X using
 - Gauge invariance
 - Lorentz invariance
 - Z₂ parity (to prevent DM decay)
- Then find all s-channel and t-channel mediators, using same restrictions and
 - Dimension four, tree-level couplings
 - Gauge bosons only couple through kinetic terms

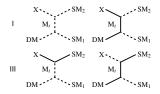
Classification Procedure

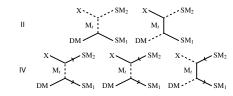
- Work in unbroken $SU(2)_L \times U(1)_Y$
- Given SM field content, iterate over SM₁ and SM₂ to find all possible X using
 - Gauge invariance
 - Lorentz invariance
 - Z₂ parity (to prevent DM decay)
- Then find all s-channel and t-channel mediators, using same restrictions and
 - Dimension four, tree-level couplings
 - Gauge bosons only couple through kinetic terms

Classification Procedure

- Work in unbroken $SU(2)_L \times U(1)_Y$
- Given SM field content, iterate over SM₁ and SM₂ to find all possible X using
 - Gauge invariance
 - Lorentz invariance
 - Z₂ parity (to prevent DM decay)
- Then find all s-channel and t-channel mediators, using same restrictions and
 - Dimension four, tree-level couplings
 - Gauge bosons only couple through kinetic terms

s-channel classification - sample


DM in $(1, N, \beta)$


ID	X	$\alpha + \beta$	M_s	Spin	$(SM_1 SM_2)$	SM_3	M-X-X
ST11		7/3	$(3, 2, \frac{7}{3})$	В	$(Q_L \overline{\ell_R}), (u_R \overline{L_L})$		
ST12		3	$(3, 2, \frac{3}{3})$	F	$(u_R H)$		
ST13	$(3, N \pm 1, \alpha)$	$\frac{1}{3}$	$(3, 2, \frac{1}{3})$	В	$(d_R\overline{L_L}), (\overline{Q_L}\overline{d_R}), (u_RL_L)$		
ST14	(8,11 ± 1, 11)	3	$(3, 2, \frac{3}{3})$	F	$(u_R H^\dagger), (d_R H)$	Q_L	
ST15		$-\frac{5}{3}$	$(3, 2, -\frac{5}{3})$	В	$(\overline{Q_L}\overline{u_R}), (Q_L\ell_R), (d_RL_L)$		
ST16		- 3	$(3, 2, -\frac{1}{3})$	F	$(d_R H^{\dagger})$		
ST17		4/3	$(3,3,\frac{4}{3})$	В	$(Q_L \overline{L_R})$		$\sqrt{\alpha} = -\frac{2}{3}$
ST18	$(3, N \pm 2, \alpha)$	3		F	$(Q_L H)$		
ST19	$(3,17\pm2,\alpha)$		$(3,3,-\frac{2}{3})$	В	$(\overline{Q_L Q_L}), (Q_L L_L)$		$\sqrt{\alpha} = \frac{1}{3}$
ST20		3		F	$(Q_L H^{\dagger})$		

t-channel classification - sample

DM in $(1, N, \beta)$

ID	X	$\alpha + \beta$	M_t	Spin	$(SM_1 SM_2)$	SM_3
TU26			$(1, N \pm 1, \beta - 1)$	I	(HH^{\dagger})	
TU27			$(1, N \pm 1, \beta + 1)$	II	$(L_L H)$	
TU28		0	$(1, N \pm 1, \beta - 1)$	III	(HL_L)	
TU29	$(1, N \pm 2, \alpha)$		$(\bar{3}, N \pm 1, \beta - \frac{1}{3})$	IV	$(Q_L \overline{Q_L})$	
TU30	(1,11 ± 2, α)		$(1, N \pm 1, \beta + 1)$	IV	$(L_L\overline{L_L})$	
TU31			$(1,N\pm 1,\beta+1)$	I	$(H^{\dagger}H^{\dagger})$	
TU32		-2	$(1, N \pm 1, \beta + 1)$	II	$(L_L H^{\dagger})$	
TU33			$(1, N \pm 1, \beta + 1)$	III	$(H^{\dagger}L_L)$	

Classification: hybrid models

ID	X	$\alpha + \beta$	SM partner	Extensions
H1	$(1, N, \alpha)$	0	$B,W_i^{N\geq 2}$	SU1, SU3, TU1, TU4-TU8
H2	$(1,1V,\alpha)$	-2	ℓ_R	SU6, SU8, TU10, TU11
НЗ	$(1, N \pm 1, \alpha)$	-1	H^\dagger	SU10, TU18-TU23
H4	$(1, N \perp 1, \alpha)$	-1	L_L	SU11, TU16, TU17
Н5	$(3, N, \alpha)$	$\frac{4}{3}$	u_R	ST3, ST5, TT3, TT4
Н6	$(3,N,\alpha)$	$-\frac{2}{3}$	d_R	ST7, ST9, TT10, TT11
H7	$(3, N \pm 1, \alpha)$	$\frac{1}{3}$	Q_L	ST14, TT28-TT31

7 models

Classification: s-channel

ID	x	$\alpha + \beta$	M_s	Spin	$(SM_1 SM_2)$	SM_3	M-X-X			
SU1			(1, 1, 0)	В	$(u_R \overline{u_R}), (d_R \overline{d_R}), (Q_L \overline{Q_L})$ $(\ell_R \overline{\ell_R}), (L_L \overline{L_L}), (HH^{\dagger})$	$_{B,W_{i}^{N\geq2}}$	✓			
SU2		0		F	$(L_L H)$					
SU3]		$(1, 3, 0)^{N \ge 2}$	В	$(Q_L \overline{Q_L}), (L_L \overline{L_L}), (HH^{\dagger})$	B, W_i	~			
SU4	$(1, N, \alpha)$		(1,0,0) -	F	$(L_L H)$					
SU5	(2,21,12)		(1, 1, -2)	В	$(d_R \overline{u_R}), (H^{\dagger} H^{\dagger})$		V			
SU6	l	-2		F	$(L_L H^{\dagger})$	ℓ_R				
SU7			-2	-2	-2	$(1, 3, -2)^{N \ge 2}$	В	$(H^{\dagger}H^{\dagger}), (L_LL_L)$		$\checkmark(\alpha = \pm 1)$
SU8			(1, 3, -2) -	F	$(L_L H^{\dagger})$	ℓ_R				
SU9	1	-4	(1, 1, -4)	В	$(\ell_R \ell_R)$		$\checkmark(\alpha=\pm2)$			
SU10		-1	- 1	-,	(1, 2, -1)	В	$(d_R \overline{Q_L}), (\overline{u_R} Q_L), (\overline{L_L} \ell_R)$	H^{\dagger}		
SU11	$(1, N \pm 1, \alpha)$		(1, 2, -1)	F	$(\ell_R H)$	L_L				
SU12	(1, N ± 1, α)		(1, 2, -3)	В	$(L_L \ell_R)$					
SU13	i i		(1, 2, -3)	F	$(\ell_R H^{\dagger})$					
SU14		0	(1, 3, 0)	В	$(L_L \overline{L_L}), (Q_L \overline{Q_L}), (HH^{\dagger})$		$\sqrt{(\alpha = 0)}$			
SU15	(1, N ± 2, a)		(1, 3, 0)	F	$(L_L H)$					
SU16		-2	(1, 3, -2)	В	$(H^{\dagger}H^{\dagger}), (L_LL_L)$		$\checkmark(\alpha=\pm 1)$			
SU17	l		(1, 3, -2)	F	$(L_L H^{\dagger})$					

ST1		10	$(3, 1, \frac{10}{3})$	В	$(u_R \overline{t_R})$		$\sqrt{\alpha} = -\frac{5}{3}$
ST2			(3, 1, 4)	В	$(d_R \overline{\ell_R}), (Q_L \overline{L_L}), (\overline{d_R} \overline{d_R})$		$\sqrt{\alpha} = -\frac{2}{3}$
ST3		4	(3,1,3)	F	$(Q_L H)$	u_R	
ST4		3	$(3, 3, \frac{4}{3})^{N \ge 2}$	В	$(Q_L \overline{L_L})$		$\sqrt{\alpha} = -\frac{2}{3}$
ST5	$(3, N, \alpha)$		(3, 3, 3)	F	$(Q_L H)$	u_R	
ST6	(3, 11, 11)		(3, 1, -2)	В	$(\overline{Q_LQ_L}), (\overline{u_R}\overline{d_R}), (u_R, \ell_R), (Q_LL_L)$		$\sqrt{\alpha} = \frac{1}{3}$
ST7		- 2	(0) 1) 37	F	$(Q_L H^{\dagger})$	dR	
ST8		3	$(3, 3, -\frac{2}{4})^{N \ge 2}$	В	$(\overline{Q_LQ_L}), (Q_LL_L)$		$\sqrt{\alpha = \frac{1}{3}}$
ST9				F	$(Q_L H^{\dagger})$	d_R	
ST10		$-\frac{8}{3}$	$(3, 1, -\frac{6}{3})$	В	$(\overline{u_R}\overline{u_R}), (d_R\ell_R)$		$\sqrt{\alpha} = \frac{4}{3}$
ST11		7	$(3, 2, \frac{7}{4})$	В	$(Q_L \overline{t_R}), (u_R \overline{L_L})$		
ST12		3	(0)=, 3)	F	$(u_R H)$		
ST13	$(3, N \pm 1, \alpha)$	1	$(3, 2, \frac{1}{4})$	В	$(d_R \overline{L_L}), (\overline{Q_L d_R}), (u_R L_L)$		
ST14	(0,11 2 1,11)	3	(3, 2, 3)	F	$(u_R H^{\dagger}), (d_R H)$	Q_L	
ST15		- 4	$(3, 2, -\frac{5}{2})$	В	$(\overline{Q_L}\overline{u_R}), (Q_L\ell_R), (d_RL_L)$		
ST16		- 3	(0, 2)	F	$(d_R H^{\dagger})$		
ST17		4	(3, 3, 4)	В	$(Q_L \overline{L_R})$		$\sqrt{\alpha} = -\frac{2}{3}$
ST18	$(3, N \pm 2, \alpha)$	3	(0,0,3)	F	$(Q_L H)$		
ST19			(3, 3, − 2)	В	$(\overline{Q_LQ_L}), (Q_LL_L)$		$\sqrt{\alpha} = \frac{1}{2}$
ST20		3	(0,0) 37	F	$(Q_L H^{\dagger})$		
	-	٠т	t		مامام مصر ۸۸		

SM₃ M-X-X

SU type - 17 models

ST type - 20 models

U: X uncoloured

T: X SU(3) triplet

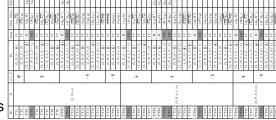
O: X SU(3) octet

E: X SU(3) exotic

ID	x	$\alpha + \beta$	M_s	Spin	$(SM_1 SM_2)$	SM_3	M-X-X
SO1		0	$(8,1,0)^{\neq g[s2]}$	В	$(d_R \overline{d_R}), (u_R \overline{u_R}), (Q_L \overline{Q_L})$		$\sqrt{\alpha} = 0$
SO2	$(8, N, \alpha)$	0	$(8, 3, 0)^{N \ge 2}$	В	$(Q_L \overline{Q_L})$		$\sqrt{\alpha} = 0$
SO3	1	-2	(8, 1, -2)	В	$(d_R \overline{u_R})$		$\sqrt{\alpha} = \pm 1$
SO4	$(8, N \pm 1, \alpha)$	-1	(8, 2, -1)	В	$(d_R \overline{Q_L}), (Q_L \overline{u_R})$		
SO5	$(8, N \pm 2, \alpha)$	0	(8, 3, 0)	В	$(Q_L \overline{Q_L})$		$\sqrt{\alpha} = 0$
SE1		2	$(6, 1, \frac{8}{3})$	В	$(u_R u_R)$		$\sqrt{\alpha} = -\frac{4}{3}$
SE2	(6, N, a)	2 3	(6, 1, 2)	В	$(Q_LQ_L), (u_Rd_R)$		$\sqrt{(\alpha = -\frac{1}{3})}$
SE3	(6, N, a)		$(6, 3, \frac{2}{3})^{N \ge 2}$	В	(Q_LQ_L)		$\sqrt{\alpha} = -\frac{1}{3}$
SE4		- 4	$(6, 1, -\frac{4}{3})$	В	$(d_R d_R)$		$\sqrt{\alpha} = \frac{2}{3}$
SE5	$(6, N \pm 1, \alpha)$	2	$(6, 2, \frac{5}{3})$	В	$(Q_L u_R)$		
SE6	(6, N ± 1, α)	$-\frac{1}{3}$	$(6, 2, -\frac{1}{3})$	В	$(Q_L d_R)$		
SE7	$(6, N \pm 2, \alpha)$	2	$(6, 3, \frac{2}{3})$	В	(Q_LQ_L)		$\sqrt{\alpha} = -\frac{1}{3}$

SO and SE type - 5 and 7 models

Classification: t-channel


$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		ID	x	$\alpha + \beta$	M_f	Spin	$(SM_1 SM_2)$	SM_3
TU19 TU3 (1, N, a) TU3 (1, N,		TU1			$(1, N \pm 1, \beta - 1)$	1	(HH^{\dagger})	$B, W_i^{N \ge 2}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		TU2			$(1, N \pm 1, \beta + 1)$	II	$(L_L H)$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		TU3			$(1, N \pm 1, \beta - 1)$	III	(HL_L)	
$ \begin{array}{c} \mathrm{TU5} \\ \mathrm{TU5} \\ \mathrm{TU7} \\ \mathrm{TU5} \\ \mathrm{TU7} \\ \mathrm{TU5} \\ TU$	ı	TU4	1		$(\bar{3}, N \pm 1, \beta - \frac{1}{3})$	IV	$(Q_L \overline{Q_L})$	$B, W_i^{N \ge 2}$
$ \begin{array}{c} \overline{\text{TVF}} \\ \overline{\text{TVF}} $		TU5			$(3, N, \beta - \frac{4}{3})$	IV	$(u_R \overline{u_R})$	$B, W_i^{N \ge 2}$
$ \begin{array}{c} \text{TUS} \\ \text{TU9} \\ \text{TU9} \\ \text{TU9} \\ \text{TU9} \\ \text{TU9} \\ \text{TU9} \\ \\ \text{TU9} \\ \text{TU9} \\ \\ \text{TU1} \\ \text{TU2} \\ $		TU6	l		$(\bar{3}, N, \beta + \frac{2}{3})$	IV	$(d_R \overline{d_R})$	$B, W_i^{N \ge 2}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		TU7	1		$(1, N \pm 1, \beta + 1)$	IV	$(L_L \overline{L_L})$	$B, W_i^{N \ge 2}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		TU8	$(1, N, \alpha)$		$(1, N, \beta + 2)$	IV	$(\ell_R \overline{\ell_R})$	$B, W_i^{N \ge 2}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ı	TU9			$(1, N \pm 1, \beta + 1)$	I	$(H^{\dagger}H^{\dagger})$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		TU10			$(1, N \pm 1, \beta + 1)$	11	$(L_L H^{\dagger})$	ℓ_R
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ı	TU11	1		$(1, N \pm 1, \beta + 1)$	III	$(H^{\dagger}L_L)$	ℓ_R
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ı	TU12		-2	$(1, N \pm 1, \beta + 1)$	IV	$(L_L L_L)$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ı	TU13	1		$(3, N, \beta + \frac{4}{3})$	IV	$(\overline{u_R}d_R)$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ı	TU14	i		$(\bar{3}, N, \beta + \frac{2}{6})$	IV	$(d_R \overline{u_R})$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		TU15	1	-4	$(1, N, \beta + 2)$	IV	$(\ell_R \ell_R)$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ı	TU16			$(1, N, \beta + 2)$	II	$(\ell_R H)$	L_L
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ı	TU17	1		$(1, N \pm 1, \beta - 1)$	Ш	$(H\ell_R)$	L_L
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	TU18	1		$(1, N, \beta + 2)$	IV	$(\ell_R \overline{L_L})$	H†
$ \begin{aligned} & \frac{\text{TUZO}}{\text{TUZO}} \left((N, 2 \pm i, \alpha) \right. \\ & \frac{(\hat{\alpha}, N, \hat{\beta} + \frac{\hat{\beta}}{2})}{\text{TUZO}} & \frac{\text{TV}}{\text{C}} \left(\frac{\partial \alpha}{\partial \hat{x}_{i}} \right) & \frac{R^{2}}{\text{C}} \\ & \frac{(\hat{\alpha}, N \pm i, \beta + \frac{1}{2})}{\text{NV}} & \frac{\text{C}}{\text{C}} \frac{\partial \alpha}{\partial \hat{x}_{i}} \right) & \frac{R^{2}}{\text{C}} \\ & \frac{(\hat{\alpha}, N \pm i, \beta + \frac{1}{2})}{\text{NV}} & \frac{\text{C}}{\text{C}} \frac{\partial \alpha}{\partial \hat{x}_{i}} \right) & \frac{R^{2}}{\text{NV}} \\ & \frac{(\hat{\alpha}, N \pm i, \beta + \frac{1}{2})}{\text{C}} & \frac{\text{NV}}{\text{C}} \frac{\partial \alpha}{\partial \hat{x}_{i}} \right) & \frac{R^{2}}{\text{C}} \\ & \frac{(\hat{\alpha}, N \pm i, \beta + \frac{1}{2})}{\text{C}} & \frac{\text{NV}}{\text{C}} \frac{\partial \alpha}{\partial \hat{x}_{i}} \right) & \frac{R^{2}}{\text{C}} \\ & \frac{(\hat{\alpha}, N \pm i, \beta + \frac{1}{2})}{\text{C}} & \frac{\text{NV}}{\text{C}} \frac{\partial \alpha}{\partial \hat{x}_{i}} \right) & \frac{R^{2}}{\text{C}} \\ & \frac{(\hat{\alpha}, N \pm i, \beta + \frac{1}{2})}{\text{C}} & \frac{R^{2}}{\text{C}} \frac{\partial \alpha}{\partial \hat{x}_{i}} \right) & \frac{R^{2}}{\text{C}} \\ & \frac{(\hat{\alpha}, N \pm i, \beta + \frac{1}{2})}{\text{C}} & \frac{R^{2}}{\text{C}} \frac{\partial \alpha}{\partial \hat{x}_{i}} \right) & \frac{R^{2}}{\text{C}} \\ & \frac{(\hat{\alpha}, N \pm i, \beta + \frac{1}{2})}{\text{C}} & \frac{R^{2}}{\text{C}} \frac{\partial \alpha}{\partial \hat{x}_{i}} \right) & \frac{R^{2}}{\text{C}} \\ & \frac{(\hat{\alpha}, N \pm i, \beta + \frac{1}{2})}{\text{C}} & \frac{R^{2}}{\text{C}} \frac{\partial \alpha}{\partial \hat{x}_{i}} \right) & \frac{R^{2}}{\text{C}} \\ & \frac{(\hat{\alpha}, N \pm i, \beta + \frac{1}{2})}{\text{C}} & \frac{R^{2}}{\text{C}} \frac{\partial \alpha}{\partial \hat{x}_{i}} \right) & \frac{R^{2}}{\text{C}} \\ & \frac{(\hat{\alpha}, N \pm i, \beta + \frac{1}{2})}{\text{C}} & \frac{R^{2}}{\text{C}} \frac{\partial \alpha}{\partial \hat{x}_{i}} \right) & \frac{R^{2}}{\text{C}} \\ & \frac{(\hat{\alpha}, N \pm i, \beta + \frac{1}{2})}{\text{C}} & \frac{R^{2}}{\text{C}} \frac{\partial \alpha}{\partial \hat{x}_{i}} \right) & \frac{R^{2}}{\text{C}} \\ & \frac{(\hat{\alpha}, N \pm i, \beta + \frac{1}{2})}{\text{C}} & \frac{R^{2}}{\text{C}} \frac{\partial \alpha}{\partial \hat{x}_{i}} \right) & \frac{R^{2}}{\text{C}} \\ & \frac{(\hat{\alpha}, N \pm i, \beta + \frac{1}{2})}{\text{C}} & \frac{R^{2}}{\text{C}} \frac{\partial \alpha}{\partial \hat{x}_{i}} \\ & \frac{(\hat{\alpha}, N \pm i, \beta + \frac{1}{2})}{\text{C}} & \frac{(\hat{\alpha}, N \pm i, \beta + \frac{1}{2})}{\text{C}} & \frac{(\hat{\alpha}, N \pm i, \beta + \frac{1}{2})}{\text{C}} \\ & \frac{(\hat{\alpha}, N \pm i, \beta + \frac{1}{2})}{\text{C}} & \frac{(\hat{\alpha}, N \pm i, \beta + \frac{1}{2})}{\text{C}} & \frac{(\hat{\alpha}, N \pm i, \beta + \frac{1}{2})}{\text{C}} \\ & \frac{(\hat{\alpha}, N \pm i, \beta + \frac{1}{2})}{\text{C}} & \frac{(\hat{\alpha}, N \pm i, \beta + \frac{1}{2})}{\text{C}} \\ & \frac{(\hat{\alpha}, N \pm i, \beta + \frac{1}{2})}{\text{C}} & \frac{(\hat{\alpha}, N \pm i, \beta + \frac{1}{2})}{\text{C}} \\ & \frac{(\hat{\alpha}, N \pm i, \beta + \frac{1}{2})}{\text{C}} & \frac{(\hat{\alpha}, N \pm i, \beta + \frac{1}{2})}{\text{C}} \\ & \frac{(\hat{\alpha}, N \pm i, \beta + \frac{1}{2})}{\text{C}} & \frac{(\hat{\alpha}, N \pm i, \beta + \frac{1}{2})}{\text{C}} \\ & \frac{(\hat{\alpha}, N \pm i, \beta + $	ı	TU19	i		$(1, N \pm 1, \beta - 1)$	IV	$(\overline{L_L}\ell_R)$	H^{\dagger}
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ı	TU20	(1 N 1 1 1 1	-1	$(\bar{3}, N, \beta + \bar{7})$	IV	$(d_R \overline{Q_L})$	H^{\dagger}
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		TU21	(1, N ± 1, α)		$(3, N \pm 1, \beta + \frac{1}{3})$	IV	$(\overline{Q_L}d_R)$	H^{\dagger}
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ı	TU22	i		$(\bar{3}, N \pm 1, \beta - \frac{1}{4})$	IV	$(Q_L \overline{u_R})$	H^{\dagger}
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ı	TU23	1		$(3, N, \beta + \frac{4}{7})$	IV	$(\overline{uR}QL)$	H^{\dagger}
$ \begin{array}{c ccccc} TU25 & & & & & & & & & & & & & & & & & & &$	ı	TU24	1		$(1, N \pm 1, \beta + 1)$	IV	$(L_L \ell_R)$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ı	TU25	l	-3	$(1, N, \beta + 2)$	IV	$(\ell_R L_L)$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ı	TU26			$(1, N \pm 1, \beta - 1)$	I	(HH^{\dagger})	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ı	TU27	l	l	$(1, N \pm 1, \beta + 1)$	II	$(L_L H)$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ı	TU28	l	0	$(1, N \pm 1, \beta - 1)$	III	(HL_L)	
TU30 $(1, N \pm 2, \alpha)$ $(1, N \pm 1, \beta + 1)$ IV $(L_L \overline{L}_L)$ TU31 $(1, N \pm 1, \beta + 1)$ I $(H^{\dagger}H^{\dagger})$ TU32 -2 $(1, N \pm 1, \beta + 1)$ II $(L_L H^{\dagger})$		TU29		l	$(3, N \pm 1, \beta - \frac{1}{4})$	IV	$(Q_L \overline{Q_L})$	
TU32 -2 $(1, N \pm 1, \beta + 1)$ II $(L_L H^{\dagger})$	ı	TU30	(1, 1v ± 2, α)	l	$(1, N \pm 1, \beta + 1)$	IV	$(L_L \overline{L_L})$	
	ı	TU31	l		$(1, N \pm 1, \beta + 1)$	I	$(H^{\dagger}H^{\dagger})$	
	1	TU32	l	-2	$(1, N \pm 1, \beta + 1)$	II	$(L_L H^{\dagger})$	
	ı	TU33	1		$(1, N \pm 1, \beta + 1)$	Ш	$(H^{\dagger}L_L)$	

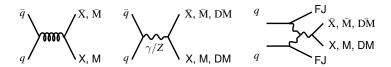
TU type - 33 models

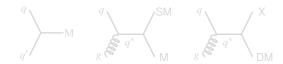
TT type - 52 models

ID	x	$\alpha + \beta$	M_t	Spin	$(SM_1 SM_2)$	SM_3
TO1			$(\bar{3}, N \pm 1, \beta - \frac{1}{3})$	IV	$(QL\overline{QL})$	
TO2		0	$(\bar{3}, N, \beta - \frac{4}{3})$	IV	$(u_R \overline{u_R})$	
TO3	$(8, N, \alpha)$		$(\bar{3}, N, \beta + \frac{2}{3})$	IV	$(d_R \overline{d_R})$	
TO4		-2	$(3, N, \beta + \frac{2}{3})$	IV	$(d_R \overline{u_R})$	
TO5			$(3, N, \beta + \frac{4}{3})$	IV	$(\overline{uR}dR)$	
TO6			$(\bar{3}, N, \beta + \frac{2}{3})$	IV	$(d_R \overline{Q_L})$	
TO7	$(8, N \pm 1, \alpha)$	-1	$(3, N \pm 1, \beta + \frac{1}{3})$	IV	$(\overline{Q_L}d_R)$	
TO8	(0,1121,11)		$(\bar{3}, N \pm 1, \beta - \frac{1}{3})$	IV	$(Q_L \overline{u_R})$	
TO9			$(3, N, \beta + \frac{4}{3})$	IV	$(\overline{u_R}Q_L)$	
TO10	$(8,N\pm 2,\alpha)$	0	$(\bar{3}, N \pm 1, \beta - \frac{1}{3})$	IV	$(Q_L \overline{Q}_L)$	
TE1		8 3	$(\bar{3}, N, \beta - \frac{4}{3})$	IV	$(u_R u_R)$	
TE2		3	$(3, N \pm 1, \beta - \frac{1}{3})$	IV	(Q_LQ_L)	
TE3	$(6, N, \alpha)$		$(\bar{3}, N, \beta - \frac{4}{3})$	IV	$(u_R d_R)$	
TE4			$(3, N, \beta + \frac{2}{3})$	IV	$(d_R u_R)$	
TE5		$-\frac{4}{3}$	$(\bar{3}, N, \beta + \frac{2}{3})$	IV	$(d_R d_R)$	
TE6	$(6, N \pm 1, \alpha)$	ą	$(\bar{3}, N, \beta - \frac{4}{3})$	IV	(u_RQ_L)	
TE7		3	$(3, N \pm 1, \beta - \frac{1}{3})$	IV	$(Q_L u_R)$	
TES		-1	$(\bar{3}, N, \beta + \frac{2}{3})$	IV	$(d_R Q_L)$	
TE9			$(3, N \pm 1, \beta - \frac{1}{3})$	IV	$(Q_L d_R)$	
TE10	$(6, N \pm 2, \alpha)$	3	$(3, N \pm 1, \beta - \frac{1}{3})$	IV	(Q_LQ_L)	

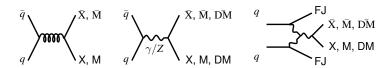
TO and TE type - 10 and 10 models

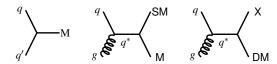
Complete Classification

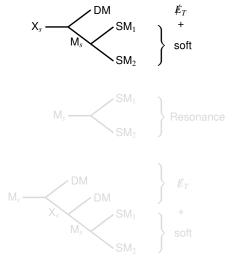

Given our assumptions, one of these simplified models of coannihilating dark matter is the one chosen by Nature!


Outline

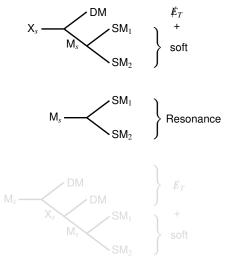
- Motivation
- Classification of Simplified Models

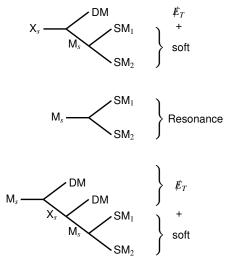

Phenomenology


Production: s-channel



Production: s-channel




Decay: s-channel

Decay: s-channel

Decay: s-channel

- Mono-Y (Y=jet, photon, Z,...) + $\not\!\!E_T$ from DM DM, XX,...
 - classic signature
- Single and Double Resonances from M and MM
 - ATLAS/CMS Exotics
- Mono-Y + $\not \!\! E_T$ + soft from XX,MM,...
 - has been motivated, no searches yet
- Resonance + \mathbb{E}_T + soft from MM
 - new signature to explore!

- Mono-Y (Y=jet, photon, Z,...) + $\not\!\!E_T$ from DM DM, XX,...
 - classic signature
- Single and Double Resonances from M and MM
 - ATLAS/CMS Exotics
- Mono-Y + $\not \!\! E_T$ + soft from XX,MM,...
 - has been motivated, no searches yet
- Resonance + E_T + soft from MM
 - new signature to explore!

- Mono-Y (Y=jet, photon, Z,...) + $\not\!\!E_T$ from DM DM, XX,...
 - classic signature
- Single and Double Resonances from M and MM
 - ATLAS/CMS Exotics
- Mono-Y + $\not \!\! E_T$ + soft from XX,MM,...
 - has been motivated, no searches yet
- Resonance + E_T + soft from MM
 - new signature to explore!

- Mono-Y (Y=jet, photon, Z,...) + $\not \!\! E_T$ from DM DM, XX,...
 - classic signature
- Single and Double Resonances from M and MM
 - ATLAS/CMS Exotics
- Mono-Y + $\not\!\!E_T$ + soft from XX,MM,...
 - has been motivated, no searches yet
- Resonance + E_T + soft from MM
 - new signature to explore!

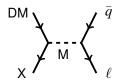
ID	X	$\alpha + \beta$	M_s	Spin	$(SM_1 SM_2)$	SM_3	M-X-X
ST11	$(3, N \pm 1, \alpha)$	$\frac{7}{3}$	$(3, 2, \frac{7}{3})$	В	$(Q_L \overline{\ell_R}), (u_R \overline{L_L})$		

DM in $(1, N, \beta)$

Field	Rep.	Spin and mass assignment
DM	(1,1,0)	Majorana fermion
X	(3,2,7/3)	Dirac fermion
\mathbb{M}	(3,2,7/3)	Scalar

ID	X	$\alpha + \beta$	M_s	Spin	$(SM_1 SM_2)$	SM_3	M-X-X
ST11	$(3, N \pm 1, \alpha)$	$\frac{7}{3}$	$(3, 2, \frac{7}{3})$	В	$(Q_L \overline{\ell_R}), (u_R \overline{L_L})$		

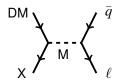
DM in $(1, N, \beta)$

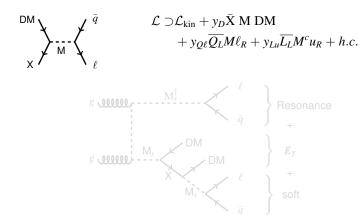

Field	Rep.	Spin and mass assignment
DM	(1,1,0)	Majorana fermion
Χ	(3,2,7/3)	Dirac fermion
М	(3,2,7/3)	Scalar

Field	Rep.	Spin and mass assignment
DM	(1,1,0)	Majorana fermion
Χ	(3,2,7/3)	Dirac fermion
М	(3,2,7/3)	Scalar

$$\begin{array}{c} \text{DM} \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \bar{q} \\ \\ \\ \ell \end{array}$$

$$\mathcal{L} \supset \mathcal{L}_{kin} + y_D \bar{X} M DM + y_{O\ell} \overline{Q_L} M \ell_R + y_{Lu} \overline{L_L} M^c u_R + h.c.$$

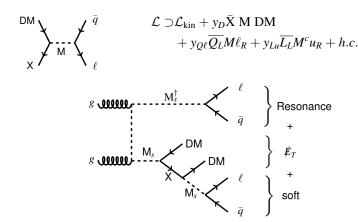

Fie	eld	Rep.	Spin and mass assignment
D	M	(1,1,0)	Majorana fermion
>	((3,2,7/3)	Dirac fermion
N	Λ	(3,2,7/3)	Scalar


 $\mathcal{L} \supset \mathcal{L}_{kin} + y_D \bar{X} M DM + y_{O\ell} \overline{Q_L} M \ell_R + y_{Lu} \overline{L_L} M^c u_R + h.c.$

Motivation

_	Field	Rep.	Spin and mass assignment
	DM	(1,1,0)	Majorana fermion
	Χ	(3,2,7/3)	Dirac fermion
	М	(3,2,7/3)	Scalar

$$\mathcal{L} \supset \mathcal{L}_{kin} + y_D \bar{X} M DM + y_{Q\ell} \overline{Q_L} M \ell_R + y_{Lu} \overline{L_L} M^c u_R + h.c.$$



- Strong production
- Lepton-jet resonance + E_T + soft lepton & jet
- No dedicated LHC search

$$\begin{array}{c|c} \mathsf{DM} & \bar{q} & \mathcal{L} \supset \mathcal{L}_{\mathrm{kin}} + y_D \bar{X} \; \mathsf{M} \; \mathsf{DM} \\ & + y_{Q\ell} \overline{Q_L} M \ell_R + y_{Lu} \overline{L_L} M^c u_R + h.c. \\ & & \\ &$$

- Strong production
- Lepton-jet resonance + $\not\!\! E_T$ + soft lepton & jet
- No dedicated LHC search

Motivation

- Strong production
- Lepton-jet resonance + ₱ + soft lepton & jet
- No dedicated LHC search

- Given assumptions, the Coannihilation Codex contains the real model of Nature!
- Guaranteed kinetic & coannihilation vertices → signatures
- Classify general signatures
 - Identify new signatures
 - Identify interesting models, e.g., leptoquarks and DM
- Huge number of DM models
 - collider signatures
 - direct and indirect detection
 - flavour bounds
 - cosmology
 -

- Given assumptions, the Coannihilation Codex contains the real model of Nature!
- Guaranteed kinetic & coannihilation vertices → signatures
- Classify general signatures
 - Identify new signatures
 - Identify interesting models, e.g., leptoquarks and DM
- Huge number of DM models
 - collider signatures
 - direct and indirect detection
 - flavour bounds
 - cosmology
 -

- Given assumptions, the Coannihilation Codex contains the real model of Nature!
- Guaranteed kinetic & coannihilation vertices → signatures
- Classify general signatures
 - Identify new signatures
 - Identify interesting models, e.g., leptoquarks and DM
- Huge number of DM models
 - collider signatures
 - direct and indirect detection
 - flavour bounds
 - cosmology
 -

- Given assumptions, the Coannihilation Codex contains the real model of Nature!
- Guaranteed kinetic & coannihilation vertices → signatures
- Classify general signatures
 - Identify new signatures
 - Identify interesting models, e.g., leptoquarks and DM
- Huge number of DM models
 - collider signatures
 - direct and indirect detection
 - flavour bounds
 - cosmology
 -

- Given assumptions, the Coannihilation Codex contains the real model of Nature!
- Guaranteed kinetic & coannihilation vertices → signatures
- Classify general signatures
 - Identify new signatures
 - Identify interesting models, e.g., leptoquarks and DM
- Huge number of DM models
 - collider signatures
 - direct and indirect detection
 - flavour bounds
 - cosmology
 - ...