Dark Matter from the <u>10</u> of SO(10)

Sofiane Boucenna INFN-LNF

DESY TH-Workshop, Hamburg. 30/09/2015.

Goal

Construct a DM model with the smallest representation of SO(10); the **10**.

What are the pheno consequences?

Part I Motivations

Known knowns about DM

- An acceptable candidate should not only reproduce observed abundance but also be
- ▹ neutral-ish,
- > cold-ish
- v quasi-stable
- OK with BBN and astro
- collisionless
- > OK with search limits

Known knowns about DM

- An acceptable candidate should not only reproduce observed abundance but also be
- ▹ neutral-ish,
- > cold-ish
- > quasi-stable
- OK with BBN and astro
- collisionless
- > OK with search limits

DM is very stable!

DM should be at least older than the Universe:

$$\tau_{\rm DM} \gtrsim H^{-1} \sim 10^{18} {\rm s}$$

However, it usually emits *gammas, e+, p,* etc, and to avoid bounds, the limit becomes:

How to stabilize DM?

From HEP viewpoint, this stability points to a new preserved symmetry. Straightforward solution is to impose a parity <u>by hand</u>. However, more motivated mechanisms have been proposed where the stability could be, e.g.,

- accidental, Cirelli et al. 05';...

- due to a new (unbroken) gauge group, Foot at al. 06'-10'; Pospelov et al. 07'; ...

- remnant from a flavour symmetry, Hirsch et al. 10'; SB et al. 11'-12'; ...
- remnant from SO(10) GUT Mohapatra 86'; Martin 92'; Frigerio-Hambye 09'; Kadastik et al. 09'

Why SO(10) ?

SO(10) is a group of rank 5; SM gauge group is rank 4 -> 1 extra U(1). If charges are chosen carefully, a spontaneously broken U(1) leaves a remnant discrete symmetry

$$U(1) \xrightarrow{\phi} Z_N$$
 [with N units of charge]

In SO(10) this U(1) is identified with $U(1)_{B-L}$, and the smallest *irreps.* with N>1 is **126**, therefore: [Think of seesaw I and II from 16.126.16]

$$U(1)_{B-L} \xrightarrow{<126>} Z_2 \equiv (-1)^{3(B-L)}$$

The possible dark reps. are:

	SO(10) reps.	DM candidate (SM)	Z2
Fermions	10, 45, 54, 210 126	(1,2,1/2) (1,1,0)+(1,3,0) (1,1,1/2)	+
Scalars	16, 144 	(1,1,0)	

[From **16.10.16**, with **16** odd and **10** even: new fermions (scalars) are stable if even (odd)]

The possible dark reps. are:

	SO(10) reps.	DM candidate (SM)	
Fermions	10, 45, 54, 210 126 	(1,2,1/2) (1,1,0)+(1,3,0) (1,1,1/2)	Frigerio, Hambye 09'
Scalars	16, 144	(1,1,0) Kadastik, Kannike, F	Raidal 09' See also: Mambrini et al. 15' Nagata et al. 15' Arbelaez et al. 15'

The possible dark reps. are:

	SO(10) reps.	DM candidate (SM)	
Fermions	10, 45, 54, 210 126	(1,2,1/2) ? (1,1,0)+(1,3,0) Frigerio, Hambye 09' (1,1,1,1/2)	
Scalars	16, 144	(1,1,0) Kadastik, Kannike, Raidal 09' See also: Mambrini et al. 15' Nagata et al. 15' Arbelaez et al. 15'	

Part II The model

Particle content

The model consists of a minimal SO(10) fields content: 3 generations of fermion **16**, and scalars in **126** and complex **10** (where the Higgs lives), augmented by fermionic **10** and a scalar **45**.

The breaking proceeds through

 $SO(10) \stackrel{45_H}{\longrightarrow} 3_C 2_L 2_R 1_{B-L}$ $\stackrel{126_H}{\longrightarrow} 3_C 2_L 1_Y \otimes Z_2$ $\stackrel{10_H}{\longrightarrow} 3_C 1_Y \otimes Z_2$

Bidoublet DM

We are interested in the colorless part of the 10, i.e,

$$\mathbf{10} \supset (\mathbf{1}, \mathbf{2}, \mathbf{2}, 0) \equiv \xi = \begin{pmatrix} \xi^{+-} & \xi^{++} \\ \xi^{--} & \xi^{-+} \end{pmatrix}$$

To separate it from colored states and give it mass we use a **45** à la Dimopoulos-Wilczek; $\mathcal{L}_{DM} = \mathbf{10}_1 \mathbf{45}_H \mathbf{10}_2$ with $\langle \mathbf{45}_H \rangle = \operatorname{diag}(a, a, a, b, b) \otimes i\tau_2$.

This leads, after EWSB to Dirac fermions of mass ~ *b*

Bidoublet DM

A fermion doublet DM is excluded by DD. However, if there's a mass gap of > ~200 keV in the Z transition, we can avoid these bounds: the model automatically takes care of this.

[In group th. languange, the insertion **10.10** acts as a **54**, which contains (**3**,**3**) of LR.]

At low energy, we end up with a fermion pair of masses: $b \pm \delta$, with a splitting O(MeV) for WR @ TeV. Interestingly, DD bounds *require* a low scale LR model:

 $\delta > 200 \,\mathrm{keV} \to M_{W_R} \lesssim 9 \,\mathrm{TeV}$

Part III DM pheno

Conclusions

- The smallest representation of SO(10), 10, offers a viable DM candidate which makes sense at quantum level only.
- Stability follows from the gauge group itself.
- Direct detection bounds force the LR intermediate scale to be TeV-ish: testable scenario; interplay DD/ID - LHC.

Conclusions

- The smallest representation of SO(10), 10, offers a viable DM candidate which makes sense at quantum level only.
- Stability follows from the gauge group itself.
- Direct detection bounds force the LR intermediate scale to be TeV-ish: testable scenario; interplay DD/ID - LHC.

Thanks for your attention !