### F-theory at order $\alpha'^3$

Raffaele Savelli IPhT - CEA/Saclay

DESY Theory Workshop Hamburg, September 30, 2015

> Based on work with: R. Minasian and T. Pugh arXiv:1506.06756

## In this talk...

- I discuss quantum corrections (in  $g_s$  and  $\alpha$ '). Need control over them to understand vacuum structure of string theory & its EFT.
- Here I focus on the Type IIB corner of the string landscape:
  - $\exists$  efficient probe into the strong g<sub>s</sub> regime  $\rightarrow$  F-theory; [Vafa `96]
  - All distinctive features of GUT models can be accommodated; [Donagi,Wijnholt; Beasley, Heckman, Vafa `08]
  - One has the Large Volume Scenario as promising paradigm of moduli stabilization. [Balasubramanian, Berglund, Conlon, Quevedo `05]
- Final target is the 4D, N=1 EFT of Type IIB on CY<sub>3</sub> with D7/O7:
  - Knowledge of quantum corrections is still very limited, especially for the effective Kähler potential.
  - They play a key role in the phenomenology of these vacua.

## Context

• Most notable example is a certain  $O(\alpha^{3})$  correction to the CY<sub>3</sub> volume:

$$K = -2\log\left(\mathcal{V}_3 - \frac{\zeta(3)\,\chi(CY_3)}{32\pi^3\,g_s^{3/2}}\right)$$

- Due to closed strings  $\Rightarrow$  N=2 sector; [Antoniadis, Ferrara, Minasian, Narain `97]
- Shown to survive orientifolding  $N=2 \rightarrow N=1$ . [Becker, Becker, Haack, Louis `02]
- <u>Main aim</u>: Study possible, genuinely N=1 modifications of CY<sub>3</sub> volume.
- Using F-theory is convenient, as:
  - It "geometrizes" all  $g_s$  effects of Type IIB, and it only needs to be corrected in  $\alpha\space$ ;
  - It includes open string effects, through 7-brane backreaction.

#### **F-theory**

12D theory: Auxiliary T<sup>2</sup> fibered over the 10D string space

T<sup>2</sup> cplx-str = axio-dilaton  $\tau = C_0 + ie^{-\phi}$ 

varies holomorphically with  $SL(2, \mathbb{Z})$  transitions



 $\nexists$  fundamental description (yet):  $\nexists$  (1,11) sugra.

Still, I2D are able to encode  $SL(2,\mathbb{Z})$ -invariant I0D structures.

#### **Two derivatives**

- Let's warm up with  $O(\alpha^{\prime 0})$ .
  - Start with the I2D Ricci scalar, integrated on I0D subspace.

$$S_0^{(12)} \sim \frac{1}{l_s^8} \int R_{\rm sc}^{(12)} *_{10} 1 \quad \stackrel{\mathsf{T}^2}{\stackrel{\text{red.}}{\longrightarrow}} \quad S_0^{(10)} \sim \frac{1}{l_s^8} \int \left( R_{\rm sc}^{(10)} - 2P \cdot \bar{P} \right) *_{10} 1$$
  
KK-reduction using the T<sup>2</sup> metric  $\frac{1}{\operatorname{Im} \tau} \left( \begin{array}{cc} 1 & \operatorname{Re} \tau \\ \operatorname{Re} \tau & |\tau|^2 \end{array} \right)$   
 $P \text{ is the U(1)}_{\mathsf{R}} \text{ -covariant quantity } P = \frac{i}{2\operatorname{Im} \tau} \nabla \tau \text{ of charge 2.}$ 

- $U(I)_{R}$ -invariance + IOD diff-invariance  $\Rightarrow$  "I2D diff-invariance"
- Warning : No I2D lift of the I0D measure !

### **Eight derivatives**

- At  $O(\alpha^{3})$  we have non-trivial string dynamics.
  - Start with the "I2D" action:

$$S_3^{(12)} = \frac{1}{(2\pi)^7 \cdot 3 \cdot 2^{11} \cdot l_s^2} \int f_0(\tau, \bar{\tau}) \left[ t_8 t_8 + \frac{1}{96} \epsilon_{12} \epsilon_{12} \right] (R^{(12)})^4 *_{10} 1$$

- ►  $f_0$  holds all  $g_s$  corrections compatible with SUSY + SL(2)-invariance. For  $(\operatorname{Im} \tau)^{-1} = g_s << 1$ :  $f_0(\tau, \bar{\tau}) \approx \underbrace{\frac{2\zeta(3)}{g_s^{3/2}}}_{\text{tree-level}} + \underbrace{\frac{2\pi}{3}g_s^{1/2}}_{1-\operatorname{loop}} + \underbrace{\mathcal{O}(e^{-1/g_s})}_{D(-1)}$
- Reduction on  $T^2 \Rightarrow$  complicated sum of  $U(I)_R$ -invariant couplings, written in terms of  $R^{(10)}$ , P and DP.
- Perfect match with known 4pt, tree-level result. [Policastro, Tsimpis `06 `08]
- Prediction of IOD couplings of  $R \& \tau$  beyond 4pt.

### 4D N=I compactifications

- Reduce F-theory on smooth  $CY_4$ , elliptically fibered over  $B_3$ , with zero-section:  $B_3 \rightarrow CY_4$ .
  - Eight-derivative action yields correction to volume of base:

$$S_{0+3}^{(4)} = \frac{1}{2\pi\alpha'} \int \left( \mathcal{V}_b - \frac{1}{64\pi^3} \int_{B_3} f_0(\tau,\bar{\tau}) c_3(CY_4) |_{B_3} \right) R_{sc}^{(4)} *_4 1$$

- For constant  $\tau \Rightarrow \text{old N=2 correction } (B_3 = CY_3);$
- N=I vacua: Correction is non-topological ( $\tau$  varies over B<sub>3</sub>);
- Weyl rescaling induces correction to 4D, N=1 Kähler potential.

## Weak coupling

- Correction simplifies when going to weak string coupling.
  - Sen (`97): Restrict CY<sub>4</sub>-complex structure s.t.  $g_s \rightarrow 0$  is well-defined.
  - → Type IIB on  $CY_3 \rightarrow B_3$  branched double cover.
  - $\rightarrow$  O7-plane wrapping branch locus: In cohomology  $D_{O7} = C_1(B_3)$ .

$$\left| \tilde{\mathcal{V}}_3 = \mathcal{V}_3 - \frac{\zeta(3)}{32\pi^3 g_s^{3/2}} \left( \chi(\mathrm{CY}_3) + 2 \int_{\mathrm{CY}_3} D_{\mathrm{O7}}^3 \right) + \mathcal{O}(g_s^{-1/2}) \right|$$

- Topological correction at closed-string tree-level.
- Next-to-leading: tree-level of open + unorientable strings.
- Arises from graviton two-point function in orientifold backgrounds.
- Absent in toroidal models!

# Caveats / Open questions

- Our I2D  $O(\alpha'^3)$  action is only checked at 4pt!
  - Test it beyond 4pt : 5pt amplitude computation or M/F duality.
- Employ I2D logic to study the  $F_3 / H_3$  -flux sector in I0D at  $O(\alpha'^3)$ .
- Correction to Weyl rescaling does not fully determine Kähler potential!
  - Derive corrections to kinetic terms of moduli. [Berg, Haack, Kang, Sjörs `14]
- Include corrections to the vacuum solution, such as warping effects.
  [Grimm, Pugh, Weissenbacher `14]; [Martucci `14]
- Our correction persists on singular CY<sub>4</sub>! Are there more? [Junghans, Shiu`14]
- Study the 4D scalar potential. [Ciupke, Louis, Westphal `15]