Dark matter and collider phenomenology of gauged $U(1)_B$ and $U(1)_L$ models

Sept 30, 2015

DESY Workshop

P. Fileviez Perez, S. Ohmer, **HP**, PLB 735 (2014) 283

S. Ohmer, **HP**, PRD 92 (2015) 055020

Hiren Patel <u>hiren.patel@mpi-hd.mpg.de</u>

MAX-PLANCK-GESELLSCHAFT

MAX-PLANCK-INSTITUT FÜR KERNPHYSIK

Basic idea of gauged $U(1)_{B,L}$ models

Classically conserved currents in the Standard Model:

$$J^{\mu}_{
m B} = \sum_q rac{1}{3} ar{q} \gamma^{\mu} q$$

$$J^{\mu}_{
m L} = \sum_{\ell,
u} (ar{\ell} \gamma^{\mu} \ell + ar{
u} \gamma^{\mu}
u)$$

Can they source gauge fields?

Quantum mechanically anomalous:

$$\partial_{\mu} J^{\mu}_{\mathrm{B}} = rac{g^2}{16\pi^2} rac{3}{2} \vec{\widetilde{W}}_{\mu
u} \cdot \vec{W}^{\mu
u} - rac{g'^2}{16\pi^2} rac{3}{2} \widetilde{B}_{\mu
u} B^{\mu
u}$$

 $\partial_{\mu} J^{\mu}_{\mathrm{L}} = - \mathrm{same} - -$

Can't consistently couple currents to gauge fields*:

$${\cal L}=-g_B Z^\prime_\mu J^\mu_B$$
 or $-g_L Z^\prime_\mu J^\mu_L$

(not counting B–L)

Hiren Patel

Add additional fermions to modify currents:

$$egin{aligned} J^{\mu}_{B} & \longrightarrow J^{\mu}_{ ext{B, tot}} = \sum_{q} rac{1}{3} ar{q} \gamma^{\mu} q + J^{\mu}_{ ext{B,ext}} \ J^{\mu}_{ ext{L, tot}} & \longrightarrow J^{\mu}_{ ext{L, tot}} = \sum_{\ell,
u} (ar{\ell} \gamma^{\mu} \ell + ar{
u} \gamma^{\mu}
u) + J^{\mu}_{ ext{L,ext}} \end{aligned}$$

SM part

Total currents are anomaly free:

$$egin{aligned} \partial_\mu J^\mu_{ ext{B, tot}} &= 0 \ \partial_\mu J^\mu_{ ext{L, tot}} &= 0 \end{aligned}$$

$${\cal L}=-g_B Z^\prime_\mu J^\mu_B~~{
m and}~-g_L Z^\prime_\mu J^\mu_L~~~{
m OK}$$

Motivation (Features)

1. Leads to viable (thermal) dark matter candidate

P. Fileviez Perez, M. Wise, PRD 82, 011901 (2010)

2. New possibilities for baryogenesis

- modified EW sphaleron $(QQQL)^3 \longrightarrow (QQQL)^3 \psi$...

= changed relationship between B and L asymmetries in eq.

– extended Higgs sector + CPV in fermion sector
 = electroweak baryogenesis?

3. Extended gauge group

 $SU(3)_{C} \otimes SU(2)_{L} \otimes U(1)_{Y} \otimes U(1)_{B} \otimes U(1)_{L}$

leads to possibility for low scale unification, <u>without</u> proton decay

P. Fileviez Perez, S. Ohmer, PRD 90 037701 (2014)

Hiren Patel

P. Fileviez Perez, HP, PLB 731, 232 (2014)

P. Fileviez Perez, S. Ohmer, HP, PLB 735, 283 (2014)

Gaman				Forn	nul	atic	n				
Comm	ON TO DO	otn moo	1eis —	SU	$J(2)_L$	\otimes U(1	$()_Y \otimes U(1)$	$_{\rm B}\otimes {\rm U}(1)$	$)_{\rm L}$		
			Gauge	fields: 1	\vec{N}^{μ}	B^{μ}	$^{\mu}$ $Z^{\mu}_{ m B}$	$Z^{\mu}_{ m L}$			
Right han	ded neu	trinos	$ar{ u}_e, b$	$ar{ u}_{\mu},ar{ u}_{ au}$	1	0	0	-1			
L	eptonic	Higgs	$S_{ m L}$		1	0	0	2			
Ba	aryonic	Higgs	$S_{ m B}$		1	0	3	3	_)		
"Lepto-	Lepto M. Du PRL 1	baryo aerr P. File 10, 23180	n Mod viez Perez 1 (2013)	el VA , M. Wise			Leptol P. Filev PLB 73	Daryon iez Perez, S 35 (2014) 28	Model 5. Ohmer, 1 33	А HP,	
baryons" Ψ $\overline{\Psi}$ $\overline{\Psi}$ η $\overline{\eta}$ χ	${{{{\rm SU}(2)}_L}\over 2} \ 1 \ 1 \ 1$	$U(1)_{Y} - 1/2 \ 1/2 \ -1 \ -1 \ 0$	$U(1)_{ m B}\ B_{1}\ -B_{2}\ B_{2}\ -B_{1}\ B_{2}$	$\begin{bmatrix} U(1)_{L} \\ L_{1} \\ -L_{2} \\ L_{2} \\ -L_{1} \\ L_{2} \end{bmatrix}$		$egin{array}{c} \Psi \ \overline{\Psi} \ \overline{\Sigma} \ \chi \end{array}$	${{{\rm SU(2)}_L}\over {2}} \ {3} \ {1}$	$U(1)_{Y} \ 1/2 \ -1/2 \ 0 \ 0$	$U(1)_{ m B} \ 3/2 \ 3/2 \ -3/2 \ -3/2 \ -3/2$	$U(1)_{ m L} \ 3/2 \ 3/2 \ -3/2 \ -3/2 \ -3/2$]
$\overline{\chi}$ anomaly	1 v cancell	0 lation	$-B_1$ $L_1 - I_2$	$-L_1 $			Foc	us of th	is talk		
Hiren Pa	const tel	raint:	$B_1 - B_1$	$B_2 = -3$	4					AAX-PLANCK-IN FÜR KERNPH ➡ Heidelber	STITUT YSIK .G

Formulation of model A

P. Fileviez Perez, S. Ohmer, **HP**, PLB 735 (2014) 283

Simplify:

Lepton breaking scale very high $\Lambda_{\rm L} \gg \Lambda_{\rm B}$

		$SU(2)_L$	$U(1)_Y$	$U(1)_{ m B}$	$U({\ })_{ m L}$
		$ec{W}^{\mu}$	B^{μ}	$Z^{\mu}_{ m B}$	Z^{ι}
-	$\overline{\nu}_{e,\mu,\tau}$	L	Û	0	
2	$S_{ m L}$	1	0	0	
	$S_{ m B}$	1	0	3	3
	Ψ	2	1/2	3/2	3/2
	$\overline{\Psi}$	$\overline{2}$	-1/2	3/2	3/2
	$\vec{\Sigma}$	3	0	-3/2	-3/2
	X	1	0	-3/2	-3/2

Focus on baryonic sector

Lagrangian

$$\mathcal{L} = \cdots - \frac{1}{2} \sin(\epsilon) S_{\mu\nu} Z_{\mathrm{B}}^{\mu\nu}$$
 neglect kinetic
mixing
 $D_{\mu}S_{\mathrm{B}} = (\partial_{\mu} + 3ig_{\mathrm{B}}Z_{\mathrm{B}\mu})S_{\mathrm{B}}$

$$\mathcal{L}_{ ext{Yuk}} = - oldsymbol{y}_{oldsymbol{\psi}} S^*_{ ext{B}} ar{\Psi} \Psi - rac{oldsymbol{y}_{\Sigma}}{2} S_{ ext{B}} ec{\Sigma} \cdot ec{\Sigma} - rac{oldsymbol{y}_{\chi}}{2} S_{ ext{B}} \chi \chi + ext{c.c.}$$

EW/Baryon spontaneous symm. breaking $V = -\mu^2 |H|^2 + \lambda |H|^4$ $-\mu_S^2 |S_B|^2 + b|S_B|^2 + a|H|^2|S_B|^2$

Formulation of model A

P. Fileviez Perez, S. Ohmer, **HP**, PLB 735 (2014) 283

Constraining baryonic gauge coupling

AX-PLANCK-INSTITUT

Majorana Dark Matter (χ)

Thermally produced CDM

Nonresonant region more 'natural'

 0^{++}

1/2

Spectrum

Baryonic Higgs and Leptobaryons

Summary

Introduced and motivated gauged $U(1)_B$ and Spectrum $U(1)_L$ models: E $\sum^{+} (D)$ $\sum^{0} (M)$ Leptobaryon model A and VA Phenomenology: **1)** Absence of jj ($Z_{\rm B}$) resonance $\Rightarrow \alpha_{\rm B} \lesssim 0.015$ $Z_{\rm B}$ **2)** Thermal CDM relic abundance: 1/2nonresonant: $\chi \chi \longrightarrow Z_{\rm B} S_{\rm B}$ $rightarrow m_\chi \gtrsim m_{Z_{
m B}}, m_{S_{
m B}} ext{ and } heta \lesssim 0.22$

3) Observe leptobaryons indirectly through $S_{\rm B}$ decay/production

(small mixing angle) [Can distinguish model A from VA]

Backup: Resonant annihilation

Backup: non-resonant annihilation

Backup: Higgs production

