Higgs mass in R-symmetric SUSY at one-loop level and beyond

JHEP 1412 (2014) 124, arXiv:1504.05386 (accepted for Advances in High Energy Physics)

P. Dießner[†], J. Kalinowski[‡], Wojciech Kotlarski^{†‡}, D. Stöckinger[†]

Physics at the LHC and beyond, September 29th-October 2nd 2015, Hamburg, Germany

Plan of the talk

- Motivation
- R-symmetric SUSY
 - u what is an R-symmetry
 - □ different possible R-symmetric models → MRSSM
- The electroweak sector
 - ☐ Lightest Higgs boson at 1-loop level and beyond
 - \Box Constraints: W boson mass, STU parameters, Higgs searches and exclusions, vacuum stability, flavour physics

Motivation

- Supersymmetry is still one of the most promising candidates for physics beyond the SM although
 - no direct SUSY signal at Run I of the LHC
 - direct searches still allow for TeV SUSY but indirect ones push minimal SUSY into uncomfortable parameter region
 - □ 125 GeV Higgs requires ≥ 700 GeV stops (≥ 5 TeV if we neglect mixing)
 - □ flavor physics suggests even larger SUSY scale (within the MSSM)
- If gluinos are found, important question: are they Dirac or Majorana particles?

Motivation

- Supersymmetry is still one of the most promising candidates for physics beyond the SM although
 - no direct SUSY signal at Run I of the LHC
 - direct searches still allow for TeV SUSY but indirect ones push minimal SUSY into uncomfortable parameter region
 - □ 125 GeV Higgs requires ≥ 700 GeV stops (≥ 5 TeV if we neglect mixing)
 - flavor physics suggests even larger SUSY scale (within the MSSM)
- If gluinos are found, important question: are they Dirac or Majorana particles?

Motivates us to go beyond the MSSM

Pros of the MRSSM

- it ameliorates the flavor problem of the MSSM Kribs, Poppitz, Weiner (2008)
- Dirac gluinos relax experimental limits on squark masses
- Dirac gaugino masses are supersoft Fox, Nelson, Weiner (2006)
- gives correct W and Higgs bosons masses at (possibly very) light stop masses this talk
- interesting LHC phenomenology distinct from the MSSM
- ☑ Dirac type neutralino as a candidate for dark matter next talk by P. Dießner Belanger, Benakli, Goodsell, Moura, Pukhov (2009), Buckley, Hooper, Kumar (2013)

Pros of the MRSSM

- it ameliorates the flavor problem of the MSSM Kribs, Poppitz, Weiner (2008)
- Dirac gluinos relax experimental limits on squark masses
- Dirac gaugino masses are supersoft Fox, Nelson, Weiner (2006)
- gives correct W and Higgs bosons masses at (possibly very) light stop masses this talk
- Dirac type neutralino as a candidate for dark matter next talk by P. Dießner Belanger, Benakli, Goodsell, Moura, Pukhov (2009) Bucklin Belanger, Benakli, Goodsell, Moura, Pukhov (2009), Buckley Mooper, Kumar (2013)

R-symmetry

- additional symmetry of the SUSY algebra allowed by the Haag Łopuszański Sohnius theorem
- \blacksquare for N=1 it is a global $U_R(1)$ symmetry under which the SUSY generators are charged
- implies that the spinorial coordinates are also charged

$$Q_R(\theta) = 1, \ \theta \to e^{i\alpha}\theta$$

- Lagrangian invariance
 - □ Kähler potential invariant if R-charge of vector superfield is 0
 - □ R-charge of the superpotential must be 2
 - □ soft-breaking terms must have R-charge 0
- Here I'll not consider model building but focus on phenomenological analysis of low energy theory

Low-energy R-symmetry realization

R charges of component fields					
	Q_{R}	scalar	vector	fermionic	
vector superfield	0	-	0	1	
chiral superfield	Q	Q	-	Q-1	

- freedom in the choice of chiral superfield charge
- we choose SM fields to have R=0 → Higgs superfields $Q_R=0$, lepton and quark superfields have $Q_R=+1$
- with the above assignment R-symmetry forbids
 - $\Box \quad \mu \hat{H}_u \hat{H}_d$
 - \Box $\lambda \hat{E}\hat{L}\hat{L}, \kappa \hat{U}\hat{D}\hat{D}, e\hat{H}\hat{L}$
 - soft SUSY breaking Majorana masses and trilinear scalar couplings
- flavor problem ameliorated but now gauginos and higgsinos are masses
 - → possible solution Dirac gauginos

One way to fix it: <u>Dirac masses</u> Minimal R-Symmetric Supersymmetric Standardmodel (MRSSM) Kribs et.al. arXiv:0712.2039							
Additional fields:			$SU(3)_C$	$SU(2)_L$	$U(1)_Y$	<i>U</i> (1) _R	
	Singlet	Ŝ	1	1	0	0	
	Triplet	Ť	1	3	0	0	
	Octet	Ô	8	1	0	0	
	R-Higgses	\hat{R}_u	1	2	-1/2	2	
		Â _d	1	2	1/2	2	

other realizations:

. . .

Davies, March-Russell, McCullough (2011) Lee, Raby, Ratz, Schieren, Schmidt-Hoberg, Vaudrevange (2011) Frugiuele, Gregoire (2012)

• • •

MRSSM lagrangian

■ Superpotential — Choi, Choudhury, Freitas, Kalinowski, Zerwas (2011)

$$W = \mu_d \, \hat{R}_d \, \hat{H}_d + \mu_u \, \hat{R}_u \, \hat{H}_u$$

$$+ \Lambda_d \, \hat{R}_d \, \hat{T} \, \hat{H}_d + \Lambda_u \, \hat{R}_u \, \hat{T} \, \hat{H}_u + \lambda_d \, \hat{S} \, \hat{R}_d \, \hat{H}_d + \lambda_u \, \hat{S} \, \hat{R}_u \, \hat{H}_u$$

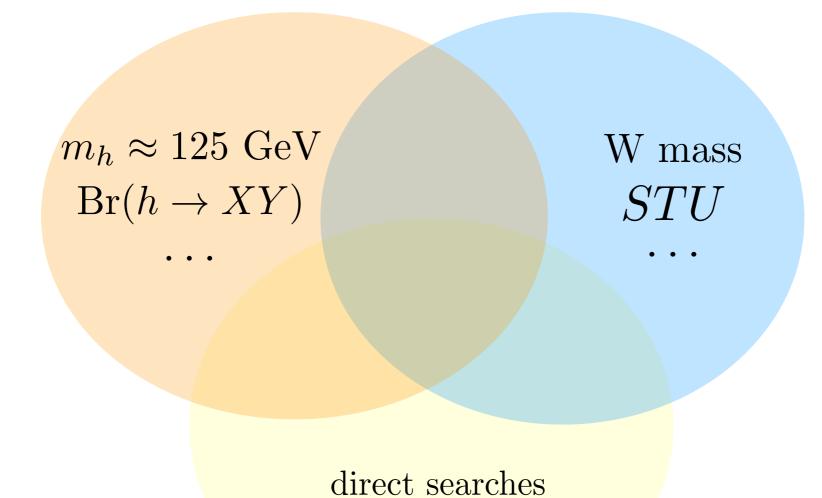
$$- Y_d \, \hat{d} \, \hat{q} \, \hat{H}_d - Y_e \, \hat{e} \, \hat{l} \, \hat{H}_d + Y_u \, \hat{u} \, \hat{q} \, \hat{H}_u$$

- μ-type terms
- \Box terms with λ , Λ couplings generate quartic Higgs couplings in the potential
- ☐ MSSM-like Yukawa terms
- Allowed soft SUSY-breaking terms
 - \Box conventional MSSM B_{μ} -term: $V \ni B_{\mu}(H_d^-H_u^+ H_d^0H_u^0) + \text{h.c.}$
 - \Box Dirac mass terms for gauginos $M^D \tilde{g} \tilde{g}'$
 - \Box scalar soft masses $m^2 |\Phi|^2$

Particles content summary: MSSM vs. MRSSM

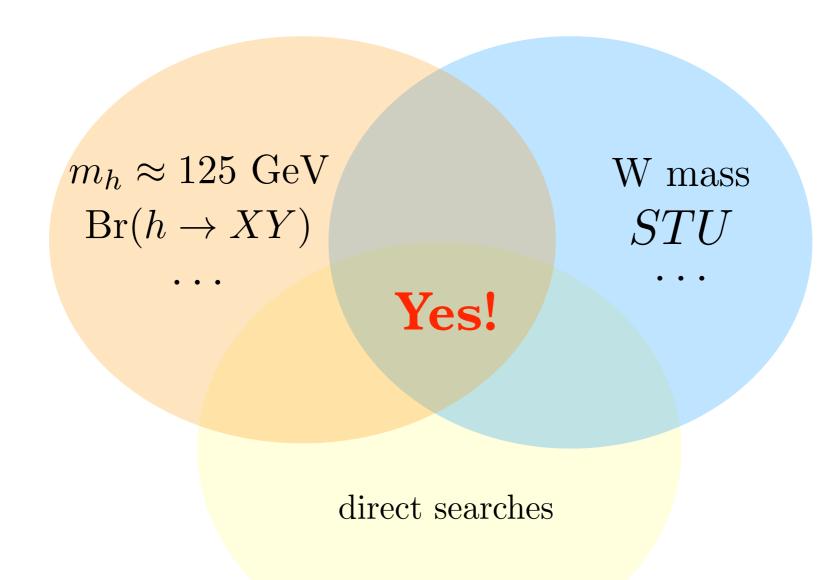
different number of physical states

completely new states


		Higgs			R-H	iggs	
	CP-even	CP-odd	charged	charginos	neutral	charged	sgluon
MSSM	2	1	1	2	0	0	0
MRSSM	4	3	3	2+2	2	2	1

	neutralino	gluino
MSSM	4	1
MRSSM	4	1

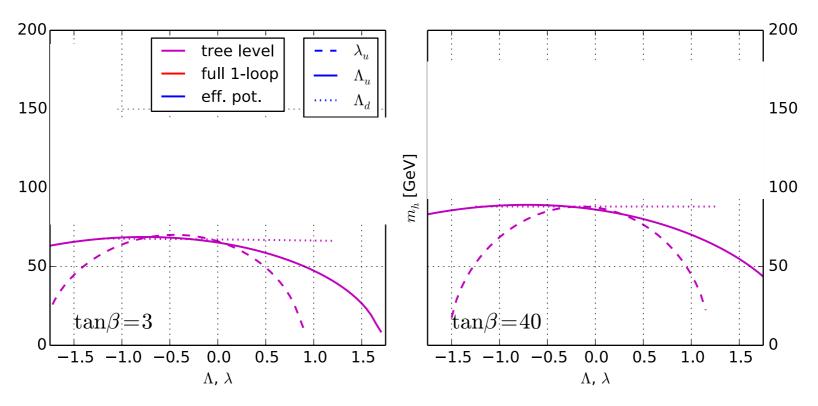
Majorana fermions


Dirac fermions

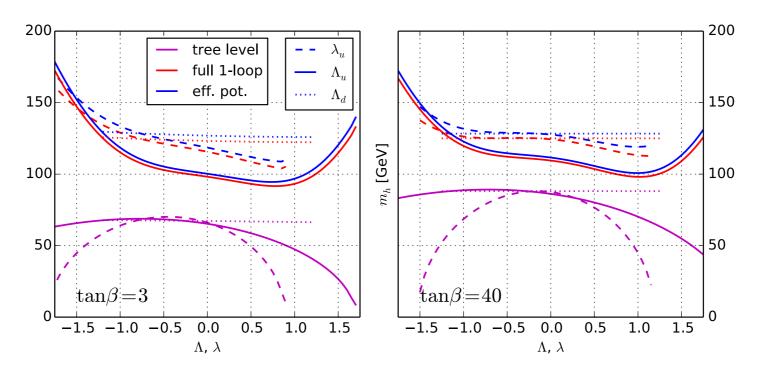
Can MRSSM accommodate both the Higgs and EWPO?

7

Can MRSSM accommodate both the Higgs and EWPO?


Scalar Higgs sector and tree-level analysis

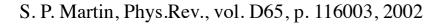
- 4 scalar degrees of freedom $\{\sigma_d, \sigma_u, \sigma_S, \sigma_T\}$ mix to form 4 physical Higgs bosons
- Approximate formula for the lightest Higgs mass (**here**[†] composed of $\{\sigma_d, \sigma_u\}$) at the tree level


$$m_{h,\text{approx}}^2 = M_Z^2 \cos^2 2\beta - v^2 \left(\frac{\left(g_1 M_D^B + \sqrt{2} \lambda \mu \right)^2}{4(M_D^B)^2 + m_S^2} + \frac{\left(g_2 M_D^W + \Lambda \mu \right)^2}{4(M_D^W)^2 + m_T^2} \right) \cos^2 2\beta$$

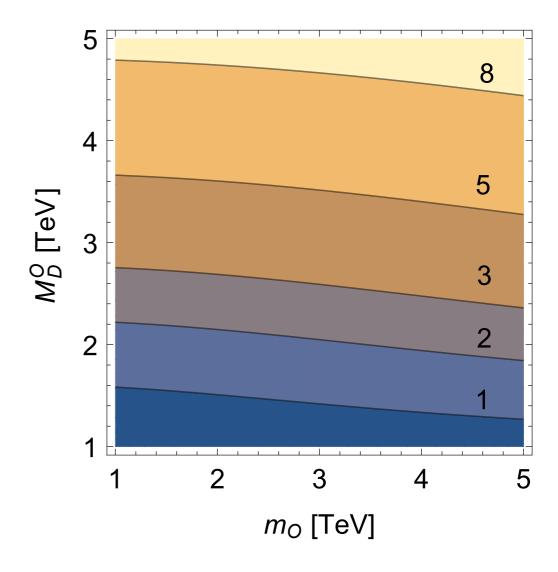
under simplifying assumptions: large m_A^2 , $\lambda = \lambda_u = -\lambda_d$ $\Lambda = \Lambda_u = \Lambda_d$ $\mu = \mu_u = \mu_d$ $\nu_s \approx \nu_T \approx 0$

Tree-level mass of the lightest state in this setup **lower** than in the MSSM due to the mixing with σ_S and σ_T fields.

Lightest Higgs mass — full lloop analysis

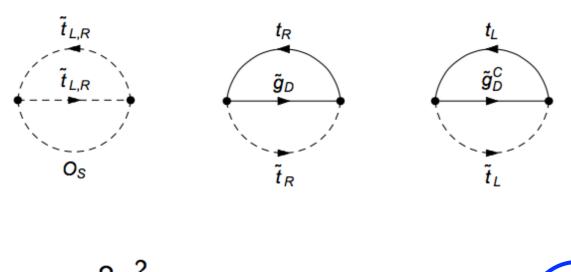

- large enhancement of tree-level Higgs mass
 - □ with ~1 TeV stops and no LR mixing lightest higgs mass too low
 - a large contributions from new states, mainly Higgs and R-Higgs sectors

Lightest Higgs mass — leading 2-loop corrections


- Effective potential approximation without contributions from broken gauge groups
- MRSSM specific contributions

$$\begin{split} V_{eff}^{(2)} = & \frac{8g_3^2}{(16\pi^2)^2} (M_O^D)^2 \sum_{i=L,R} f_{SSS}(m_{\tilde{t}_i}^2, m_{\tilde{t}_i}^2, m_{O_S}^2) \\ & + \frac{8g_3^2}{(16\pi^2)^2} \sum_{i=L,R} f_{FFS}(m_t^2, m_{\tilde{t}_i}^2, m_{\tilde{g}_D}^2) \end{split}$$

M. D. Goodsell, K. Nickel, and F. Staub, Eur. Phys. J., vol. C75, no. 1, p. 32, 2015

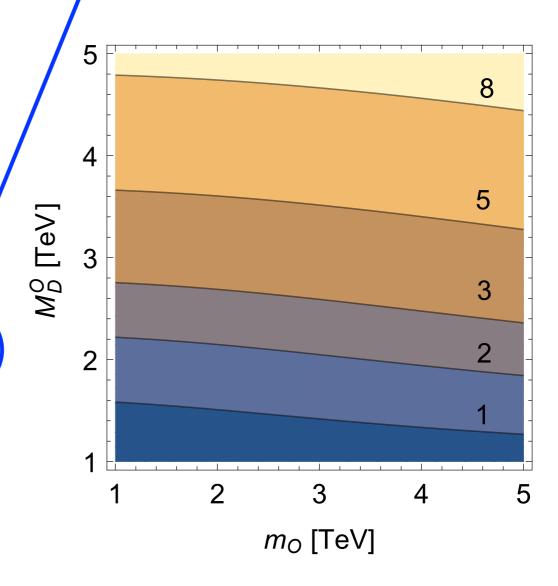


Lightest Higgs mass — leading 2-loop corrections

■ Effective potential approximation without contributions from broken gauge groups

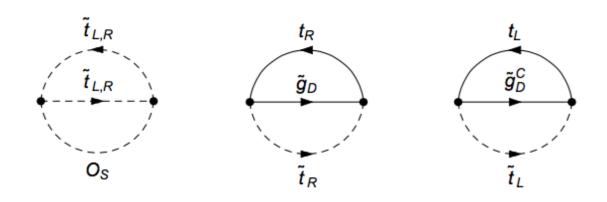
■ MRSSM specific contributions

only the scalar component of the (complex) sgluon filed contributes



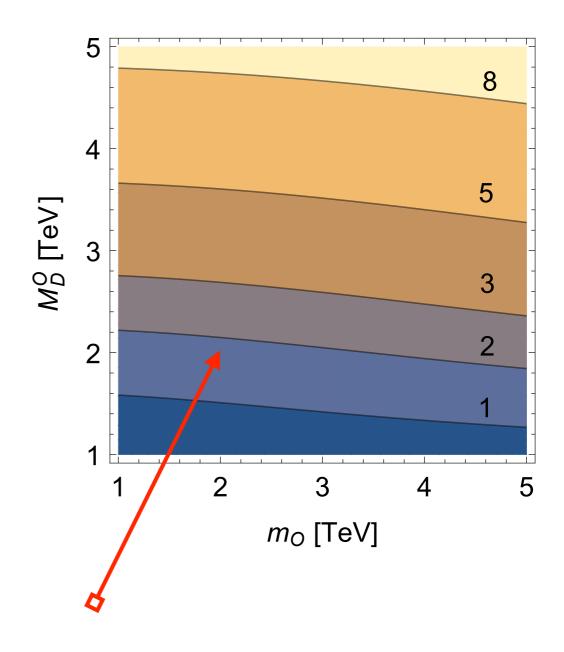
$$V_{eff}^{(2)} = \frac{8g_3^2}{(16\pi^2)^2} (M_O^D)^2 \sum_{i=L,R} f_{SSS}(m_{\tilde{t}_i}^2, m_{\tilde{t}_i}^2, m_{\tilde{t}_i}^2)$$

$$+ \frac{8g_3^2}{(16\pi^2)^2} \sum_{i=L,R} f_{FFS}(m_t^2, m_{\tilde{t}_i}^2, m_{\tilde{g}_D}^2)$$


S. P. Martin, Phys.Rev., vol. D65, p. 116003, 2002

M. D. Goodsell, K. Nickel, and F. Staub, Eur. Phys. J., vol. C75, no. 1, p. 32, 2015

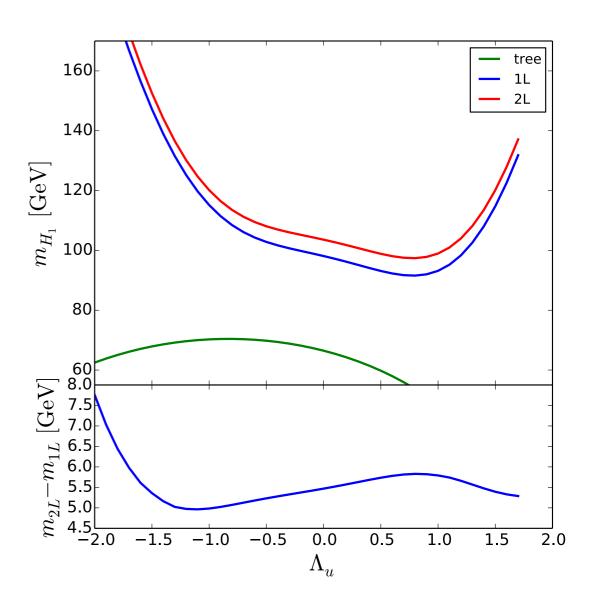
Lightest Higgs mass — leading 2-loop corrections


- Effective potential approximation without contributions from broken gauge groups
- MRSSM specific contributions

$$\begin{split} V_{eff}^{(2)} = & \frac{8g_3^2}{(16\pi^2)^2} (M_O^D)^2 \sum_{i=L,R} f_{SSS}(m_{\tilde{t}_i}^2, m_{\tilde{t}_i}^2, m_{O_S}^2) \\ & + \frac{8g_3^2}{(16\pi^2)^2} \sum_{i=L,R} f_{FFS}(m_t^2, m_{\tilde{t}_i}^2, m_{\tilde{g}_D}^2) \end{split}$$

S. P. Martin, Phys.Rev., vol. D65, p. 116003, 2002

M. D. Goodsell, K. Nickel, and F. Staub, Eur. Phys. J., vol. C75, no. 1, p. 32, 2015


Impact of 2-loop corrections

■ MRSSM specific contributions
Two loop corrections in the DR scheme are generally positive and amount to approximately +5 GeV

Updated BM points

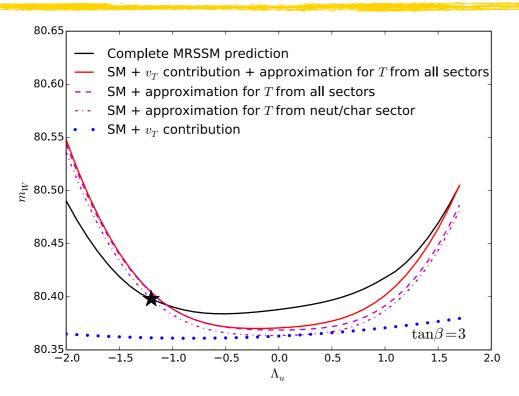
1	A	В	C
m_{H_1}	125.3 GeV	$125.5~\mathrm{GeV}$	$125.4~\mathrm{GeV}$
m_W	80.397 GeV	$80.381~\mathrm{GeV}$	$80.386~{\rm GeV}$
HiggsBounds's obsratio	0.61	0.65	0.87
HiggsSignals's p-value	0.72	0.66	0.72

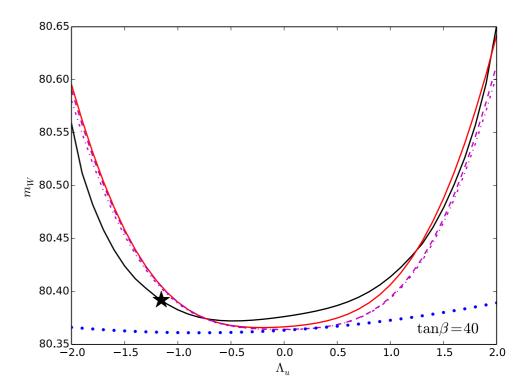
with reduced values of superpotential parameters Λ_u

m_W calculation setup

- MRSSM contains a Y=0 Higgs triplet with vev v_T giving tree level contribution to m_W , which is measured with very high precision ($m_W = 80.385 \pm 0.015$)
- EW-gauge sector is described at tree-level in terms of 4 parameters

$$\{g_1, g_2, v, v_T\} \rightarrow \{\alpha_{EM}, G_{\mu}, m_Z, \hat{v}_T\}$$


Chankowski, Pokorski, Wagner (2007)


■ Calculation based on Degrassi, Fanchiotti, Sirlin (1990) scheme modified to accommodate non vanishing v_T

$$m_W^2 = \frac{1}{2} m_Z^2 \hat{\rho} \left[1 + \sqrt{1 - \frac{4\pi \hat{\alpha}}{\sqrt{2} G_\mu m_Z^2 \hat{\rho} (1 - \Delta \hat{r}_W)}} \right] \qquad \hat{\rho} = \frac{m_W^2}{m_Z^2 \hat{c}_W^2} \qquad \hat{\rho}_0 = 1 + \frac{4v_T^2}{v^2}$$

- $\Delta \hat{r}_W$ contains: "oblique" and vertex- and box-corrections as well as term that translates pole mw to the running one
- automatically recovers SM 2-loop reducible contributions

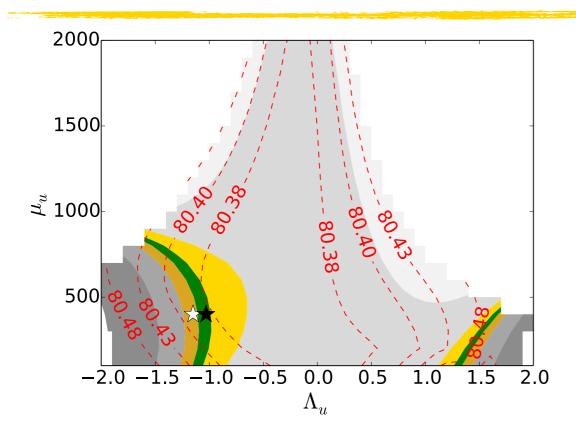
Results for m_W

 $\tan \beta = 40$

- built in large cancelations between $\Delta \alpha, \Delta \hat{r}_W, \hat{\rho}$
- to understand qualitatively the parameter dependence expand in STU

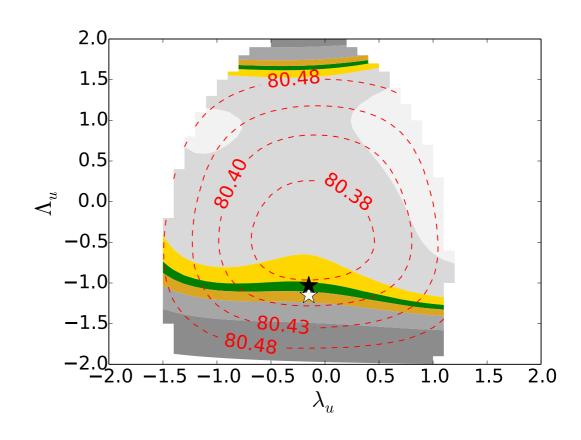
$$m_W = m_W^{\text{ref}} + \frac{\hat{\alpha}m_Z\hat{c}_W}{2(\hat{c}_W^2 - \hat{s}_W^2)} \left(-\frac{S}{2} + \hat{c}_W^2 T + \frac{\hat{c}_W^2 - \hat{s}_W^2}{4\hat{s}_W^2} U \right)$$

 $\tan \beta = 3$


 $\tan \beta = 10$

- \blacksquare additional benefit: STU give also a handle on observables other than m_W

Properties of benchmark points


- 3 distinct parameter points with $\tan \beta = 3, 10, 40$
- W mass within 1σ from measured value $m_W^{\rm exp} = 80.385 \pm 0.015 \; {\rm GeV}$
- lightest Higgs mass around 125 GeV
- Higgs sectors in agreement with direct measurements and exclusion limits
 HiggsBounds and HiggsSignals
- due to the lack of A-terms MRSSM is safe as far as colour- and charge-breaking minima are concerned Casas, Lleyda, Muñoz (1996)
- absolute vacuum stability [disclaimer: within the scope of application of **Vevacious**]
- reasonable TeV range mass spectra

$m_h - m_W$ interdependence for $\tan \beta = 40$

- \Box contours for m_W
- \Box color gradient for m_h
- □ ★ for benchmark point with 2-loop Higgs mass (☆ for 1-loop)

- $m_h = 126 \pm 2 \text{ GeV}$
- $m_h = 126 \pm 8 \text{ GeV}$

Summary and outlook

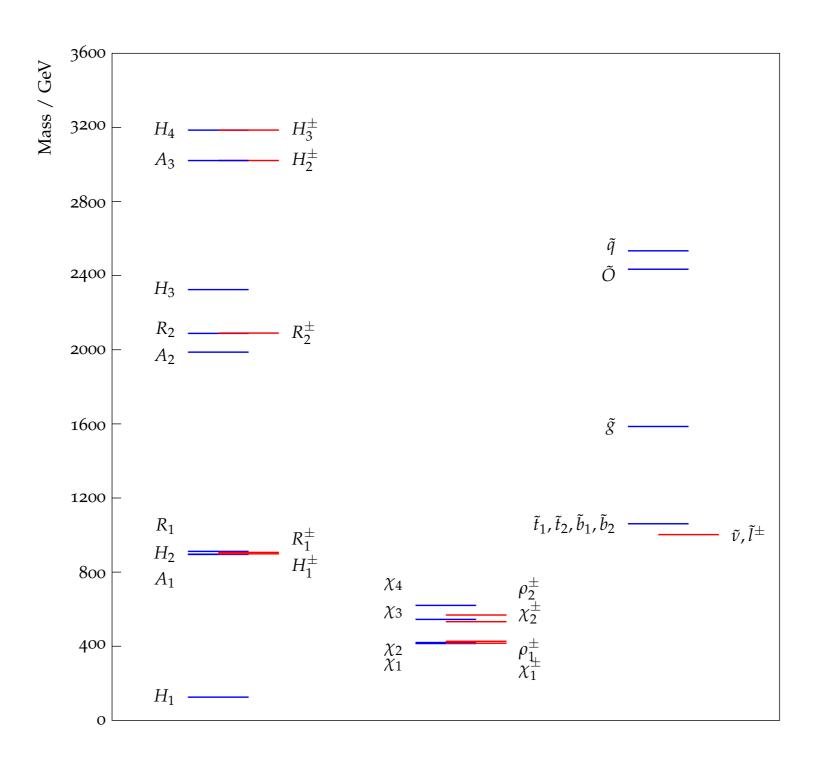
- We took the low energy model without discussing its UV completion
- Viable realization of R-symmetric SUSY

 - agreement with PEWO and flavor-physics
 - stable vacuum
 - LHC ,,friendly" particle spectra
- Future goals
 - ☐ "Light single scenario" almost analyzed (see next talk)
 - ☐ R-symmetric SQCD at 14 TeV LHC

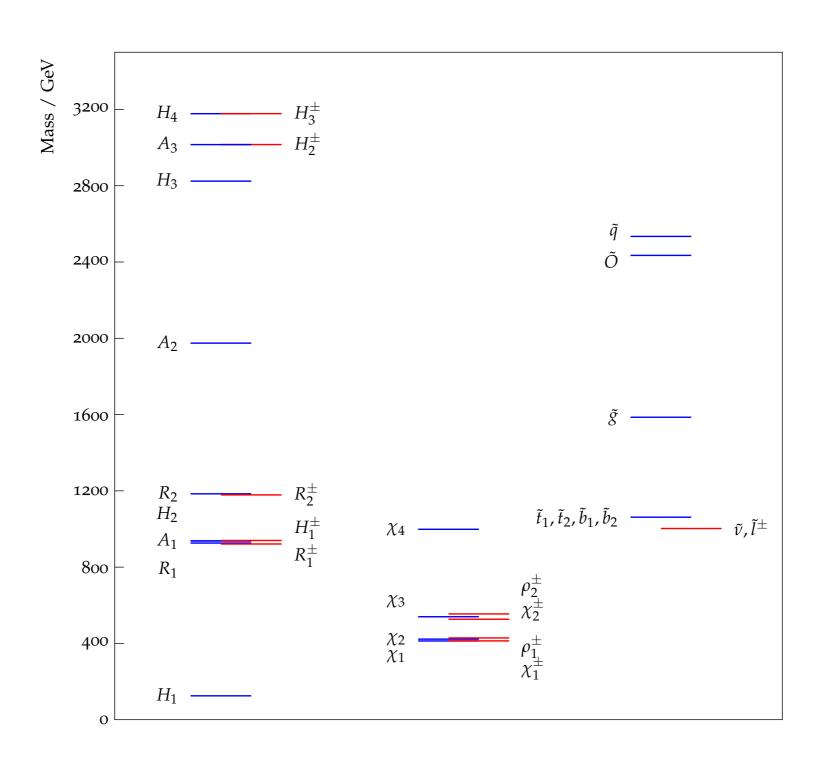
Summary and outlook

- We took the low energy model without discussing its UV completion
- Viable realization of R-symmetric SUSY

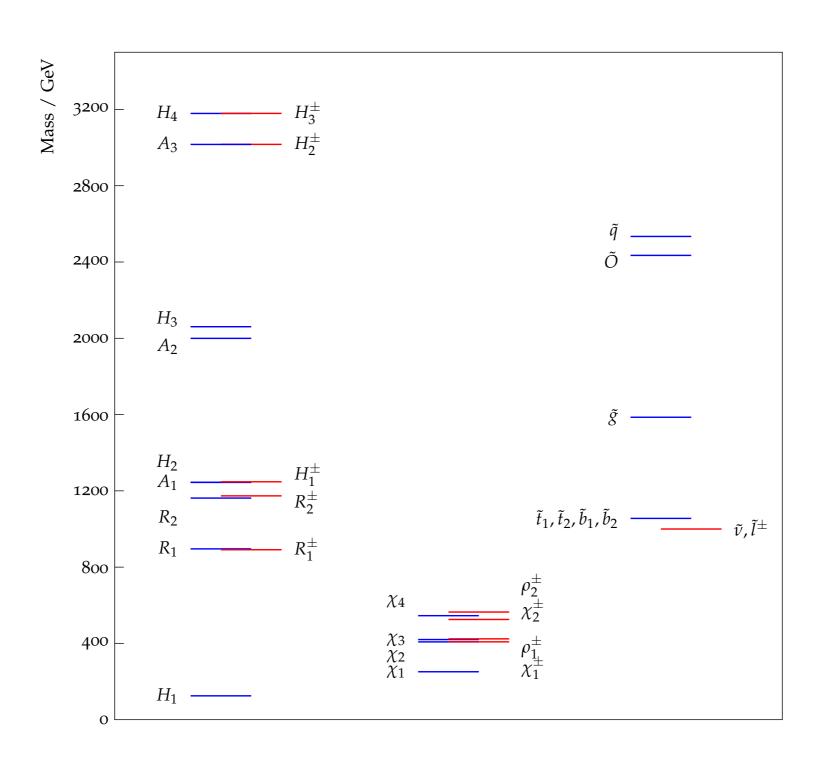
 - agreement with PEWO and flavor-physics
 - stable vacuum
- Future goals
 - ☐ "Light single scenario" almost analyzed (see next talk)
 - R-symmetric SQCD at 14 TeV LHC


Thank you for your attention!

Back-up slides


Benchmark points

	BMP1	BMP2	BMP3		
$\tan \beta$	3	10	40		
B_{μ}	500^2	300^{2}	200^{2}		
λ_d,λ_u	1.0, -0.8	1.1, -1.1	0.15, -0.15		
Λ_d,Λ_u	-1.0, -1.2	-1.0, -1.0	-1.0, -1.15		
M_B^D	600	1000	250		
$m_{R_u}^{\overline{2}}$	2000^2	1000^{2}	1000^{2}		
$\overline{\mu_d, \mu_u}$		400,400			
M_W^D		500			
$M_O^{\dot{D}}$	1500				
m_T^2, m_S^2, m_O^2	$3000^2, 2000^2, 1000^2$				
	$2500^2, 1000^2$				
$m_{Q;1,2}^2, m_{Q;3}^2 \ m_{D;1,2}^2, m_{D;3}^2$	$2500^2, 1000^2$				
$m_{U;1,2}^2, m_{U;3}^2$	$2500^2, 1000^2$				
m_L^2, m_E^2	1000^{2}				
$m_{R_d}^{2}$	700^{2}				
$\overline{v_S}$	5.9	1.3	-0.14		
v_T	-0.33	-0.19	-0.34		
	671^2	761^{2}	1158^{2}		
$m_{H_d}^2 \ m_{H_u}^2$	-532^2	-544^{2}	-543^{2}		


Particle spectrum for tan $\beta = 3$

Particle spectrum for tan $\beta = 10$

Particle spectrum for tan $\beta = 40$

Tools for numerical analysis

- Model implemented in **SARAH**
- Numerical analysis done within **SARAH**'s generated **SPheno**-like code
- Cross checked with analytic calculation with **FeynArts/FormCalc**
- Higgs sector checked with **HiggsBounds** and **HiggsSignals**
- Vacuum stability checked with **Vevacious**

$SU(3) \beta$ function

$$\beta_{g_3}^{(1)} = 0$$

$$\beta_{g_3}^{(2)} = \frac{1}{5}g_3^3 \left(11g_1^2 - 20\text{Tr}\left(Y_d Y_d^{\dagger}\right) - 20\text{Tr}\left(Y_u Y_u^{\dagger}\right) + 340g_3^2 + 45g_2^2\right)$$