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The Hierarchy Problem

The Higgs mass parameter in the SM is sensitive to the UV. 

Can address this 

• dynamically by allowing for new physics at the weak scale,              
most famously SUSY.

• by accepting tuning and explaining it anthropically in the context of a 
multiverse.
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The Hierarchy Problem

The Higgs mass parameter in the SM is sensitive to the UV. 

Can address this 

• dynamically by allowing for new physics at the weak scale,              
most famously SUSY.

• by accepting tuning and explaining it anthropically in the context of a 
multiverse.

A new hope?  

• generate the weak scale dynamically in a technically natural setup        
without the need for new physics at the weak scale.

• “Cosmological Relaxation of the Electroweak Scale”

Challenged by experiment

Theoretical challenges

[inspired by Abbott 1985][P. Graham, D. Kaplan, S. Rajendran 2015]



Lagrangian: 

•     is the QCD axion or a different axion-like field,  from now on “relaxion”.

• Here     is the Higgs doublet.

•      is the UV cutoff.

• The axionic shift symmetry is broken by the coupling          .

• Break the shift symmetry weakly for                .

• A technically natural model then also requires terms                    . 

Introducing EW Relaxation
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Mechanism: 

• Initially,      takes a large negative value & the Higgs has a positive mass squared.

Introducing EW Relaxation
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Mechanism: 

• The Higgs mass decreases as     rolls down its potential.

Introducing EW Relaxation
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Mechanism: 

• The Higgs mass vanishes at                     & becomes tachyonic for larger    .

Introducing EW Relaxation

[P. Graham, D. Kaplan, S. Rajendran 2015]
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Mechanism: 

• The Higgs will fall into the new minimum and EW symmetry is broken.
• In the case of QCD                    depends linearly on    .  

Introducing EW Relaxation

[P. Graham, D. Kaplan, S. Rajendran 2015]
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Mechanism: 

• As       grows linearly with    , a finite Higgs vev induces cos-barriers for     
which eventually stop its evolution.  

Introducing EW Relaxation

[P. Graham, D. Kaplan, S. Rajendran 2015]
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Mechanism: 

• The mechanism is active during inflation:
Need to ensure that inflation lasts long enough for     to scan its field range.
Need to ensure further consistency conditions: 

Slow-roll condition for    . 
Energy density in     and      subheading compared to inflaton.
Classical rolling dominates over quantum jumps. 

Strong CP problem: 

• When     is the QCD axion this minimal model does not solve the strong    
CP problem. 

Introducing EW Relaxation

[P. Graham, D. Kaplan, S. Rajendran 2015]
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Stopping condition: 

• Rolling of     stops when the negative slope of the polynomial potential is 
matched by the positive slope of a cos-bump.

• Ideally, we stop shortly after the Higgs mass turns tachyonic, i.e.               .

• Evolution stops when                            .  Achieve small             for small    .

Introducing EW Relaxation
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Stopping condition: 

• Rolling of     stops when the negative slope of the polynomial potential is 
matched by the positive slope of a cos-bump.

• Ideally, we stop shortly after the Higgs mass turns tachyonic, i.e.               .

• Evolution stops when                            .  Achieve small             for small    .

Many more models employing this basic idea have now been proposed:

Introducing EW Relaxation

[P. Graham, D. Kaplan, S. Rajendran 2015]
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Outline

1. How robust is this mechanism? 

• Does this mechanism always work as described above?

• How does the Higgs vev depend on the model parameters?

• What are the allowed parameter ranges to obtain                     ? 

• When does this mechanism fail? Are there instabilities?                                                       

v ⌘ hhi ⌧ M



Outline

2. Progress towards solving the hierarchy problem? 

• EW Relaxation: technically natural model allowing for                     .
No fine-tuning of bare     parameters against radiative corrections at 
UV scale is needed for                     .

• Still, the model requires at least one parameter,    , to be chosen small.

• Q: how severely does one need to tune the model parameters? 

• Whether such a tuning is OK / disastrous can only be decided in an
embedding into a UV complete theory.

• In the absence of such an embedding, let us compare the necessary
level of tuning to the tuning required in the SM,           . v2/M2
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The model: 

• Let     be the Higgs vev already.

• Replace                  to make linear dependence on the Higgs vev explicit 

Introducing EW Relaxation
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The model: 

• Let     be the Higgs vev already.

• Replace                  to make linear dependence on the Higgs vev explicit 

• It will be useful to rewrite using the field                      .

EW symmetry is unbroken for             and broken for           . 
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The single-field approximation: 

   dynamics typically faster than     evolution. Write as effective one-field model.      

•           :       Higgs vev             . 

•           :        Higgs vev                      .            

Dynamics Of EW Relaxation
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This occurs for sufficiently small   :     

 

A comparison of slopes gives the result for       :      

The Higgs vev is small to the extent that     is small.

Dynamics Of EW Relaxation: Regime (1)
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This occurs for sufficiently small   :     

 

A comparison of slopes gives the result for       :      

The Higgs vev is small to the extent that     is small.

Does the single-field approximation captures the dynamics correctly?                                   

Dynamics Of EW Relaxation: Regime (1)
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Go back to the full two-field model:     

 

The cos-term constitutes a source term for    .
It can destabilise the Higgs well before the Higgs mass becomes tachyonic.       

Dynamics Of EW Relaxation: Regime (1)
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Go back to the full two-field model:     

 

The cos-term constitutes a source term for    .
It can destabilise the Higgs well before the Higgs mass becomes tachyonic.  

Dynamics Of EW Relaxation: Regime (1)
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Dynamics Of EW Relaxation: Regime (1)
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• The Higgs is trapped in a non-standard
vacuum, where EW symmetry is broken
by a Higgs source term. 

• Nevertheless,                               possible.                      
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• In regime (2) the axion does not get caught by the first cos-bump and as a 
result we have             .

A. Case (2A):   

B. Case (2B):                or                                         or instability reached

Dynamics Of EW Relaxation: Regime (2)
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• In regime (2) the axion does not get caught by the first cos-bump and as a 
result we have             .

A. Case (2A):   

B. Case (2B):                or                                         or instability reached
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• In regime (2) the axion does not get caught by the first cos-bump and as a 
result we have             .

A. Case (2A):   

B. Case (2B):                or                                         or instability reached

• The condition                            can be rewritten as a lower bound on    .

Then    is bounded on both sides.  Taking                 we have

Dynamics Of EW Relaxation: Regime (2)
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Tuning

• The relaxation model requires a small parameter          to ensure             . 

               The SM with a cutoff       is tuned to a degree            .

• How severe is the tuning in the relaxion model?
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Tuning

• The relaxation model requires a small parameter          to ensure             . 

               The SM with a cutoff       is tuned to a degree            .

• How severe is the tuning in the relaxion model?

Have                           .  

But the lower bound on     gives                  .
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Tuning

• The relaxation model requires a small parameter          to ensure             . 

               The SM with a cutoff       is tuned to a degree            .

• How severe is the tuning in the relaxion model?

Have                           .  

But the lower bound on     gives                  .
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Can be as severely tuned as the SM! 



Tuning

• How does the tuning evolve when increasing the cutoff?                   

SM:   

Relaxion: 

• The tuning becomes worse more quickly in the relaxion model. 
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Tuning

• How does the tuning evolve when increasing the cutoff?                   

SM:   

Relaxion: 

• The tuning becomes worse more quickly in the relaxion model. 

• Main advantage:  the hierarchy between      and the cutoff is controlled
by the smallness of just one parameter,                .

• This could facilitate an embedding into a UV complete theory, e.g. string 
theory.
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Conclusions

Mechanism of Cosmological Relaxation:  
• makes the weak scale technically natural without new weak scale physics.

Dynamics of the original model:  
• Indeed,                       is possible for sufficiently small    .
• However,     cannot be too small to prevent     from being trapped in a non-

standard vacuum with EW symmetry broken by a source term.
• Instabilities are possible.

Progress towards solving the hierarchy problem?  
• Smallness of    controlled by a single parameter   .  Model reminiscent of axion 

monodromy inflation.  Possible embedding into string theory? 
• Tuning of the small parameter    can be as severe as the equivalent level of 

tuning in the SM.
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