Scale invariant SUSY searches with simplified topologies

Matthias Schlaffer DESY

with M. Spannowsky and A. Weiler

DESY Theory Workshop 2015

Why scale invariance?

- > Many possible event topologies
- > Use simplified topologies
- > Natural SUSY with light $\tilde{t}_{1,2},\,\tilde{b}_1$, and degenerate \tilde{h}
- > Signal topologies:

> Event shape depends on masses

 \Rightarrow Scale invariant reconstruction

Why scale invariance?

- > Many possible event topologies
- > Use simplified topologies
- > Natural SUSY with light $\tilde{t}_{1,2}, \, \tilde{b}_1$, and degenerate \tilde{h}
- > Signal topologies:

> Event shape depends on masses

 \Rightarrow Scale invariant reconstruction

Coverage of the parameter space

Coverage of the parameter space

Coverage of the parameter space

Most of parameter space is covered by the considered final states

Top reconstruction

Event shape depends on $m_{\widetilde{Q}} - m_{\widetilde{h}} - m_t \equiv \Delta m > 0$:

large Δm very boosted top HEPTop Tagger [Plehn *et.al* 09, 10]

medium Δm boosted top BDRS Tagger [Butterworth *et.al* 08]

Combine taggers to reconstruct all kinds of top quarks

Detailed HEPTop reconstruction

similarly for BDRS reconstruction

Matthias Schlaffer

Scale invariant cuts

Candidates = t- and b-tagged jets

- > hadronic decay mode \Rightarrow 0 leptons
- > 2 candidates
- > no other hadronic activity:
 - < 4 jets
 - $p_T(j_1) < 100 \text{ GeV}$
- > Balanced event:

-
$$\Delta \phi(\boldsymbol{p}_{T_{c1}}, \boldsymbol{E}_T) < 0.9\pi$$

S/B between 0.4 and 2×10^{-3}

Scale invariant cuts

Candidates = t- and b-tagged jets

- > hadronic decay mode \Rightarrow 0 leptons
- > 2 candidates
- > no other hadronic activity:
 - < 4 jets
 - $p_T(j_1) < 100 \text{ GeV}$
- > Balanced event:

$$-\Delta \phi(p_{T_{c1}}, E_T) < 0.9\pi$$

S/B between 0.4 and 2×10^{-3}

Scale invariant cuts

Candidates = t- and b-tagged jets

- > hadronic decay mode \Rightarrow 0 leptons
- > 2 candidates
- > no other hadronic activity:
 - < 4 jets
 - $p_T(j_1) < 100 \text{ GeV}$
- > Balanced event:

$$\begin{array}{l} - \ \Delta \phi(\pmb{p}_{T_{c1}} + \pmb{p}_{T_{c2}}, \not\!\!p_T) > 0.9\pi \\ - \ \frac{|\pmb{p}_{T_{c1}} + \pmb{p}_{T_{c2}} + \not\!\!p_T|}{\not\!\!E_T} < 0.25 \end{array}$$

$$- \Delta \phi(\boldsymbol{p}_{T_{c1}}, \boldsymbol{E}_T) < 0.9\pi$$

S/B between 0.4 and 2×10^{-3}

m_{T2} distribution @ 13 TeV

m_{T2} gives lower bound to the \tilde{t} , \tilde{b} mass

 $\Rightarrow CL_s$ method for limits

Results: CL_s in parameter plane ($\sqrt{s} = 13 \text{ TeV}$)

systematic error: 15%, MC error: 10^{-3} fb

Results: CL_s in parameter plane ($\sqrt{s} = 13 \text{ TeV}$)

systematic error: 15%, MC error: 10^{-3} fb

Results: CL_s in parameter plane ($\sqrt{s} = 13 \text{ TeV}$)

systematic error: 15%, MC error: 10^{-3} fb

Conclusions

> Status so far

- Stop and sbottom decaying to bottom or hadronic top quark + E_T
- Combination of HEPTop & BDRS tagger
- Scale invariant cuts
- For $m_{\widetilde{\chi}} \approx 300~{\rm GeV}$ exclude up to

 $m_{\tilde{t}_1} \lesssim 1.2 \text{ TeV } @ 95\% \ CL \text{ with } 100 \ \mathrm{fb}^{-1}$

Thank You

Conclusions

> Status so far

- Stop and sbottom decaying to bottom or hadronic top quark + E_T
- Combination of HEPTop & BDRS tagger
- Scale invariant cuts
- For $m_{\widetilde{\chi}} \approx 300~{\rm GeV}$ exclude up to

 $m_{\tilde{t}_1} \lesssim 1.2 \text{ TeV } @~95\% \ CL$ with 100 fb⁻¹

> Outlook

- Another slice with $m_{\widetilde{\chi}} \approx 150 \text{ GeV}$ is currently generated
- The paper will appear soon!

Thank You