

Using CHECKMATE and FRITZ to set automatised LHC constraints

N. Desai, M. Drees, H. K. Dreiner, J. S. Kim, K. Rolbiecki, <u>D. Schmeier</u>, J.Tattersall

DESY Theory Workshop October 1, 2015

Outline Image: Chick of the Present Image: Chick of the Present CHICK MATE Chick of the Present Image: Chick of the Present

What do we want?

does Jamie want?

Write the Lagrangian down

Press "Enter"

Computer fits the model parameters to all relevant observables

・ロト ・四ト ・ヨト ・ヨト ・日・ シックの

・ロト ・母 ト ・ヨ ト ・ヨ ト ・ の へ の ト

🗳 In Theory: How does it work?

Name: NMSSM_600_200 Analyses: atlas

[gluinopair] XSect: 0.239E-01 PB XSectErr: 0.00575 PB Events: /scratch/11428609[184].pbs.baf.lan/herwig/gluinopair.hepmc

[stop1pair] XSect: 0.794E-02 PB XSectErr: 0.00149 PB Events: /scratch/11428609[184].pbs.baf.lan/herwig/stop1pair.hepmc

[sbottom1pair] XSect: 0.620E-02 PB XSectErr: 0.00119 PB Events: /scratch/11428609[184].pbs.baf.lan/herwig/sbottom1pair.hepmc

Required Input Information

- Which analyses?
- Which [process] was simulated for which Events (.hep or .hepmc) and what is $\sigma \pm \Delta \sigma$?

1

~: ./CheckMATE NMSSM_setupfile.txt

🗳 Example Output: Nat. NMSSM

~: ./CheckMATE NMSSM_setupfile.txt

[... roughly 2 minutes per 5k events later ...]

Test: Calculation of r = signal/(95%CL limit on signal) Result: Excluded Result for r: r_max = 3.45937 SR: atlas_conf_2013_061 - SR1L6JB

Hidden (but available) information

events processed by detector simulation

■ individual results for all analyses, signal regions and input files Daniel Schmeier — CHECKMATE 2.0 feat. FRITZ

🗳 Example Result: Nat. NMSSM

Check arXiV in the next few days to rea about the physics behind this plot!

Other features

- online installation and usage tutorial (<- Especially designed for collider-pheno rookies)
- 20 (35) analyses with > 200 (300) signal regions in public (beta) version
- AnalysisManager allows users to write their own analyses (e.g. for 13/14/100 TeV studies)
- well tuned detector simulation for ATLAS with detailed efficiency curves for reconstruction and identification efficiencies
- model-independent applicability

Studies citing and using CheckMATE

- (studies of various SUSY manifestations)
- "LHC τ -Rich Tests of Lepton-specific 2HDM for $(g 2)_{\mu}$ "

Chun, Kang, Takeuchi, Tsai

"Distinctive Heavy Higgs Decays"

Holdom, Ratzlaff

■ "Probing Radiative *v* Mass Generation through Monotop Production"

Ng, de la Puente

"LHC Phenomenology of SO(10) Models with Yukawa Unification"

Anandakrishnan, Bryant, Raby

"Hidden Photons with Kaluza-Klein Towers"

Jaeckel, Roy, Wallace

Be creative!

響 The Present 響

// // // // /// //// // // // // /// //// // // // /// /// //// /// /// /// /// /// /// /// /// /// /// /// /// /// /// /// /// /// ////

🖄 2 Issues we wanted to solve

We want to start early in the chain

What do we want? does Jamie want?

Write the Lagrangian down

Press "Enter"

 $Goal \leftarrow \rightarrow Reality$

Computer fits the model parameters to all relevant observables

(0) (#) (2) (3) 2 (0)0

Name: NMSSM_600_200 Analyses: atlas

[gluinopair] XSect: 0.239E-01 PB XSectErr: 0.00575 PB Events: /scratch/gluinopair.hepmc

What do we want? does Jamie want?

Write the Lagrangian down

Press "Enter"

Computer fits the model parameters to all relevant observables

(0) (#) (2) (3) (3) (3)

So far the user has to provide the event files Name: NMSSM_600_200 Analyses: atlas

[gluinopair] XSect: 0.239E-01 PB XSectErr: 0.00575 PB Events: /scratch/gluinopair.hepmc

What do we want? does Jamie want?

Write the Lagrangian down

Press "Enter"

Computer fits the model parameters to all relevant observables So far the user has to provide the event files

Event generation could be included

Name: NMSSM_600_200 Analyses: atlas

[gluinopair] XSect: 0.239E-01 PB XSectErr: 0.00575 PB Events: /scratch/gluinopair.hepmc

What do we want? does Jamie want?

Write the Lagrangian down

Press "Enter"

Computer fits the model parameters to all relevant observables So far the user has to provide the event files

Event generation could be included

Name: NMSSM_600_200 Analyses: atlas

[gluinopair] XSect: 0.239E-01 PB XSectErr: 0.00575 PB Events: /scratch/gluinopair.hepmc

We want to be fast

What do we want? does Jamie want?

Write the Lagrangian down

Press "Enter"

Computer fits the model parameters to all relevant observables So far the user has to provide the event files

Event generation could be included

Name: NMSSM_600_200 Analyses: atlas

[gluinopair] XSect: 0.239E-01 PB XSectErr: 0.00575 PB Events: /scratch/gluinopair.hepmc

We want to be fast

What do we want? does Jamie want?

Write the Lagrangian down

Press "Enter"

Computer fits the model parameters to all relevant observables So far the user has to provide the event files

Event generation could be included

Name: NMSSM_600_200 Analyses: atlas

[gluinopair] XSect: 0.239E-01 PB XSectErr: 0.00575 PB Events: /scratch/gluinopair.hepmc

We want to be fast

Simulations are slow

Try to speed up whatever possible [... roughly 2 minutes per
5k events later ...]

What down matt? Bee pain wat? Write the Lagrangian down Press "Enter" Computer fits the model parameters to all relevant observables	So far the user has to provide the event files Event generation could be included	Name: NMSSM_600_200 Analyses: atlas [gluinopair] XSect: 0.239E-01 PB XSectErr: 0.00575 PB Events: /scratch/gluinopair.hepmc
FRITZ = Flexible	Rapid Interactive	Tool Zipper 🖄
We want to be fast		
Current approaches		
Simplified Models	Simulations are slow	
paad		[roughly 2 minutes per
• Simulation	Try to speed up whatever possible	5k events later]

會 Old...

曾 ...New

Daniel Schmeier — CHECKMATE 2.0 feat. FRITZ

New example inputs

Example 1: Use Pythia on SLHA

Name: MSSM_GluinoPair Analyses: atlas & 8TeV SLHAFile: testspectrum.slha

[gluinopair] Pythia8Process: p p > go go~ KFactor: 1.5 # Optional! XSectErr: 10 % # Optional!

🖄 New example inputs

Example 1: Use Pythia on SLHA

Name: MSSM_GluinoPair Analyses: atlas & 8TeV SLHAFile: testspectrum.slha

[gluinopair] Pythia8Process: p p > go go~ KFactor: 1.5 # Optional! XSectErr: 10 % # Optional!

Example 2: Use Pythia on .lhes

Name: MSSM_GluinoPair Analyses: atlas & 8TeV Merging: ckkwl Scale: 30 MaxJets: 2

[Zjets] Events: test_events/zRes_0jet_1k.lhe, test_events/zRes_1jet_1k.lhe, test_events/zRes_2jet_1k.lhe

🖄 New example inputs

Example 1: Use Pythia on SLHA

Name: MSSM_GluinoPair Analyses: atlas & 8TeV SLHAFile: testspectrum.slha

[gluinopair] Pythia8Process: p p > go go~ KFactor: 1.5 # Optional! XSectErr: 10 % # Optional!

Example 2: Use Pythia on .lhes

Name: MSSM_GluinoPair Analyses: atlas & 8TeV Merging: ckkwl Scale: 30 MaxJets: 2

[Zjets] Events: test_events/zRes_0jet_1k.lhe, test_events/zRes_1jet_1k.lhe, test_events/zRes_2jet_1k.lhe

CHECKMATE still stays simple to use:

Just type ./CheckMATE inputfile.txt, *Hit Enter*, and CHECKMATE will tell you the answer.

Future developments

Release Plans

- What I have shown is all already implemented and well tested
- Proper user manual has to be written
- Soon, a beta version will go public
- CHECKMATE 2.0 should be released within this year!

🖄 Future developments

Release Plans

- What I have shown is all already implemented and well tested
- Proper user manual has to be written
- Soon, a beta version will go public
- CHECKMATE 2.0 should be released within this year!

Development Plans

- Link to MadGraph to be able to simulate any model given its UFO file
- Assist user in deciding which processes to generate
- Build in methods to perform parameter scans conveniently
- Maybe find some smart algorithms to speed up these scans (see e.g. Jamie's talk)

Conclusions

- CHECKMATE is easy to use to test any model against various LHC results
- CHECKMATE + FRITZ will take workload from the user by at the same time giving him flexibility
- CHECKMATE 2.0 will be faster than ever

http://checkmate.hepforge.org/