Precise Predictions for Higgs Masses in the Next-to-Minimal Supersymmetric Standard Model (NMSSM) with NMSSM-FeynHiggs

Peter Drechsel

in collaboration with L. Galeta, T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak und G. Weiglein

Deutsches Elektronen-Synchrotron (DESY)

October 1, 2015

Introduction: NMSSM

 NMSSM features an additional singlet and singlino compared to the MSSM

 \Rightarrow 3 CP-even, 2 CP-odd Higgs fields, 5 neutralino fields

- ▶ dynamic solution of the μ -problem by singlet vacuum expectation-value v_s : $\mu_{\rm eff} \propto v_s$
- increased upper bound for tree-level mass of lightest Higgs field compared to MSSM

$$m_{h_1}^2 \lesssim M_Z^2 \left(\cos^2 2\beta + \frac{\lambda^2}{g^2}\sin^2 2\beta\right), \quad g^2 = \frac{e^2}{2s_W c_W}$$

Introduction: Higgs Masses in the NMSSM

- Several codes are available so far. ⁽¹⁾
 - SPheno, FlexibleSUSY, NMSSMTools, SoftSUSY, NMSSMCalc
- ▶ This means several (different) results are available so far! 🙂
- Q: What can NMSSM-FeynHiggs add as an additional code?

Table of Contents

Motivation

NMSSM-FeynHiggs

Approximation: Details Sample Scenario

Comparing Codes

Approximation: Validation Estimating theoretical Uncertainties

Conclusions

Motivation

- Q: What can NMSSM-FeynHiggs add as an additional code?
- A1: Prediction for Higgs masses in NMSSM with a similar precision as in the MSSM in a (slightly) different calculation.
- A2: Prediction for Higgs masses in NMSSM in a framework that is consistent with and (in a future step) contains the same functionality as FeynHiggs.

NMSSM-FeynHiggs: Higgs Mass Calculation

 masses obtained with diagrammatic methods from complex pole of full propagator

$$\Delta^{-1}\!\left(k^2
ight)=\mathsf{i}\left[k^2\mathbbm{1}-\mathcal{M}_{\phi\phi}+\hat{\Sigma}_{\phi\phi}\!\left(k^2
ight)
ight]$$

 \blacktriangleright renormalised self-energies $\hat{\Sigma}_{\phi\phi}$ approximated by

$$\hat{\Sigma}_{\phi\phi}ig(k^2ig) pprox \hat{\Sigma}_{\phi\phi}^{(1\mathsf{L})}ig(k^2ig)ig|^{\mathsf{NMSSM}} + \hat{\Sigma}_{\phi\phi}^{(2\mathsf{L})}ig(k^2ig)ig|_{k^2=0}^{\mathsf{MSSM}}$$

 \Rightarrow includes complete 1-loop NMSSM contributions

$$\Rightarrow \text{ includes 2-loop MSSM contributions} \\ \mathcal{O}\left(\alpha_{s}\alpha_{t}, \alpha_{s}\alpha_{b}, \alpha_{t}^{2}, \alpha_{t}\alpha_{b}\right)$$

⇒ includes LL- and NLL-resummation

NMSSM: Leading Contributions

Higgs-(s)top and Higgs-Higgs coupling constants

	fields	ϕ_i - ϕ_j -t	$\phi_i - \phi_j - \tilde{t}(-\tilde{t})$	$\phi_i - \phi_j - \phi_k(-\phi_I)$
MSSM	ϕ_1 , ϕ_2	Y _t	Y _t	g1, g2
NMSSM	ϕ_1 , ϕ_2 , ϕ_s	Y _t , (0)	Y_t, λ	$g_1, g_2, \lambda, \kappa$

Yukawa-coupling of the top-quark:

$$Y_t = rac{m_t}{v_2} pprox 1 \ \Rightarrow \ lpha_t = rac{Y_t^2}{4\pi}$$

"Yukawa-couplings" of the Higgs-sector

$$\lambda^2 + \kappa^2 \lesssim 0.5 \Rightarrow \lambda, \kappa < 0.7$$

 \implies for perturbative predictions up to high scales: $Y_t > \lambda$

NMSSM: Leading Contributions @ 1-Loop

► reminder: inverse propagator $\Delta^{-1}(k^2) = i \left[k^2 \mathbb{1} - \mathcal{M}_{\phi\phi} + \hat{\Sigma}_{\phi\phi}(k^2) \right]$

⇒ MSSM-like contributions of $\mathcal{O}(Y_t^2)$ form 2 × 2 sub matrix of 3 × 3 self-energy matrix

NMSSM: Leading Contributions @ 2-Loop

► reminder: inverse propagator
$$\Delta^{-1}(k^2) = i \left[k^2 \mathbb{1} - \mathcal{M}_{\phi\phi} + \hat{\Sigma}_{\phi\phi}(k^2) \right]$$

► leading 2-loop self-energies are of
"
$$\mathcal{O}(\alpha_t \alpha_s)$$
" $\triangleq \mathcal{O}(Y_t^2 \alpha_s, \lambda Y_t \alpha_s, \lambda^2 \alpha_s)$

$$\hat{\Sigma}_{\phi\phi}^{(2\mathsf{L})}\left(k^{2}\right) \approx \begin{pmatrix} \mathcal{O}(\mathsf{Y}_{t}^{2}\alpha_{s}) & \mathcal{O}(\mathsf{Y}_{t}^{2}\alpha_{s}) & 0\\ \mathcal{O}(\mathsf{Y}_{t}^{2}\alpha_{s}) & \mathcal{O}(\mathsf{Y}_{t}^{2}\alpha_{s}) & 0\\ \hline 0 & 0 & 0 \end{pmatrix}$$

⇒ MSSM-like contributions of $\mathcal{O}(Y_t^2 \alpha_s)$ form 2 × 2 sub matrix of 3 × 3 self-energy matrix

Sample Scenario

 genuine NMSSM-scenario with a second lightest CP-even state that can be interpreted as the Higgs-boson signal at 125 GeV and a lighter singlet-like state

$$M_{H^{\pm}} = 1000 \text{ GeV}, \mu_{\text{eff}} = 125 \text{ GeV},$$

 $A_{\kappa} = -300 \text{ GeV}, A_t = -2000 \text{ GeV},$
 $\tan \beta = 8, \kappa = 0.2$

$$\begin{split} m_{\tilde{t}_1} &\approx 1400 \ {\rm GeV}, \ m_{\tilde{t}_2} &\approx 1600 \ {\rm GeV} \\ m_{\tilde{b}_i} &\approx 1500 \ {\rm GeV}, \ m_{\tilde{g}} &\approx 1500 \ {\rm GeV} \end{split}$$

Lighter Masses @ 2-Loop Order

mass decreasing with increasing \u03c6 belongs to singlet-like, constant mass to doublet-like state Intermediate Summary: NMSSM-FeynHiggs

Discussed so far:

The approximation of 2-loop NMSSM contributions by 2-loop MSSM contributions presented itself to be well motivated.

Discussed next: Comparison with other OS code (NMSSMCalc) ...

- ... as one (additional) validation of approximation.
- ... for estimating theoretical uncertainties (work in progress).

NB: Comparison of codes is a common effort between development teams!

Comparing Codes: Validation II

- Shown results are obtained with modified NMSSMCalc version that takes OS stop-parameters as input.
- NMSSMCalc and NMSSM-FeynHiggs use different renormalisation of the electroweak coupling constant.

	NMSSMCalc		NMSSM-FeynHiggs
1-loop	$\alpha_{\sf em}(M_Z)$ renormalised	\leftrightarrow	$lpha_{\sf em}({\it M_Z})$ reparametrised
2-loop	NMSSM $\mathcal{O}(\alpha_{s}\alpha_{t})$	\leftrightarrow	MSSM $\mathcal{O}(\alpha_s \alpha_t)$
			$+ \mathcal{O}(\alpha_{s}\alpha_{b}, \alpha_{t}^{2}, \alpha_{t}\alpha_{b})$
			+ LL- and NLL-resummation

⇒ Genuine NMSSM-Corrections at $\mathcal{O}(\alpha_s \alpha_t)$ account for a difference below 100 MeV.

Comparing Codes: Estimating theoretical Uncertainties

What has been done so far

▶ comparison of public DR codes [Staub et. al. '15]

 \Rightarrow SPheno, FlexibleSUSY, NMSSMTools, SoftSUSY, NMSSMCalc

 \Rightarrow thorough explanation of differences between codes

What needs to be done

- comparison of on-shell codes (NMSSMCalc, NMSSM-FeynHiggs)
 work in progress, see this talk
- comparison of DR and on-shell codes
- estimation of theoretical uncertainty

Comparing Codes: Preliminary Results

 Scenario with SM-like Higgs around 125 GeV and slightly lighter singlet-like state (TP5 in [Staub et. al. '15]).

M _{SUSY}	$\tan\beta$	λ	$\mu_{\rm eff}$	M_1	M_2	<i>M</i> ₃	A_t	$m_{\tilde{Q}_3}$
1500	3	0.67	200	135	200	1400	0	1500

▶ parameters run to and calculation performed at scale m^(OS)_t, NMSSM-FeynHiggs uses default value α^{GF}_{em}

code	scheme	"singlet"	SM-Higgs
NMSSM-FH (2L)	$OS-t/\tilde{t}$	$119.2 {\rm GeV}$	$121.6~{\rm GeV}$
NMSSMCalc (2L)	$OS-t/\widetilde{t}$	$118.8{\rm GeV}$	$122.3 \mathrm{GeV}$
NMSSMCalc (2L)	\overline{DR} - t/\tilde{t}	$118.6~{\rm GeV}$	125.3 GeV

⇒ First results indicate at numerical difference of 3 GeV of SM-Higgs mass for OS and $\overline{\text{DR}}$ -renormalised stops.

Conclusions

| NMSSM-FeynHiggs

- work in progress, release soon
- consistent with FeynHiggs, offers a good approximation for 2-loop contributions
- will contribute to the estimation of theoretical uncertainties in the NMSSM
- II Status of estimating theoretical uncertainties for Higgs mass predictions in the NMSSM
 - A common effort involving all (soon to be) available spectrum generators is on the way!

Backup

Motivation

overview over different codes and their 2-loop contributions

type	code	2-loop contributions
DR	SPheno	complete w/o EW couplings
\overline{DR}/OS	NMSSMCalc	NMSSM $\mathcal{O}(\alpha_t \alpha_s)$
OS	NMSSM-FH	MSSM $\mathcal{O}(\alpha_{s}\alpha_{t}, \alpha_{s}\alpha_{b}, \alpha_{t}^{2}, \alpha_{t}\alpha_{b})$, incl. LL- and NLL-resummation

- Q: Why is using the MSSM corrections a valid option?
- A: They are numerically leading for the fermion/sfermion contributions!

NMSSM: Leading Contributions

- ▶ In MSSM corrections of order $O(\alpha_t...)$ are dominant at 1and 2-loop orders, $\alpha_t = Y_t^2/4\pi$
- In the NMSSM singlet-sfermion couplings are governed by λ instead of Y_t, e.g.

$$\phi_{2} - - \swarrow_{\tilde{t}_{i}}^{\tilde{t}_{j}} \approx i\sqrt{2} \Upsilon_{t} (m_{t} - A_{t} \sin 2\theta_{\tilde{t}}) = \mathcal{O}(\Upsilon_{t})$$

$$\phi_{s} - - \swarrow_{\tilde{t}_{i}}^{\tilde{t}_{j}} \approx i\sqrt{2}\lambda m_{t} \sin 2\theta_{\tilde{t}} = \mathcal{O}(\lambda).$$

 \implies Speaking of order $\mathcal{O}(\alpha_t \dots)$ is misleading in the NMSSM!

Comparison of $\mathcal{O}(Y_t^2)$ with $\mathcal{O}(\lambda Y_t, \lambda^2)$

- Q: Is neglecting the genuine NMSSM-contributions (3rd column and row in self energy) a good approximation for all masses?
- A: Compare MSSM-like and genuine NMSSM corrections at 1loop order and apply to 2-loop order results.

Comparison of $\mathcal{O}(Y_t^2)$ with $\mathcal{O}(\lambda Y_t, \lambda^2)$

Q: Is there a relation between MSSM-like diagrams and genuine NMSSM-diagrams?

e.g.
$$\phi_s \xrightarrow{\tilde{t}_a} \phi_{1,2} \stackrel{?}{\propto} \phi_1 \xrightarrow{\tilde{t}_a} \phi_{1,2}$$

 $\tilde{t}_b \xrightarrow{\tilde{t}_b} \tilde{t}_b$

A: Yes, since diagrams only differ in values for the Higgs-stop-stop vertices.

e.g.
$$i\Gamma_{\phi_i \tilde{t}_a \tilde{t}_b} = \phi_i - \dot{\langle} \tilde{t}_a$$

⇒ genuine NMSSM diagrams can be quantified by ratio between the diagrams Comparison of $\mathcal{O}(Y_t^2)$ with $\mathcal{O}(\lambda Y_t, \lambda^2)$

 diagrams with trilinear couplings can be compared by ratio of the couplings

$$\frac{\Gamma_{\phi_s \tilde{t}_a \tilde{t}_b}}{\Gamma_{\phi_1 \tilde{t}_a \tilde{t}_b}} = \lambda \frac{\nu}{\mu_{\text{eff}}} \cos \beta$$

$$\frac{\Gamma_{\phi_s \tilde{t}_a \tilde{t}_b}}{\Gamma_{\phi_2 \tilde{t}_a \tilde{t}_b}} = \begin{cases} \lambda \frac{\nu}{A_t} \cos \beta & \text{if } a \neq b \\ \lambda \frac{\nu \sin 2\theta_{\tilde{t}}}{2m_t \pm A_t \sin 2\theta_{\tilde{t}}} \cos \beta & \text{if } a = b \end{cases}$$

 diagrams with quartic couplings can be compared by ratio of the couplings

$$\frac{\mathsf{\Gamma}_{\phi_{s}\phi_{1}\tilde{t}_{a}\tilde{t}_{b}}}{\mathsf{\Gamma}_{\phi_{2}\phi_{2}\tilde{t}_{a}\tilde{t}_{b}}} = \frac{\lambda}{Y_{t}} \left| \frac{1}{2} \sin 2\theta_{\tilde{t}} \right|$$

Lighter Masses @ 2-Loop Order

mass decreasing with increasing \u03c6 belongs to singlet-like, constant mass to doublet-like state

Suppression Factors

 diagrams with trilinear couplings can be compared by ratio of the couplings

$$\begin{split} & \frac{\Gamma_{\phi_s \tilde{t}_a \tilde{t}_b}}{\Gamma_{\phi_1 \tilde{t}_a \tilde{t}_b}} \lesssim 5.5\% \\ & \frac{\Gamma_{\phi_s \tilde{t}_a \tilde{t}_b}}{\Gamma_{\phi_2 \tilde{t}_a \tilde{t}_b}} \lesssim \begin{cases} 4\%_0 & \text{if } a \neq b \\ \\ 3\%_0 & \text{if } a = b \end{cases} \end{split}$$

 diagrams with quartic couplings can be compared by ratio of the couplings

$$\frac{\Gamma_{\phi_s\phi_1\tilde{t}_a\tilde{t}_b}}{\Gamma_{\phi_2\phi_2\tilde{t}_a\tilde{t}_b}} \lesssim 16.5\%$$

Lightest Mass @ 1-Loop Order

23/14

Lightest Mass @ 1-Loop Order

Absolute difference between different mass predictions

 \implies influence of corrections beyond top/scalar top-sector is by far larger than those of the order $\mathcal{O}(Y_t\lambda,\lambda^2)$

Lightest Mass @ 1-Loop Order

Absolute difference between different mass predictions

 \implies influence of corrections beyond top/scalar top-sector is by far larger than those of the order $\mathcal{O}(Y_t\lambda,\lambda^2)$

Comparing Codes: Estimating theoretical Uncertainties

- Comparison takes place for several physical scenarios with different properties (e.g. MSSM-like, large stop-mass splitting, genuine NMSSM).
- Scenarios are defined generally for use in DR- and OS-calculations!

Scenarios defined at several scales by $\overline{\text{DR}}$ -parameters according to standards of the SUSY Les-Houches Accord (SLHA).

⇒ Some DR-parameters of the scenarios need to be converted into OS-parameters internally or externally to avoid higher-order effects! Comparing Codes: Preliminary Results

 Scenario with SM-like Higgs around 125 GeV and slightly lighter singlet-like state (TP5 in [Staub et. al. '15]).

M _{SUSY}	$\tan\beta$	λ	μ_{eff}	M_1	M_2	<i>M</i> ₃	A_t	$m_{\tilde{Q}_3}$
1500	3	0.67	200	135	200	1400	0	1500

▶ parameters run to and calculation performed at scale m^(OS)_t, NMSSM-FeynHiggs uses default value α^{G_F}_{em}

code	scheme	"singlet"	SM-Higgs
NMSSM-FH (2L)	$OS-t/\widetilde{t}$	$119.2 {\rm GeV}$	$121.6~{\rm GeV}$
NMSSMCalc $(2L)$	$OS-t/\tilde{t}$	$118.8~{\rm GeV}$	$122.3~{\rm GeV}$
NMSSMCalc (2L)	\overline{DR} - t/\tilde{t}	118.6 GeV	125.3 GeV
NMSSM-FH (1L)	$OS-t/\tilde{t}$	$120.4~{ m GeV}$	136.6 GeV
NMSSMCalc $(1L)$	$OS extsf{-}t/ ilde{t}$	$120.7~{\rm GeV}$	$137.7~{\rm GeV}$

NMSSM: Superpotential

$$\mathcal{W} = Y_t \widehat{Q} \widehat{H}_2 \widehat{t} - Y_b \widehat{Q} \widehat{H}_1 \widehat{b} - Y_\tau \widehat{L} \widehat{H}_1 \widehat{\tau} + \lambda \widehat{S} \widehat{H}_2 \widehat{H}_1 + \frac{\kappa}{3} \widehat{S}^3$$

$$H_{1} = \begin{pmatrix} v_{1} + \frac{1}{\sqrt{2}} (\phi_{1} - i\chi_{1}) \\ -\phi_{1}^{-} \end{pmatrix} \qquad H_{2} = \begin{pmatrix} \phi_{2}^{+} \\ v_{2} + \frac{1}{\sqrt{2}} (\phi_{2} + i\chi_{2}) \end{pmatrix}$$

$$S = v_s + \frac{1}{\sqrt{2}} \left(\phi_s + \mathrm{i} \chi_s \right)$$

 \Rightarrow conventions follow FeynHiggs for MSSM-like part

NMSSM: Superpotential

$$\mathcal{W} = Y_t \widehat{Q} \widehat{H}_2 \widehat{t} - Y_b \widehat{Q} \widehat{H}_1 \widehat{b} - Y_\tau \widehat{L} \widehat{H}_1 \widehat{\tau} + \lambda \widehat{S} \widehat{H}_2 \widehat{H}_1 + \frac{\kappa}{3} \widehat{S}^3$$

Yukawa-coupling of the top-quark:

$$Y_t = rac{m_t}{v_2} pprox 1 \ \Rightarrow \ lpha_t = rac{Y_t^2}{4\pi}$$

"Yukawa-couplings" of the Higgs sector

$$\lambda^2 + \kappa^2 \lesssim 0.5 \Rightarrow \lambda, \ \kappa < 0.7$$

 \implies for perturbative predictions up to high scales: $Y_t > \lambda$

Sample Scenario

$$\begin{split} M_{H^{\pm}} &= 1000 \,\, {\rm GeV}, \, \mu_{\rm eff} = 125 \,\, {\rm GeV}, \\ A_{\kappa} &= -300 \,\, {\rm GeV}, \,\, A_t = -2000 \,\, {\rm GeV}, \\ \tan\beta &= 8, \,\, \kappa = 0.2 \end{split}$$

$$\begin{split} m_{\tilde{t}_1} &\approx 1400 \,\, {\rm GeV}, \ m_{\tilde{t}_2} &\approx 1600 \,\, {\rm GeV} \\ m_{\tilde{b}_i} &\approx 1500 \,\, {\rm GeV}, \ m_{\tilde{g}} &\approx 1500 \,\, {\rm GeV} \\ M_{\chi_i^{\pm}} &\approx \{110, \ 330\} \,\, {\rm GeV} \\ M_{\chi_i^0} &\approx \{80, \ 140, \ 160, \ 190, \ 330\} \,\, {\rm GeV} \end{split}$$

2-Loop Results: Lightest State h_1

2-Loop Results: Lightest State h_2

Mass of lightest State h_1

► corrections at 2-loop order O(α_sα_t, α_sα_b, α²_t, α_tα_b) including resummed logarithms from the MSSM have sizeable impact on doublet fields while overall reliability for very light
P. Drechsel, DESY

Mass of next-to lightest State h_2

Corrections at 2-loop order O(α_sα_t, α_sα_b, α²_t, α_tα_b) including resummed logarithms from the MSSM have sizeable impact on doublet fields while overall reliability for very light
 P. Drechsel, DEsSinglet-mass decreases with λ

Backup: Comparison with NMSSMCalc I

Backup: Comparison with NMSSMCalc II

• difference 1-loop: δZ_e , difference 2-loop: $\mathcal{O}(Y_t\lambda,\lambda^2)$

Backup: Comparison with NMSSMCalc III

• difference 1-loop: δZ_e , difference 2-loop: $\mathcal{O}(Y_t\lambda,\lambda^2)$

P. Drechsel, DESY

Ī	M _{SUSY}		$\tan\beta$	λ	κ	A_{λ}	A_{κ}	$\mu_{\rm eff}$	<i>M</i> ₁	<i>M</i> ₂	<i>M</i> ₃	A _t	A _b	$m_{\tilde{Q}_3}$	$m_{\tilde{t}_R}$
	1500		3	0.67	0.2	570	-25	200	135	200	1400	0	0	1500	1500

Backup: Reparametrisation I

 \blacktriangleright generic bare coupling g_0 expressed in renormalisation schemes I and II

$$g_0 = g^{\prime} \left(1 + \delta Z_g^{\prime} \right) = g^{\prime \prime} \left(1 + \delta Z_g^{\prime \prime} \right)$$

relation between the renormalised couplings g in both schemes

$$g' = g'' \left(1 + \delta Z_g' - \delta Z_g'' \right) \equiv g'' \left(1 + \Delta Z_g \right)$$

 \blacktriangleright result applied for α

$$\Delta Z_{\alpha} = \left(2\delta Z_{e}^{\prime} - 2\delta Z_{e}^{\prime\prime} \right) \; .$$

Backup: Reparametrisation II

$$\Delta Z_{\alpha} = \left(2\delta Z_{e}^{\prime} - 2\delta Z_{e}^{\prime\prime}\right)$$

charge renormalisation constant in our calculation (II)

$$\delta Z_{e}^{\prime\prime} = \frac{1}{2} \left(\frac{\delta s_{W}^{2}}{s_{W}^{2}} + \frac{\delta M_{W}^{2}}{M_{W}^{2}} - \frac{\delta v^{2}}{v^{2}} \right) = \frac{1}{2} \left(\frac{\delta s_{W}^{2}}{s_{W}^{2}} + \frac{\delta M_{W}^{2}}{M_{W}^{2}} \right)$$

• charge renormalisation constant for reparametrisation to $\alpha(M_Z)$

$$\delta Z'_{e} = \delta Z^{\text{Thomson}}_{e} - \frac{1}{2} \left(\Delta \alpha^{(5)}_{\text{had}} + \Delta \alpha_{\text{lep}} \right)$$

- charge renormalisation constant for reparametrisation to α_{G_F}

$$\delta Z_e^{\prime} = \delta Z_e^{\text{Thomson}} - \frac{1}{2} \Delta r$$

Renormalisation Scheme: Charge Renormalisation I

▶ DR-renormalisation of the vacuum expectation-value

$$v = rac{\sqrt{2}s_W M_W}{e}, \quad v o v + \delta v$$

implicit renormalisation of the electric charge

$$\begin{bmatrix} \frac{\delta v^2}{v^2} \end{bmatrix}^{\overline{\mathsf{DR}}} = \frac{\delta s_W^2}{s_W^2} + \frac{\delta M_W^2}{M_W^2} - 2\delta Z_e$$
$$\Rightarrow [\delta Z_e]^{\mathsf{fin.}} = \frac{1}{2} \begin{bmatrix} \frac{\delta s_W^2}{s_W^2} + \frac{\delta M_W^2}{M_W^2} \end{bmatrix}$$

• reparametrisation for electric charge necessary to use $\alpha(G_F)$

Renormalisation Scheme: Charge Renormalisation II

 renormalised self-energy at 1-loop order from fermions/sfermions

$$\hat{\Sigma}_{\phi_i\phi_s}\left(k^2\right) = \Sigma_{\phi_i\phi_s}\left(k^2\right) - \delta V_{\phi_i\phi_s}$$

 $\Rightarrow \Sigma_{\phi_i\phi_s}$ independent of κ

counterterm

$$\delta V_{\phi_i \phi_s} \supset -\kappa \lambda v_s v_j \left(\frac{\delta \lambda}{\lambda} + \frac{\delta \kappa}{\kappa} + \frac{\delta v}{v} + \mathcal{O}(\delta \tan \beta) \right) \stackrel{!}{=} 0$$

- \Rightarrow has to be finite, since $\Sigma_{\phi_i\phi_s}$ is independent of κ
- $\Rightarrow \kappa$ -dependent finite contribution if term in brackets gives rise to finite contributions

Backup: Constraints on Parameters

 constraint from demanding stable minimum of potential [Ellwanger, Hugonie, Teixeira, '09]

$$egin{aligned} & A_\kappa^2 \gtrsim 9 m_S^2 \ & -2\sqrt{2}\kappa v_S \lesssim A_\kappa \lesssim 0 \end{aligned}$$

 constraint from demand for no Landau-pole of Yukawa-couplings below the GUT-scale [Miller, Nevzorov, Zerwas '03]

$$egin{aligned} &\lambda^2+\kappa^2\lesssim 0.5\ &\lambda^2,\ \kappa^2\lesssim 0.7 \end{aligned}$$

Backup: Couplings

Higgs-sfermion-couplings

$$\Gamma_{\phi_i \tilde{f}_L \tilde{f}_R} \propto \lambda v_s Y_f = \mu_{\text{eff}} Y_f$$

$$\Gamma_{\phi_s \tilde{f}_L \tilde{f}_R} \propto \lambda v_i Y_f \propto m_f \lambda$$

Higgs-Higgs-couplings

$$\Gamma_{\phi_1\phi_2\phi_s\phi_s}\propto\lambda\kappa,\quad\Gamma_{\phi_1\phi_2\phi_1\phi_2}\propto\lambda^2$$

Backup: Codes & References

FEYNARTS 3.9 FORMCALC 7.4 LOOPTOOLS 2.12 FEYNHIGGS 2.10.3 NMSSMTOOLS 4.5.1 NMSSMCALC 1.03 HIGGSBOUNDS 4.2.0

[Ellwanger, Hugonie, Teixeira, '09] [Heinemeyer, Rzehak, Weiglein, et. al. '10] [Heinemeyer, Weiglein, Zeune, et. al. '12] [Miller, Nevzorov, Zerwas '03] hep-ph/0012260 hep-ph/9807565 hep-ph/9807565 feynhiggs.de hep-ph/0406215 arXiv:1312.4788 higgsbounds.hepforge.org

arXiv:0910.1785 arXiv:1007.0956 arXiv:1207.1096 hep-ph/0304049