Gauge fields as dark matter

Christian Gross (Helsinki University)

30.9.15, DESY theory workshop, Hamburg

(Based on JHEP 1508 (2015) 158 with O. Lebedev and Y. Mambrini)

The setup:

Standard Model:

SU(3) x SU(2) x U(1) gauge symmetry

Higgs doublet H breaks electroweak symmetry <u>'Higgs portal'</u> $|H|^2 |\phi_i|^2$

Dark sector:

Dark SU(N)_d [or U(1)_d] gauge symmetry

Minimal set of Dark Higgses φ_i necessary to break dark gauge symmetry

The massive dark gauge fields are stable and can serve as WIMP-type Dark Matter

U(1)_d vector dark matter

$$\mathcal{L}_{\mathsf{dark}} = -rac{1}{4} F_{\mu
u} F^{\mu
u} + |D_\mu \phi|^2 - V(\phi)$$

 ϕ : complex scalar $\phi = \frac{1}{\sqrt{2}}(\tilde{v} + \rho)$ in unitary gauge

 A_{μ} is stable due to Z_2 -symmetry: $\begin{cases} \phi \to \phi^* \\ A_{\mu} \to -A_{\mu} \end{cases}$

$$\phi o \phi^* \ A_\mu o -A_\mu$$

DM annihilation:

 h_1 , h_2 are the mass eigenstates of the dark Higgs p and SU(2)₁-Higgs h

SU(2)_d vector dark matter [cf. Hambye, 2008]

$$\mathcal{L}_{\mathsf{dark}} = -rac{1}{4} \sum_{a=1}^{3} F^{a}_{\mu
u} F^{a \mu
u} + |D_{\mu} \phi|^{2} - V(\phi)$$

 ϕ : **2** of $SU(2)_d$

 $\phi = rac{1}{\sqrt{2}} \, \left(egin{matrix} 0 \ ilde{v} +
ho \end{matrix}
ight)$ in unitary gauge

 $A_{\mu}^{a} \rightarrow -A_{\mu}^{a}$ is <u>not</u> a symmetry, due to triple gauge boson vertex!

Instead, there arises a $Z_2 \times Z_2'$ symmetry:

$$\mathsf{Z'}_2 ext{:} egin{cases} \phi o \phi^* \ A^1_\mu o -A^1_\mu \ A^3_\mu o -A^3_\mu \end{cases}$$

- $Z'_{2}: \begin{cases} \phi \to \phi \\ A_{\mu}^{1} \to -A_{\mu}^{1} \\ A_{\mu}^{3} \to -A_{\mu}^{3} \end{cases}$ Z'₂ reflects gauge fields corresponding to <u>real</u> generators T^a
 Reason for invariance of $(F_{\mu\nu})^{2}$: T^a \to $(T^{a})^{*}$ is an automorphism of SU(N)

$$\mathsf{Z_2:} \ \begin{cases} \mathsf{A}_{\mu}^1 \to -\mathsf{A}_{\mu}^1 \\ \mathsf{A}_{\mu}^2 \to -\mathsf{A}_{\mu}^2 \end{cases}$$

- Z₂: $\begin{cases} A_{\mu}^{\mathbf{1}} \to -A_{\mu}^{\mathbf{1}} \\ A_{\mu}^{2} \to -A_{\mu}^{2} \end{cases}$ Z₂ reflects gauge fields corresponding to generators T^a with nonzero off-diagonal entries in the first row
 - Reason for invariance: This is a SU(N)_d symmetry transformation

Generalisation to SU(N)_d

Can 'sequentially' break SU(N) $_{\rm d}$ completely with N-1 Higgses $\varphi_{\rm i}$ in the fundamental representation of SU(N) $_{\rm d}$

Assuming the potential is CP-invariant and CP is unbroken in the vacuum, the $Z_2 \times Z_2'$ symmetry generalises to $SU(N)_d$ with $N \ge 3$!

 \rightarrow As for SU(2)_d, one therefore has 3 stable gauge fields also for SU(N)_d with N \geq 3.

Difference to SU(2)_d:

For N≥3 have mass splitting among DM. Two DM vectors are always degenerate in mass while the third one is ligther.

Phenomenology of U(1)_d vector DM

(sin θ : h- ρ mixing angle)

Phenomenology of SU(2)_d vector DM

(sin θ : h- ρ mixing angle)

Main difference for phenomenology:

Only DM vectors with the same group index can annihilate!

- → Annihilation cross-section is decreased
- → This needs to be compensated by increased gauge coupling

By contrast: direct detection limits are unchanged

Summary

- massive gauge fields of a U(1)_d or SU(N)_d, spontaneously broken with a minimal CP-conserving dark Higgs sector, can be viable DM candidates
- > Stability of $SU(N)_d$ DM due to $Z_2 \times Z'_2$ symmetry (which is not put in by hand)
- ➤ For N=2, DM consists of 3 vectors degenerate in mass, for N≥3 two DM vectors are degenerate in mass and the third one is lighter
- > Large regions of viable parameter space