INTEGRATING IN THE HIGGS PORTAL TO FERMION DARK MATTER

based on JHEP 1509 (2015) 015 with Ayres Freitas and Jure Zupan

Susanne Westhoff

Universität Heidelberg

Workshop "Physics at the LHC and beyond" — Sep 29 - Oct 2, 2015 — DESY Hamburg

HIGGS-PORTAL DARK MATTER AT THE LHC

FERMION DARK MATTER

$$\mathcal{L}_{\text{eff}} = \frac{g_S}{\Lambda} (\bar{\chi}\chi) (H^{\dagger}H) + i \frac{g_P}{\Lambda} (\bar{\chi}\gamma_5\chi) (H^{\dagger}H)$$

Higgs portal interaction is not renormalizable.
 → UV completion includes mediator.

Can we see Higgs-portal mediators at colliders?

[image credit: CERN]

UV COMPLETIONS OF THE HIGGS PORTAL

Mediators with mass up to a few 100 GeV: Higgs portal is ,,open'' at the LHC.

EXAMPLE: SINGLET-DOUBLET MODEL

Dark fermions mix through Yukawa interaction:

$$\mathcal{L} = -m_D \overline{\psi}_D \psi_D - m_S \overline{\psi}_S \psi_S - (y \overline{\psi}_D H \psi_S + \text{ h.c.})$$

$$\begin{array}{l} \langle H \rangle = v/\sqrt{2} \\ & \longrightarrow \end{array} \end{array} \qquad \left[\begin{array}{c} \chi_l^0 = \cos \theta \psi_D^0 - \sin \theta \psi_S \\ \chi_h^0 = \sin \theta \psi_D^0 + \cos \theta \psi_S \end{array} \right]$$

Mixing controls coupling to Higgs and gauge bosons:

 Z_2 symmetry ensures DM stability.

OBSERVING PARTICLE DARK MATTER

annihilation

relic density and indirect detection

scattering direct detection

production colliders

Spin-independent DM-nucleus scattering:

$$\sigma_{0} = \frac{\mu_{A}^{2}}{\pi} |Zf_{p} + (A - Z)f_{n}|^{2}$$

 $\sqrt{k^2} \simeq 10 - 50 \,\mathrm{MeV} \ll M_{\mathrm{EW}}$

Currently strongest bound on weak-scale DM scattering: LUX experiment: $\sigma_0(m_\chi \approx 100\,{ m GeV}) \lesssim 10^{-45}{ m cm}^2$ [LUX coll., arXiv:1310.8214]

[picture: lux.brown.edu]

DARK FERMION-NUCLEON SCATTERING

Effective interactions:

$$f_{p,n} \sim \frac{g_{\chi}^Z g_q^Z}{M_Z^2}$$

Dirac singlet:

Majorana singlet: $g_{\chi}^{Z} = -\frac{g}{2c_{W}}\cos^{2}\theta$

$$g_{\chi}^Z = 0$$

$$f_{p,n} \sim \frac{g_{\chi}^h}{M_h^2} \frac{m_q}{v}$$

$$g_{\chi}^{h} = \frac{y}{\sqrt{2}}\sin(2\theta)$$

$$g_{\chi}^{h} = \frac{y}{2}\sin(2\theta')$$

LUX bound \rightarrow DM must be singlet-like, $\theta \approx \pi/2$.

RELIC DENSITY

Dirac dark matter annihilation: $\chi \bar{\chi} \to Z \to q \bar{q}, \ell^+ \ell^-$

Majorana dark matter:

Observed relic density: $\Omega_{\chi}h^2=0.1199\pm0.0022$ [Planck coll., arXiv:1502.01589]

LUX bound strongly constrains annihilation rate.

Co-annihilation $\chi_l^0 \chi^+$, $\chi_l^0 \chi_m^0$ prevents over-abundance.

Exception: Higgs-resonance region for Majorana DM.

DARK FERMION SEARCHES AT COLLIDERS

Relic density and direct detection: Small mass splittings $m_m^0 - m_l^0, m^+ - m_l^0 \longrightarrow$ soft decay products.

Hard jet helps to trigger on soft-lepton events:

[Schwaller, Zurita, arXiv:1312.7350, et al.]

Cross section too small for mono-jet searches at the LHC.

SUMMARY DARK DIRAC FERMIONS

Need high-energy collider to test this model conclusively.

SUMMARY DARK MAJORANA FERMIONS

Future direct detection experiments and/or high-energy collider can test this model.

- Mediators can be searched for in signatures with soft leptons at the LHC.
- Future lepton and high-energy hadron colliders are needed to test such models conclusively.
- **Direct detection** experiments provide complementary information.