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Mono-X production at the LHC
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Its validity should be 
carefully checked.

Effective operators:
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Kinematic distributions

• We present distributions of six observables: the missing transverse energy 𝐸𝑇
𝑚𝑖𝑠𝑠, 

the dilepton invariant mass 𝑀𝑙𝑙, the muon transverse momentum 𝑝𝑇(𝜇
−) and  

rapidity 𝑦(𝜇−),  Δ = 𝐸𝑇
𝑚𝑖𝑠𝑠 − 𝑝𝑇

𝑍 /𝑝𝑇
𝑍 and Ω = −𝑝𝑇

𝑚𝑖𝑠𝑠 ⋅ 𝑝𝑇
𝑍/𝑝𝑇

𝑍. 
• We also show the SM backgrounds of 𝑝𝑝 → 𝑍𝑍 →  𝜈𝜈𝜇+𝜇− and  of 𝑝𝑝 →

𝑊+𝑊− →  𝜈𝜈𝜇+𝜇− for comparison.
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Kinematic distributions

Scenario 𝐵1
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Summary

We have implemented a class of simplified models for DM 
production via s-channel vector or scalar mediators in the 
FeynRules/MadGraph5_aMC@NLO framework.

We have presented the first NLO QCD predictions for 
mono-Z signals in simplified models including parton-
shower effects.

 The K-factors vary in the range of about 1.3 − 1.5, which 
shows that the NLO corrections have a noticeable impact 
on the mono-Z signal and should not be ignored.

 The theoretical predictions of the cross sections become 
more reliable at NLO and in many cases the scale 
uncertainties are reduced.
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Summary

We have studied various kinematic distributions in order 
to better understand the feature of the mono-Z signal.

We have also estimated the discovery potential of the 
mono-Z signal at the 13 TeV LHC.

 Our results provide a more solid theoretical basis for 
future studies in this channel.
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Thank you for your attention!

http://feynrules.irmp.ucl.ac.be/wiki/DMsimp
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The loop diagram inducing the dim-5 operator 
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Compare EFT and Simplified model 

Ratio of the mono-Z production cross sections at the 8 TeV (red) and 13 TeV (blue) LHC. 
The upper and lower limits of the bands correspond to the cases where Γ𝑌1 = 𝑀𝑌1/8𝜋
and Γ𝑌1 = 𝑀𝑌1/3, respectively. The DM mass is chosen to be 𝑚𝐷𝑀 = 100 GeV.
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Benchmark scenario 𝐵1


