Jet Physics at the LHC

Frank Tackmann

Deutsches Elektronen-Synchrotron

DESY Theory Workshop October 02, 2015

< 67 >

Introduction.

< 🗗 >

Why Jets?

QCD doesn't let us observe quarks and gluons directly, only jets of hadrons

< (7)

Why Jets?

QCD doesn't let us observe quarks and gluons directly, only jets of hadrons

Jets tell us the QCD final state of the hard interaction process

• 36 years ago:

Today: Essentially the same (just a bit more complicated ...)

Executive Summary of Higgs Production.

 $\sim 2/3$ of Higgs bosons are produced at low p_T

 $\sim 1/3$ of Higgs bosons have sizeable p_T

Kinematics and number of jets distinguishes different Higgs processes

• Discriminates against different backgrounds (e.g. in $H \,{ o}\, WW, au au, bar{b}$)

Frank Tackmann (DESY)

Why Else Jets?

Jets are Ubiquitous

Frank Tackmann (DESY)

2015-10-02 3/27

Why Else Jets?

Jets are essential also in EW final states

Recall $\mathsf{BR}(W o q \bar{q}') = 67\%$

 ${\sf BR}(Z o qar q)=70\%$

 Diboson excess is in dijet mass spectrum of two *filtered W/Z-tagged jets* [ATLAS 1506.00962]

< 67 →

Why Else Jets?

Jets are essential also in EW final states

Recall $\mathsf{BR}(W o q \bar{q}') = 67\%$

 $\mathsf{BR}(Z \to q\bar{q}) = 70\%$

 Diboson excess is in dijet mass spectrum of two *filtered W/Z-tagged jets* [ATLAS 1506.00962]

Search strategies increasingly rely on exploiting jet substructure

- Boosted decays: top-jets, W/Z-jets, Higgs-jets
- Distinguish quark jets (from BSM cascades) from gluon jets (QCD backgrounds)
- Jet mass, shape, charge, tracks, ...

Outline.

I can only cover a few selected topics:

- Higgs and jets
- Jet hierarchies
- New jet algorithm: XCone
- Quark-gluon separation

QCD corrections in jet processes are typically sizeable

• (N)NLO calculations are often necessary \rightarrow see Giulia Zanderighi's talk

Jets involve multiple physical scales

- Fixed-order perturbation theory is often not enough
- Require understanding all-order structure, resummation, hadronic effects,

< 47 >

Higgs + Jets.

< 67 >

Differential Higgs+Jets Measurements.

Combined high-resolution $H o \gamma\gamma$ and $H o 4\ell$ [ATLAS arXiv:1504.05833]

 Still statistics limited, but theory uncertainties will become relevant with ~20 times more statistics (~ end of Run2)

Frank Tackmann (DESY)

Jet Physics at the LHC

Higgs Simplified Cross Sections.

Frank Tackmann (DESY)

2015-10-02 7 / 27

Jet Binning.

Spectrum describes transition between 0-jet and \geq 1-jet regions

Need consistent treatment of theory uncertainties across entire spectrum

- quite nontrivial because it requires nontrivial correlations (simple factor-2-scale-variation-recipes are not good enough)
- Understood much better by now, but still open issues to figure out
- Complete description from combining resummation+fixed order

Frank Tackmann (DESY)

Jet Physics at the LHC

Rapidity-Weighted Jet Bins.

[Gangal, Stahlhofen, FT]

Generalize $p_T^{
m jet}$ by defining

 $\mathcal{T}_{fj} = p_{Tj} f(y_j)$ $\mathcal{T}_f^{ ext{jet}} = \max_{j \in J(R)} \mathcal{T}_{fj}$

 Can choose different rapidity weighting functions such that T^{jet}_f

- can be resummed
- is insensitive to forward rapidities
- Count jets according to \mathcal{T}_{fj} 0 jets: $\sigma_0(\mathcal{T}_f^{\text{jet}} < \mathcal{T}^{\text{cut}})$ \geq 1 jets: $\sigma_{>1}(\mathcal{T}_f^{\text{jet}} > \mathcal{T}^{\text{cut}})$
- Provides different slicing through jet phase space

Resolving Jet Bins.

(only using $H
ightarrow \gamma \gamma$ here)

Pretend uncertainties are much smaller and we want to resolve the "excess"

Resolving Jet Bins.

(only using $H
ightarrow \gamma \gamma$ here)

Pretend uncertainties are much smaller and we want to resolve the "excess"

- Different slices of jet phase space adds nontrivial information
- One might conclude that "excess" sits at higher p_T^{jet} at more forward rapidities
- \Rightarrow Ultimately measure double-differential in $p_T^{
 m jet} \mathcal{T}_f^{
 m jet}$

50

40

£ 30

10

n

> 0

= 0

> 1

د د 20 \rightarrow ATLAS $H \rightarrow \gamma \gamma$

 $XH = VBF + VH + t\bar{t}H$

ggH(STWZ, BLPTW)+XH

= 1

 $p_x^{\text{cut}} = 30 \text{ GeV}$

 $m_H = 125.4 \, \text{GeV}$

> 2

Jet Hierarchies.

In More Dimensions and with More Jets...

... it quickly gets more complicated

Multiscale problem

 $\dots \lesssim p_T^{ ext{jet2}} \lesssim p_T^{ ext{jet1}} \lesssim Q$

- Different multiple hierarchies possible
- Resummation often limited to LL (parton shower)
 - ▶ $p_T^{ ext{cut}} \ll p_T^{ ext{jet1}} \sim m_H$ limit is known at NLL' [Liu, Petriello]

Need to better understand distribution and correlations

- between different kinematic variables
- across different jet multiplicities
- ⇒ Increasingly important as we probe higher and higher scales (and in particular if we find new heavy particles)

Jet Physics at the LHC

 $p_{ au}^{
m jet2}$ lexcluded by per >2-iet $p_T^{\rm cut}$ 1-jet 0-iet $p_T^{\rm cut}$

Jet Hierarchies.

SCET₊: Extension of SCET to treat additional (emerging) scale hierarchies beyond standard SCET

- Adds two types of intermediate modes
 - collinear-soft: soft mode arising from a collinear sector
 - soft-collinear: collinear mode arising from a soft sector
 - Relative scaling and interactions depend on specific observable

 \Rightarrow Resummation of double-differential spectra \rightarrow talk by Lisa Zeune

[Bauer, FT, Walsh, Zuberi '11] [Procura, Waalewijn, Zeune '14] [Larkoski, Moult, Neill '15] [Pietrulewicz, FT, Waalewijn (prep.)]

< 47 >

2015-10-02 13 / 27

< (7)

Jet Rates and Nonglobal Logarithms.

Frank Tackmann (DESY)

2015-10-02 13 / 27

Phenomenology of Small-R Jets.

[Dasgupta, Dreyer, Salam, Soyez, Cacciari]

Jet algorithms induce logarithms $\sim lpha_s \ln R$

• Use a generating functional formalism to numerically resum leading $(\alpha_s \ln R)^n$ terms (LL_R)

• Exploits angular ordering, evolution variable $t \sim (\alpha_s/2\pi) \ln(R_0^2/R^2)$

Studied several jet observables, including jet trimming and filtering

Trimming is particularly sensitive to small-R effects

Frank Tackmann (DESY)

Jet Physics at the LHC

2015-10-02 14 / 27

Phenomenology of Small-R Jets.

[plots stolen from F. Dreyer's BOOST 2015 talk]

Inclusive jet spectrum

0.8

0.4

0.2

0

100

ratio to QCD LO 0.6

 LL_R has noticeable effect for $R \lesssim 0.4$

 $0.5p_t < \mu_R, \mu_F < 2p_t, R_0 = 1$

Preliminary

uncorrelated scale choice, R = 0.11 1 pp, 7 TeV, CT10 |y| < 0.5, anti- k_t alg

uncorrelated scale choice

Jet substructure methods

- Typically involve complex algorithms and cuts, very sensitive to resummation and nonperturbative effects
 - Vast majority of studies and applications heavily rely (necessarily) on parton shower Monte Carlos
- In past few years focus increased on gaining a better analytic and systematic understanding in two important and complementary ways [many groups/authors ...]
 - Better analytic understanding, tools, calculations
 - Instead of optimizing solely for performance, also taking theory controlability into account in designing new algorithms and methods

< 47 >

Analytic Boosted Boson Discrimination.

[Larkoski, Moult, Neill]

First factorization and analytic resummation of a 2-prong variable D_2 (similar to 2-subjettiness but based on energy correlation functions)

- For boosted boson signal and QCD background (latter is the hard part)
- Use SCET₊ to resum and combine different subjet limits

Analytic Boosted Boson Discrimination.

[Larkoski, Moult, Neill]

• Region relevant for discrimination is very sensitive to hadronization

- Described by nonperturbative soft function with field-theoretic definition
- Good description with single-parameter shape function
- Should be possible to extend to other substructure observables and pp collisions

< 47 >

Substructure without substructure

2015-10-02 18 / 27

< 🗗 >

XCone: An eXclusive Cone-Jet Algorithm.

[Stewart, FT, Thaler, Vermilion, Wilkason]

Basic construction

Start from standard N-jettiness

 $\widetilde{\mathcal{T}}_N(\{n_k\}) = \sum_i \min \left\{
ho_{ ext{jet}}(p_i, n_1), \dots,
ho_{ ext{jet}}(p_i, n_N),
ho_{ ext{beam}}(p_i)
ight\}$

- Given N jet axes $\{n_k\}$, partitions event into N jet regions and beam region
- Shape and size of jet regions depend on ρ_{jet} and ρ_{beam} measures (New XCone measure yields conical jets and maintains theory control)
- Minimize over all jet axes

$$\mathcal{T}_N = \min_{n_1, n_2, \dots, n_N} \widetilde{\mathcal{T}}_N(\{n_k\})$$

- Finding exact global minimum is computationally expensive
- Finding approximate (local) minimum is sufficient and inexpensive

Key features

- Exclusive: Returns preselected number of jets
 - > Yields best interpretation of the event in terms of the signal one is looking for
 - Final \mathcal{T}_N value provides additional quality measure for free
- Smoothly transitions between well-separated and boosted regimes

Frank Tackmann (DESY)

Jet Physics at the LHC

< 🗗 >

Comparison to anti- k_T .

Boosted $t\bar{t} \rightarrow$ hadrons event (from BOOST 2010 sample)

Well-separated jets

 XCone jets practically the same as leading anti-k_T jets

Adjacent/overlapping jets

- anti-kT merges signal jets, picks up ISR, FSR jets
- XCone still finds jets, dynamically split by nearest-neighbor

Jet Physics at the LHC

Case Study: Boosted Higgs Reconstruction.

< 🗗 >

Case Study: Boosted Higgs Reconstruction.

 Further improvements possible, e.g. with explicit ISR veto

500

0.1 ak.

21/2

Frank Tackmann (DESY)

Case Study: Boosted Top Reconstruction.

Classic example of jet substructure: $pp
ightarrow tar{t}
ightarrow WWbar{b}
ightarrow qar{q}qar{q}bar{b}$

• Use XCone with $N=2 imes 3~(R_2\gg 1,R_3=0.5)$

- Compare to
 - "Resolved": 2 k_T jets ($R \gg 1$) with 3 anti-k_T subjets
 - "Boosted": 2 anti- k_T jets (R = 1.0) with 3 k_T subjets

\Rightarrow Better performance across all p_T

< 合型)

Quark-Gluon Discrimination.

a.k.a. Hunting the White Whale of Jet Substructure

< (7)

Quark-Gluon Discrimination.

• QCD background jets from ISR and FSR are dominantly "gluon-jets"

- Signal jets are dominantly "quark-jets"
 - Color singlets couple to quarks only
- ⇒ Would be powerful discriminator if it could be exploited
 - See b-tagging
 - Long history, but still (almost embarassingly) not well under control
 - Initiated a comprehensive study at Les Houches this year

What Are We Even Talking About?

What is a Quark Jet?

From lunch/dinner discussions

III-Defined

Well-Defined

Frank Tackmann (DESY)

A quark parton

A Born-level quark parton

The initiating quark parton in a final state shower

An eikonal line with baryon number 1/3 and carrying triplet color charge

A quark operator appearing in a hard matrix element in the context of a factorization theorem

A parton-level jet object that has been quark-tagged using a soft-safe flavored jet algorithm (automatically collinear safe if you sum constituent flavors)

A phase space region (as defined by an unambiguous hadronic fiducial cross section measurement) that yields an enriched sample of quarks (as interpreted by some suitable, though fundamentally ambiguous, criterion)

[stolen from Jesse Thaler, Les Houches]

What Are We Even Talking About?

What is a Quark Jet?

[stolen from Jesse Thaler, Les Houches]

From lunch/dinner discussions

Frank Tackmann (DESY)

Jet Physics at the LHC

2015-10-02 24 / 27

Les Houches Quark/Gluon Performance Study.

Compare $e^+e^-
ightarrow uar{u}$ ("quark-tagged") to $e^+e^-
ightarrow gg$ ("gluon-tagged")

- Generalized jet angularities: $\lambda_{eta}^{\kappa} = \sum_{i \in jet} z_i^{\kappa} \theta_i^{eta}$

[Les Houches q/g subgroup]

Separation power:

$$rac{1}{2} \, rac{[S(\lambda) - B(\lambda)]^2}{S(\lambda) + B(\lambda)}$$

"Les Houches Angularity" $\lambda(\kappa=1,eta=0.5),\,R=0.6,\,Q=200\,{
m GeV}$

Frank Tackmann (DESY)

Quark/Gluon Performance: Some Lessons Learned.

gluon rejection at 50% quark eff.

- Improving quark/gluon robustness seems synonymous with controlling final state shower uncertainties (LEP measured quark not gluon event shapes)
- Hadronization can be important, even for IRC safe angularities
- \Rightarrow Comparison to analytic predictions, uncertainties, stay tuned ...

Frank Tackmann (DESY)

Jet Physics at the LHC

< 🗇 >

Summary.

Jets are our window onto the hard interaction

- Jets inevitably involve nontrivial QCD corrections and several physical scales
 - Fixed-order calculations are often necessary but seldom sufficient
- As experimental analyses are getting more sophisticated they make more detailed use of jets
 - More differential, more exclusive binning, more detailed substructure, ...
 - Important to keep theory under control
- Calculations and methods are constantly being refined and developed
 - But there are also many open issues

Many things I have not covered (apologies ...)

ightarrow See e.g. many interesting talks at BOOST 2015

< 47 >