

HL-LHC Physics

- HL-LHC program
- Detector configurations
 - Pileup mitigation
- Higgs boson measurements
 - Precision coupling measurements
 - Rare processes
 - Higgs boson pair production
- Beyond the Standard Model
 - In the Higgs sector
 - Dark matter
 - SUSY
 - Exotica
- Conclusions

LHC / HL-LHC Plan

Run 1

Magnet update

splice ~full design upgrades original upgrades energy

Run 2 at Phase I Run 3 \rightarrow Phase II (injectors) design lumi (final focus) design lumi

HL-LHC: ten times

Full exploitation of LHC is top priority in Europe & US for high energy physics Operate HL-LHC with 5 (nominal) to 7.5 (ultimate) x10³⁴cm⁻²s⁻¹ to collect 3000/fb in order ten years.

Detector upgrades

 In a nutshell - upgrade the detectors to achieve the same or better performance as in Run 1

- Luminosity of 5 (7.5) $\times 10^{34}$ cm⁻²s⁻¹ corresponds to *average* pileup, μ , of 140 (200) events
- Pileup mitigation a critical element of detector designs
- ATLAS [CERN-LHCC-2015-020]
 & CMS [CERN-LHCC-2015-019]
 just released "Scoping Documents"
 showing impact of different cost
 scenarios on physics performance

- More information: ATLAS Phase II LoI [CERN-LHCC-2012-022], CMS Technical Proposal [CERN-LHCC-2015-010]
- Collections of public results: <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/UpgradePhysicsStudies</u> <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsFP</u>
 ECFA HL-LHC workshop 2014: https://indico.cern.ch/event/315626/

Pile-up jet rejection

- Rate of pileup jets/true jets for Particle Flow algorithm (PF)
 Plus rejecting charged hadrons from pileup vertices (CHS)
 Using Puppi algorithm
- Impact on E_T^{miss} of using extended tracking information to reject pile-up jets
 - (resolution as a function of ΣE_T in ttbar events)

Combined ATLAS & CMS Run 1 Higgs boson

$$m_H = 125.09 \pm 0.21(stat.) \pm 0.11(syst.) GeV$$

 $\mu = 1.09 \pm 0.11$

10 to 20% precision for main channels

- J^P consistent with 0⁺. Other hypotheses excluded at >99% CL
- Model dependent constraint on width from off-shell $H \rightarrow ZZ$: $\Gamma_H < 22$ MeV

HL-LHC a Higgs boson factory with 3000 fb⁻¹

- Over 100 million SM Higgs bosons in total
 - Over 1 million for each of the main production mechanisms (→ production cross sections)

- Spread over many decay modes (→ branching ratios)
 - 20k H→ZZ→IIII
 - 400k H→γγ
 - 40k H→μμ
 - Only 50 leptonic H→J/ψγ (a very rare mode)

Prospects for the Higgs boson

- Compare prospects with "LHC" 300 fb⁻¹ and "HL-LHC" 3000 fb⁻¹
 - Results are always given for 1 experiment, not 2 combined
- ATLAS uses detector response functions based on full simulation for
 - Phase I detector with new pixel layer for Run 2, pile-up of 50
 - Phase II detector with pile-up of 140
 - Results are shown with and without theory uncertainty
- CMS extrapolated from the present 7-8 TeV analyses, assuming that the upgrades maintain the detector performance.
 - Scenario 1 Experimental systematic and theoretical uncertainties unchanged. Statistical uncertainties scale with 1/JL
 - Scenario 2 Statistical and experimental systematic uncertainties scale with $1/\sqrt{L}$, theoretical uncertainties reduced by a factor 2.
 - (Newer analyses use other techniques)
- Systematic uncertainties are therefore always included, but with different assumptions on possible detector/algorithm/theoretical improvements.

Signal strength precision

- All production modes can be observed for ZZ and yy final states
- Combine production modes for best information on branching ratios

Signal strength precision

Scenario 1 (present errors). Scenario 2 (scaled errors).

Summary of precision (%): 4~5% for main channels, 10~20% on rare modes ATLAS without/with theory uncertainty, CMS Scenario 1 and Scenario 2

$L(fb^{-1})$	Exp.	γγ	WW	ZZ	bb	ττ	Ζγ	μμ
300	ATLAS	[9, 13]	[8, 13]	[7, 11]	[26 , 26]	[18, 21]	[44, 46]	[38,39]
	CMS	[6, 12]	[6, 11]	[7, 11]	[11, 14]	[8, 14]	[62, 62]	[40,42]
3000	ATLAS	[4, 9]	[5, 11]	[4, 9]	[12, 14]	[15, 19]	[27, 30]	[12,16]
	CMS	[4, 8]	[4, 7]	[4, 7]	[5, 7]	[5, 8]	[20, 24]	[14,20]

Pippa Wells, CERN HL-LHC Physics 10

Example - H→ZZ→4 leptons

High purity signal. Measure all 5 main production modes with 3000 fb⁻¹

Signal events	ggH	VBF	ttH	WH	ZH
$3000 \; \mathrm{fb^{-1}}$	3800	97	35	67	5.7

- Vector Boson Fusion and ttH events have extra jets.
- WH, ZH events have extra leptons

12

CMS H→4I

- 20% more 4μ events by extending acceptance to |η|<3.0
- Improved mass resolution resolution (from e and μ)

ATLAS new result for VBF $H \rightarrow ZZ \rightarrow 4l$

- Old result, PU = 140, cut on $m_{ij} > 350 \text{ GeV}$
 - $\Delta\mu/\mu$ (stat + experimental) = 0.293
- New result, PU = 200, use a BDT to distinguish ggF and VBF. Also improved pileup jet rejection from forward tracking.
 - $\Delta\mu/\mu$ (stat + experimental) = 0.134

 Just one example more sophisticated techniques not yet propagated through HL-LHC projections

Rare processes

- H→µµ second generation
 - ATLAS and CMS expect >7σ significance with 3000 fb⁻¹
 - → coupling measured to 5-10%
- ttH, $H \rightarrow \mu\mu$ (ATLAS)
 - ~30 signal events in 3000 fb⁻¹ but good signal:background
- H→Zγ
 - Tests the loop structure of the decay (compare with H→ZZ and H→γγ)

H ------γ

 -4σ significance possible with 3000 fb⁻¹ despite the challenging background

CMS H→µµ coupling precision improves from 8% to 5% with Phase II upgrade

Interpretation as coupling scale factors

- Experiments measure cross section times branching ratio
- Interpretation with coupling scale factors, κ, is model dependent

Coupling fits - the small print...

 The cross section times branching ratio for initial state i and final state f is given by

$$\sigma \cdot Br(i \to H \to f) = \frac{\sigma_i \cdot \Gamma_f}{\Gamma_H}$$

- The total width Γ_H is too narrow to measure directly
 - Assume it is the sum of the visible partial widths no additional invisible modes
 - (Charm coupling is assumed to scale with top coupling)
- Cross sections and branching ratios scale with κ^2 ($\rightarrow \Delta \kappa \sim 0.5 \Delta \mu$)
- Gluon and photon couplings can be assumed to depend on other SM couplings, or to be independent to allow for new particles in the loop

General coupling fit

Photon, gluon, heavy fermions each have have their own scale factor

ATLAS and CMS general coupling fits compared (%)

$L(fb^{-1})$	Exp.	κγ	κ _W	KΖ	Кд	к _b	Κt	Κτ	KZγ	κμμ
300	ATLAS	[9, 9]	[9, 9]	[8, 8]	[11, 14]	[22, 23]	[20, 22]	[13, 14]	[24, 24]	[21, 21]
	CMS	[5, 7]	[4, 6]	[4, 6]	[6, 8]	[10, 13]	[14, 15]	[6, 8]	[41, 41]	[23, 23]
3000	ATLAS	[4, 5]	[4, 5]	[4, 4]	[5, 9]	[10, 12]	[8, 11]	[9, 10]	[14, 14]	[7, 8]
	CMS	[2, 5]	[2, 5]	[2, 4]	[3, 5]	[4, 7]	[7, 10]	[2, 5]	[10, 12]	[8, 8]

Coupling ratios

- Systematic uncertainties partly cancel
- Ratios are almost model independent

L(fb ⁻¹)	Exp.	$\frac{K_g \cdot K_Z}{K_H}$	$\frac{\kappa_{\gamma}}{\kappa_{Z}}$	$\frac{\kappa_W}{\kappa_Z}$	<u>K</u> _b Κ _Z	$\frac{K_{\tau}}{K_{Z}}$	<u>Κ</u> Ζ Κ _g	$\frac{\kappa_t}{\kappa_g}$	$\frac{\kappa_{\mu}}{\kappa_{Z}}$	$\frac{\kappa_{Z\gamma}}{\kappa_Z}$
300	ATLAS	[4,6]	[5,6]	[5,5]	[17,18]	[11,12]	[10,13]	[15,17]	[20,20]	[23,23]
	CMS	[4,6]	[5,8]	[4,7]	[8,11]	[6,9]	[6,9]	[13,14]	[22,23]	[40,42]
3000	ATLAS	[2,6]	[2,3]	[2,3]	[7,10]	[8,9]	[5,9]	[5,9]	[6,6]	[14,14]
	CMS	[2,5]	[2,5]	[2,3]	[3,5]	[2,4]	[3,5]	[6,8]	[7,8]	[12,12]

- This results in better agreement between the two experiments
 - Can achieve 2~3% precision in main channels if systematic uncertainties are controlled
- HL-LHC yields a factor 2~3 improvement in coupling ratio determination

Mass scaled couplings

Coupling factors plotted as a function of particle mass

$$y_{V,i} = \sqrt{\kappa_{V,i} \frac{g_{V,i}}{2v}} = \sqrt{\kappa_{V,i} \frac{m_{V,i}}{v}}$$

$$y_{F,i} = \kappa_{F,i} \frac{g_{F,i}}{\sqrt{2}} = \kappa_{F,i} \frac{m_{F,i}}{v}$$

Theoretical uncertainties

- ATLAS: Deduced size of theory uncertainty to increase total uncertainty by <10% of the experimental uncertainty
 - (MHOU missing higher order uncertainty)

Scenario Status Deduced size of uncertainty to increase total uncertaint								inty	
	2014	2014 by $\leq 10\%$ for 300 fb ⁻¹ by $\leq 10\%$					% for 3000 fb ⁻¹		
Theory uncertainty (%)	[10–12]	κ_{gZ}	λ_{gZ}	$\lambda_{\gamma Z}$	κ_{gZ}	$\lambda_{\gamma Z}$	λ_{gZ}	$\lambda_{ au Z}$	λ_{tg}
$gg \rightarrow H$									
PDF	8	2	_	-	1.3	_	_	_	-
incl. QCD scale (MHOU)	7	2	_	-	1.1	_	_	_	-
p_T shape and $0j \rightarrow 1j$ mig.	10–20	_	3.5–7	-	_	1.5–3	_	_	-
$1j \rightarrow 2j \text{ mig.}$	13–28	_	_	6.5–14	_	3.3–7	_	_	-
$1j \rightarrow VBF 2j mig.$	18–58	_	_	-	_	_	6–19	_	-
$VBF 2j \rightarrow VBF 3j mig.$	12–38	_	-	-	_	_	_	6–19	-
VBF									
PDF	3.3	_	-	-	_	_	2.8	_	-
tŧH									
PDF	9	_	_	-	_	_	_	_	3
incl. QCD scale (MHOU)	8	_	_	-	_	_	_	_	2

[10-12] LHC Higgs Cross Section Working Group

Higgs boson pair production

 Higgs boson pair production includes destructive interference between two types of processes:

• \sim factor 2 increase in cross section if $\lambda \rightarrow 0$

NNLO σ^{SM} =40.8 fb

Higgs triple

Number of events					
bbWW	30000				
bb $ au au$	9000				
WWWW	6000				
$\gamma\gamma$ bb	320				
γγγγ	1				

Pippa Wells, CERN HL-LHC Physics 21

- Parametrised object performances
 - CMS 2d fit of m(bb) and m($\gamma\gamma$) distributions (control background from data)
 - ATLAS cut based analysis
 - bb mass peak is broad. γγ shows narrow resonance

bbyy results

- Numbers of events in 3000 fb⁻¹ in signal mass windows
 - CMS preferred result uses a likelihood fit in a larger mass range, which gives 67% relative uncertainty on the signal
 - Differences understood due to assumptions in b/γ performance

process	ATLAS		CMS
SM HH→bbγγ	8.4± 0.1		9.0
bbγγ	9.7 ± 1.5	γγ+jets	13.0
ccγγ, bbγj, bbjj, jjγγ	24.1 ± 2.2	γ+jets, jets	7.4
top background	3.4 ± 2.2		1.2
$ttH(\gamma\gamma)$	6.1 ± 0.5		1.6
$Z(bb)H(\gamma\gamma)$	2.7 ± 0.1		3.4
bbH(γγ)	1.2 ± 0.1		0.8
Total background	47.1 ± 3.5		27.4
S/√B (barrel+endcap)	1.2		
S/√B (split barrel and endcap)	1.3		
Pippa Wells, CERN	HL-LHC Physics		23

CMS HH→bbtt

- Major background from ttbar, with $t \rightarrow \tau vb$
 - Kinematic variables to distinguish signal from background

- Combining $\tau_h \tau_h$ and $\tau_h \tau_u$ gives 105% signal uncertainty
- Combining bbγγ and bbττ: 1.9σ significance, 54% signal uncertainty
- HH→bbWW, 37.1 signal events with 3875 background (ttbar) → 200% uncertainty on signal strength

Vector Boson Scattering

- Explore electroweak symmetry breaking through VBS
 - Distinguish electroweak and QCD induced processes
 - Same sign WW pair production and WZ final states
 - CMS: interpretation as limits on dimension-eight operators f_x/Λ^4 [arXiv:hep-ph/0606118].

Coeff.	Channel	Limit [TeV ⁻⁴]
T1	WZ (3σ)	0.45
S0	WW (95% CL)	1.07
S1	WW (95% CL)	3.55
T1	WW (95% CL)	0.033

BSM Higgs direct/indirect searches

- Models such as supersymmetry require more Higgs bosons
 - Neutral: h,H,A; Charged: H⁺, H⁻ ("2 Higgs doublet model")
- Direct searches complemented by constraints from coupling fits
 - If the 125 GeV Higgs boson (which is "h" in this model) looks very like the SM Higgs, it rules out some other possibilities

Trial heavy H→ZZ signals

Coupling fits constrain parameters α and β. Direct search results for A→Zh depend on the mass of the A

Higgs portal to Dark Matter

- BR of Higgs decays to invisible final states
 - ATLAS: BR_{inv}< 0.13 (0.09 w/out theory uncertainties) at 3000fb⁻¹
 - CMS: BR_{inv}< 0.11 (0.07 in Scenario 2) at 3000fb⁻¹
- The coupling of WIMP to SM Higgs is taken as the free parameter
- Translate limit on BR to the coupling of Higgs to WIMP
- LHC complements direct
 DM search experiments in the lower mass range

Mono-X searches for dark matter

- DM pair production with eg. initial W→lv
 - Also probes contact interactions in qq→lv and W' production
- Shape discrimination in transverse mass distribution
 - Significant separation between a DM model and Standard Model only achieved at HL-LHC

Supersymmetry

Motivated by naturalness, dark matter...

Stop, sbottom, gluino and higgsino tend to be light in natural models.

Consider simplified and full-spectrum models

Pippa Wells, CERN HL-LHC Physics 29

Electroweak processes eg $\chi_1^+ \chi_2^0$ production

Weak process - benefit from high luminosity

Chargino mass 50 discovery, simplified model	300 fb ⁻¹	3000 fb ⁻¹
WZ (3l analysis) [ATLAS]	Up to 560 GeV	Up to 820 GeV
WZ (3l analysis) [CMS]	Up to 600 GeV	Up to 900 GeV
WH (3l analysis) [ATLAS]	(<5σ reach)	Up to 650 GeV
WH (bb analysis) [ATLAS] (new in 2015)	(<5σ reach)	Up to 800 GeV
WH (bb analysis) [CMS]	350-460 GeV	Up to 950 GeV

Pippa Wells, CERN HL-LHC Physics 30

Example of scoping exercise, WH(bb)

- Lepton and 2 b-jets with E_T^{miss}
- Main backgrounds ttbar, single top, W+jets, ttW, ttZ
 - Sensitive to modelling of leptons, b-tagging, E_Tmiss resolution
 - Three scenarios, Reference, Middle, Low

Need 6000 (12000)/fb in Mid. (Low) to match the reach of Ref.

Stop and sbottom

- Naturalness motivates stop/sbottom searches where the third family squarks are lightest
 - ATLAS stop & sbottom pair production

• CMS gluino pair production with decay via stop to $tt\chi$

CMS PAS FTR-13-014

5σ discovery, simplified model	300 fb ⁻¹	3000 fb ⁻¹
stop mass from direct production [ATLAS]	Up to 1.0 TeV	Up to 1.2 TeV
gluino mass with decay to stop [CMS]	Up to 1.9 TeV	Up to 2.2 TeV
sbottom mass from direct production [ATLAS]	Up to 1.1 TeV	Up to 1.3 TeV

Pippa Wells, CERN HL-LHC Physics 32

ATLAS stop/sbottom

Results in m(LSP)-m(squark) plane from simplified models

ATL-PHYS-PUB-2013-011

ATL-PHYS-PUB-2014-010

Pippa Wells, CERN HL-LHC Physics 33

Summary of simplified models

ATLAS projection	gluino mass	squark mass	stop mass	sbottom mass	χ ₁ ⁺ mass WZ mode	χ ₁ + mass WH mode
300 fb ⁻¹	2.0 TeV	2.6 TeV	1.0 TeV	1.1 TeV	560 GeV	None
3000 fb ⁻¹	2.4 TeV	3.1 TeV	1.2 TeV	1.3 TeV	820 GeV	650 GeV

- HL-LHC increases discovery reach by
 - ~20% for gluino, squark, stop

• ~50 to 100% for electroweak production of $\chi_1^+ \chi_2^0$

Full spectrum SUSY models

- 5 different full-spectrum SUSY models which respect DM relic density
 - 3 pMSSM models motivated by naturalness, different LSPs: NM1(2): bino-like with low(high) slepton mass; NM3: higgsino-like
 - 2 p(C)MSSM models with χ_1^0 coannihilation with different nearly massdegenerate particle: STC = stau; STOC = stop Exploring SUSY model space
- Explored 9 different experimental signatures
- Different models lead to different patterns of discoveries in different final states after different amounts of data

Exploring experimental signature spa

Analysis	Luminosity			Model		
•	$({\rm fb^{-1}})$	NM1	NM2	NM3	STC	STOC
all-hadronic (H_T - H_T^{miss}) search	300					
-	3000					
all-hadronic ($M_{ m T2}$) search	300					
	3000					
all-hadronic \widetilde{b}_1 search	300					
	3000					
1-lepton t ₁ search	300					
	3000					
monojet $\tilde{\mathfrak{t}}_1$ search	300					
	3000					
$m_{\ell^+\ell^-}$ kinematic edge	300					
	3000					
multilepton + b-tag search	300					
	3000					
multilepton search	300					
	3000					
ewkino WH search	300					
	3000					

Exotica - dilepton resonances

- Many extensions of the SM predict new resonances
 - Heavy gauge bosons W' and Z'
 - KK excitations of vector bosons
- Clean decay channels, eg Z' \rightarrow e⁺e⁻ or $\mu^+\mu^-$

Discovery up to 6.2 TeV (for SSM Z')

Mass reach for exotic signatures

Sensitivity in multi-TeV range increases by ~20% with HL-LHC

ATLAS @14 TeV		g _{KK} → t t RS 95% CL limit	Dark matter M* 5σ discovery
300 fb ⁻¹	6.5 TeV	4.3 TeV	2.2 TeV
3000 fb ⁻¹	7.8 TeV	6.7 TeV	2.6 TeV
Dinna Walla CEDN		III IIIC Physics	77

Pippa Wells, CERN HL-LHC Physics 37

Model discrimination after a discovery

- Ability to discriminate improves dramatically with HL-LHC
 - Separation between spin-1 (Z') and spin-2 (G_{KK}) interpretation or other interpretations ranges from ~2 to 5 σ
 - Use 2d likelihood with dilepton angular and rapidity distributions or forward-backward asymmetry

Conclusion and outlook

- Excellent progress with evaluating the HL-LHC physics case
- The main Higgs couplings can be measured to a few percent precision
 - Also sensitivity to rare processes
- HL-LHC extends discovery reach in strongly motivated areas
 - If discoveries or hints observed in Runs 2 & 3, HL-LHC will be crucial to unravel what is seen

Additional material

B-tagging performance

- Example from the ATLAS Scoping Document
 - Use a Run 1 b-tagging algorithm out-of-the box
 - With mu=140, better performance than Run 1
 - With mu=200, similar performance to Run 1 (for Reference scenario)
 - Useful b-tagging capability in large η region in Reference scenario

CMS HH→bbWW

- Only consider dominant ttbar background with $t \rightarrow lvb$ ($l=e,\mu$)
 - Based on Delphes smearing
 - Signal region: Neural Network output > 0.97
 →37.1 signal events with 3875 background
- Result quoted as a function of background systematic uncertainty
 - Expect to constrain this to ~1% from data driven methods, giving 200% uncertainty on the signal yield.

Two examples of full spectrum SUSY models

Figure 10.19: Examples of SUSY full-spectrum models: (a) the natural SUSY model NM3 and (b) the stau coannihilation model STC, which are among the five full-spectrum scenarios used in the studies presented here. In NM3, the masses of the \tilde{g} , \tilde{t}_1 , \tilde{t}_2 , and \tilde{b}_1 are all below 2 TeV. The $\tilde{\chi}_1^0$ is higgsino-like. In the STC model, the gluino is much heavier than the top squarks, and the slepton sector is light, with the $\tilde{\tau}$ nearly degenerate with the $\tilde{\chi}_1^0$. The lines between different states indicate transitions with branching fractions greater than 5%.