$\mu\text{-}e$ Conversion for Models with Doubly Charged Scalars

Tanja Geib

with Stephen F. King, Alexander Merle, Jose Miguel No and Luca Panizzi arXiv:1510.xxxxx

Max Planck Institute for Physics

DESY Theory Workshop, October 1, 2015

Introduction: Why Loop Level Neutrino Masses??

Why are radiative models so interesting?

- naturally small neutrino mass
- possibility to introduce new particles (e.g. DM candidate, further Higgs doublets or doubly charged scalars)
- neutrinos massive \rightarrow LFV/LNV couplings exist \rightarrow rich phenomenology:
 - $\mu \rightarrow e \gamma$ (LFV)
 - $\mu
 ightarrow$ 3 e (LFV)
 - neutrinoless double beta decay (LNV)

Testability: complementary between neutrino and LHC physics

- low energy precision physics: indirect detection of e. g. charged scalars due to contribution to LFV/LNV processes
- collider physics: search for new (especially charged!) particles via single/pair production and different decay channels

Introduction: Why Loop Level Neutrino Masses??

Why are radiative models so interesting?

- naturally small neutrino mass
- possibility to introduce new particles (e.g. DM candidate, further Higgs doublets or doubly charged scalars)
- neutrinos massive \rightarrow LFV/LNV couplings exist \rightarrow rich phenomenology:
 - $\mu \rightarrow e \gamma \text{ (LFV)}$
 - $\mu \rightarrow 3 e \text{ (LFV)}$
 - neutrinoless double beta decay (LNV)

Testability: complementary between neutrino and LHC physics

- low energy precision physics: indirect detection of e. g. charged scalars due to contribution to LFV/LNV processes
- collider physics: search for new (especially charged!) particles via single/pair production and different decay channels

Effective theory of a doubly charged scalar singlet based on King, Merle, Panizzi arXiv:1406.4137

Minimal extension of SM:

- only **one** extra particle: S^{++}
 - \rightarrow lightest of possible new particles (UV completion e.g. Cocktail model) \rightarrow reduction of input parameters
- tree-level coupling to SM (to charged right-handed leptons) \rightarrow LNV and LFV!
- effective Dim-7 operator (necessary to generate neutrino mass)

$$\mathcal{L} = \mathcal{L}_{\mathrm{SM}} - V(H, S)$$

$$+ (D_{\mu}S)^{\dagger}(D^{\mu}S) + f_{ab} \overline{(\ell_{Ra})^{c}} \ell_{Rb} S^{++} + \text{h.c.} - \frac{g^{2} v^{4} \xi}{4 \lambda^{3}} S^{++} W_{\mu}^{-} W^{-\mu} + \text{h.c.}$$

Effective theory of a doubly charged scalar singlet based on King, Merle, Panizzi arXiv:1406.4137

Minimal extension of SM:

- only **one** extra particle: S^{++} \rightarrow lightest of possible new particles (UV completion e.g. Cocktail model)
 - \rightarrow reduction of input parameters
- tree-level coupling to SM (to charged right-handed leptons) \rightarrow LNV and LFV!
- effective Dim-7 operator (necessary to generate neutrino mass)

$$\mathcal{L} = \mathcal{L}_{\mathrm{SM}} - V(H, S)$$

$$+ (D_{\mu}S)^{\dagger}(D^{\mu}S) + \left[f_{ab}\overline{(\ell_{Ra})^{c}}\ell_{Rb}S^{++}\right] + \text{h.c.} - \left[\frac{g^{2}v^{4}\xi}{4\Lambda^{3}}S^{++}W_{\mu}^{-}W^{-\mu}\right] + \text{h.c.}$$

Effective theory of a doubly charged scalar singlet based on King, Merle, Panizzi arXiv:1406.4137

Minimal extension of SM:

- only one extra particle: S⁺⁺
 → lightest of possible new particles (UV completion e.g. Cocktail model)
 → reduction of input parameters
- tree-level coupling to SM (to charged right-handed leptons) \rightarrow LNV and LFV!
- effective Dim-7 operator (necessary to generate neutrino mass)

$$\mathcal{L} = \mathcal{L}_{\mathrm{SM}} - V(H, S)$$

+

$$-(D_{\mu}S)^{\dagger}(D^{\mu}S) + f_{ab}\overline{(\ell_{Ra})^{c}}\ell_{Rb}S^{++} + \text{h.c.} - \frac{g^{2}}{4\Lambda^{3}}S^{++}W_{\mu}^{-}W^{-\mu} + \text{h.c.}$$

Testing the Model based on King, Merle, Panizzi arXiv:1406.4137

Selection of interesting processes: low energy physics

• neutrinoless double beta decay:

•
$$\mu^- \rightarrow e^- \gamma$$
:

$$\left| f_{ee}^* f_{e\mu} + f_{e\mu}^* f_{\mu\mu} + f_{e\tau}^* f_{\mu\tau} \right| < 3.2 \cdot 10^{-4} M_S^2 [\text{TeV}]$$

Testing the Model based on King, Merle, Panizzi arXiv:1406.4137

benchmark points:

 f_{ab} such that bounds fulfilled + suitable light neutrino mass matrix reproduced

• 'red':
$$f_{ee} \simeq 0$$
 and $f_{e au} \simeq 0$

• 'purple':
$$f_{ee} \simeq 0$$
 and $f_{e\mu} \simeq \frac{f_{\mu\tau}^*}{f_{\mu\mu}^*} f_{e\tau}$

• 'blue':
$$f_{e\mu}\simeqrac{f_{\mu au}^{*}}{f_{\mu\mu}^{*}}\,f_{e au}$$

complementary check with **high energy experiments**: compute cross sections for e.g.

•
$$S^{\pm\pm} \rightarrow W^{\pm\pm}$$

•
$$S^{\pm\pm} \rightarrow l_a^{\pm\pm} l_b^{\pm\pm}$$

• ...

ightarrow some of the benchmark points already excluded by LHC data (7 ${
m TeV}$ run)

Testing the Model based on King, Merle, Panizzi arXiv:1406.4137

benchmark points:

 f_{ab} such that bounds fulfilled + suitable light neutrino mass matrix reproduced

• 'red':
$$f_{ee} \simeq 0$$
 and $f_{e\tau} \simeq 0$

• 'purple':
$$f_{ee} \simeq 0$$
 and $f_{e\mu} \simeq \frac{f_{\mu\tau}^*}{f_{\mu\mu}^*} f_{e\tau}$

• 'blue':
$$f_{e\mu}\simeqrac{f_{\mu au}^{*}}{f_{\mu\mu}^{*}}\,f_{e au}$$

complementary check with **high energy experiments**:

compute cross sections for e.g.

•
$$S^{\pm\pm} \rightarrow W^{\pm\pm}$$

• $S^{\pm\pm} \rightarrow l_a^{\pm\pm} l_b^{\pm\pm}$

• ...

 \rightarrow some of the benchmark points already excluded by LHC data (7 ${\rm TeV}$ run)

μ -e Conversion

within **muonic atom**: bound μ^- captured by nucleus and re-emitted as e^-

ightarrow coherent $\mu-e$ conversion: same initial and final state of the nucleus

past: SINDRUM II for ⁴⁸Ti (1993), ²⁰⁸Pb (1995), ¹⁹⁷Au (2006) future: DeeMee for ²⁸Si, COMET and Mu2e (first results \sim 2020) for ²⁷Al, PRISM/PRIME for ⁴⁸Ti

ightarrow interesting limits in the foreseeable future

μ -e Conversion

within **muonic atom**: bound μ^- captured by nucleus and re-emitted as e^-

 \rightarrow coherent $\mu – e$ conversion: same initial and final state of the nucleus

past: SINDRUM II for ⁴⁸Ti (1993), ²⁰⁸Pb (1995), ¹⁹⁷Au (2006) future: DeeMee for ²⁸Si, COMET and Mu2e (first results \sim 2020) for ²⁷Al, PRISM/PRIME for ⁴⁸Ti

 \rightarrow interesting limits in the foreseeable future

$\mu - e$ Conversion

within **muonic atom**: bound μ^- captured by nucleus and re-emitted as e^-

 \rightarrow **coherent** μ -*e* conversion: same initial and final state of the nucleus

past: SINDRUM II for ⁴⁸Ti (1993), ²⁰⁸Pb (1995), ¹⁹⁷Au (2006) future: DeeMee for ²⁸Si, COMET and Mu2e (first results \sim 2020) for ²⁷Al, PRISM/PRIME for ⁴⁸Ti

 \rightarrow interesting limits in the foreseeable future

μ –*e* Conversion

• Write branching ratio as product of nuclear and particle part

$$BR(\mu^- N \to e^- N) = \frac{8\alpha^5 m_\mu Z_{eff}^4 Z F_p^2}{\Gamma_{capt}} \Xi^2 \qquad \text{see e.g. Kuno &} Okada, 1999$$

 \rightarrow factorisation works perfectly for photonic (long-range) contributions

 \rightarrow Ξ has to be modified for **non-photonic** contributions to be a function of nuclear characteristics

 μ−e conversion realised at one-loop level → determine form factors (particle physics part) → dominant contributions from:

μ –*e* Conversion

• Write branching ratio as product of nuclear and particle part

$$BR(\mu^- N \to e^- N) = \frac{8\alpha^5 m_\mu Z_{eff}^4 Z F_p^2}{\Gamma_{capt}} \Xi^2 \qquad \text{see e.g. Kuno \&} Okada, 1999$$

 \rightarrow factorisation works perfectly for photonic (long-range) contributions

 \rightarrow Ξ has to be modified for **non-photonic** contributions to be a function of nuclear characteristics

 μ−e conversion realised at one-loop level → determine form factors (particle physics part) → dominant contributions from:

Most general photonic matrix element

$$i\mathcal{M} = i e A_{\nu}(q') \overline{u_{e}}(p_{e}) \left[\left(\gamma^{\nu} - \frac{q' q'^{\nu}}{q'^{2}} \right) F_{1}(q'^{2}) + \frac{i \sigma^{\nu \rho} q'_{\rho}}{m_{\mu}} F_{2}(q'^{2}) + 2 \frac{q'^{\nu}}{m_{\mu}} F_{3}(q'^{2}) \right. \\ \left. + \left(\gamma^{\nu} - \frac{q' q'^{\nu}}{q'^{2}} \right) \gamma_{5} G_{1}(q'^{2}) + \frac{i \sigma^{\nu \rho} q'_{\rho}}{m_{\mu}} \gamma_{5} G_{2}(q'^{2}) + 2 \frac{q'^{\nu}}{m_{\mu}} \gamma_{5} G_{3}(q'^{2}) \right] u_{\mu}(p_{\mu})$$

with $q'=p_e-p_{\mu}.$

Branching ratio factorises ightarrow ${f particle\ physics\ }$ absorbed into

$$\Xi^{2} = \left| -F_{1}(-m_{\mu}^{2}) + F_{2}(-m_{\mu}^{2}) \right|^{2} + \left| G_{1}(-m_{\mu}^{2}) + G_{2}(-m_{\mu}^{2}) \right|^{2}$$

→ determine form factors with the help of Mathematica package Package-X (Patel, arXiv:1503.01469) → simplify result for $M_S \gg m_a$ (for $a = e, \mu, \tau$) → leading order: $\Xi \propto 1/M_S^2$

Most general photonic matrix element

$$i\mathcal{M} = i e A_{\nu}(q') \overline{u_{e}}(p_{e}) \left[\left(\gamma^{\nu} - \frac{\not{q}' q'^{\nu}}{q'^{2}} \right) F_{1}(q'^{2}) + \frac{i \sigma^{\nu \rho} q'_{\rho}}{m_{\mu}} F_{2}(q'^{2}) + 2 \frac{q'^{\nu}}{m_{\mu}} F_{3}(q'^{2}) \right. \\ \left. + \left(\gamma^{\nu} - \frac{\not{q}' q'^{\nu}}{q'^{2}} \right) \gamma_{5} G_{1}(q'^{2}) + \frac{i \sigma^{\nu \rho} q'_{\rho}}{m_{\mu}} \gamma_{5} G_{2}(q'^{2}) + 2 \frac{q'^{\nu}}{m_{\mu}} \gamma_{5} G_{3}(q'^{2}) \right] u_{\mu}(p_{\mu})$$

with $q' = p_e - p_{\mu}$. Branching ratio factorises \rightarrow **particle physics** absorbed into

$$\Xi^{2} = \left| -F_{1}(-m_{\mu}^{2}) + F_{2}(-m_{\mu}^{2}) \right|^{2} + \left| G_{1}(-m_{\mu}^{2}) + G_{2}(-m_{\mu}^{2}) \right|^{2}$$

 \rightarrow determine form factors with the help of Mathematica package Package-X (Patel, arXiv:1503.01469)

- ightarrow simplify result for $M_{\mathcal{S}} \gg m_{a}$ (for $a=e,\,\mu,\, au$)
- ightarrow leading order: $\Xi \propto 1/M_S^2$

Results: Observations

→ non-photonic: widths of the bands so small → appear as lines → non-photonic (DASHED) contributions **negligibly small** $\downarrow \downarrow$ → approximate process by its purely photonic (SOLID) contribution → **factorisation**: dependence on isotope only in width of limit

Results: Photonic Contributions

For $\mu^- \rightarrow e^- \gamma$: strongest bound for red, weakest for blue points

$$\mathcal{A} \propto \left| f_{ee}^* \, f_{e\mu} + f_{e\mu}^* \, f_{\mu\mu} + f_{e au}^* \, f_{ au\mu}
ight| \cdot \mathcal{C}$$

 \rightarrow some amount of cancellation

For $\mu^- - e^-$ conversion: !! other way around !!

 $A \propto \left| \mathit{C_e} \; \mathit{f_{ee}^*} \; \mathit{f_{e\mu}} + \mathit{C_\mu} \; \mathit{f_{e\mu}^*} \; \mathit{f_{\mu\mu}} + \mathit{C_\tau} \; \mathit{f_{e\tau}^*} \; \mathit{f_{\tau\mu}}
ight|$

 \rightarrow flavour-dependent coefficients: prevent similar cancellations \rightarrow shape of amplitude leads to drastical change (not off-shell contributions)

Results: Photonic Contributions

For $\mu^- \rightarrow e^- \gamma$: strongest bound for red, weakest for blue points

$$\mathcal{A} \propto \left| f_{ee}^* \, f_{e\mu} + f_{e\mu}^* \, f_{\mu\mu} + f_{e au}^* \, f_{ au\mu} \right| \cdot \mathcal{C}$$

 \rightarrow some amount of cancellation

For μ^--e^- conversion: !! other way around !!

 $\mathcal{A} \propto \left| \mathit{C_e} \; \mathit{f_{ee}^*} \; \mathit{f_{e\mu}} + \mathit{C_\mu} \; \mathit{f_{e\mu}^*} \; \mathit{f_{\mu\mu}} + \mathit{C_\tau} \; \mathit{f_{e\tau}^*} \; \mathit{f_{\tau\mu}}
ight|$

 \rightarrow flavour-dependent coefficients: prevent similar cancellations \rightarrow shape of amplitude leads to drastical change (not off-shell contributions)

Results: Photonic Contributions

For $\mu^- \rightarrow e^- \gamma$: strongest bound for red, weakest for blue points

$$\mathcal{A} \propto \left| f_{ee}^* \, f_{e\mu} + f_{e\mu}^* \, f_{\mu\mu} + f_{e au}^* \, f_{ au\mu} \right| \cdot \mathcal{C}$$

 \rightarrow some amount of cancellation

For μ^--e^- conversion: !! other way around !!

 $\mathcal{A} \propto \left| \textit{C}_{e} \textit{f}_{ee}^{*} \textit{f}_{e\mu} + \textit{C}_{\mu} \textit{f}_{e\mu}^{*} \textit{f}_{\mu\mu} + \textit{C}_{ au} \textit{f}_{e au}^{*} \textit{f}_{ au\mu}
ight|$

 \rightarrow flavour-dependent coefficients: prevent similar cancellations \rightarrow shape of amplitude leads to drastical change (not off-shell contributions)

Results: Bounds on Scalar Mass

For the **scalar mass**, we can extract lower bounds along the lines of:

	current limit	future limit	
	in GeV	in GeV	
black	<i>M_S</i> >2450	<i>M_S</i> >70370	
grey	<i>M</i> _S >16	<i>M_S</i> >550	
red	<i>M</i> _S >120	<i>M_S</i> >3660	
blue	<i>M</i> _S >460	<i>M_S</i> >13270	
purple	<i>M</i> ₅ >160 <i>M</i> ₅ >488		

Summary and Outlook

- complementarity: rich phenomenology of loop models \rightarrow high- and low-energy processes $\rightarrow \mu^- e^-$ conversion important part of study
- work in progress: μ^--e^+ conversion
 - \rightarrow LNV process
 - ightarrow same experimental setup
 - \rightarrow access not only to $M_{\mathcal{S}}$ but to a combination of $M_{\mathcal{S}}$ and ξ

Thank you for your attention!!

Any questions?

'Integrating out' the Z-boson:

The relevant **effective** Lagrangian for the coherent μ –e conversion is

$$\mathcal{L}_{\text{short-range}} = -\frac{G_F}{\sqrt{2}} \underbrace{\frac{2(1+k_q)\sin^2\vartheta_W\cos\vartheta_W}{g}A_R(q'^2)}_{g} \overline{e_R} \gamma_\nu \mu_R \overline{q} \gamma^\nu q$$

gRV(q

$$\Xi_{\rm non-photonic}^2 \left[Z, N \right] = \frac{m_\mu^4 \sin^4 \vartheta_W \cos^2 \vartheta_W}{128 \,\pi \, \alpha \, Z^2 \, M_W^4} \left| (3N - Z) A_R(-m_\mu^2)) \right|^2.$$

'Integrating out' the Z-boson:

The relevant **effective** Lagrangian for the coherent μ -*e* conversion is

$$\mathcal{L}_{\text{short-range}} = -\frac{G_F}{\sqrt{2}} \underbrace{\frac{2(1+k_q)\sin^2\vartheta_W\cos\vartheta_W}{g}A_R(q'^2)}_{g_{RV(q)}} \overline{e_R}\,\gamma_\nu\,\mu_R\,\overline{q}\,\gamma^\nu\,q$$

$$\Xi_{\rm non-photonic}^2 \Big[Z, N \Big] = \frac{m_\mu^4 \sin^4 \vartheta_W \cos^2 \vartheta_W}{128 \, \pi \, \alpha \, Z^2 \, M_W^4} \left| (3N - Z) A_R(-m_\mu^2)) \right|^2.$$

'Integrating out' the Z-boson:

The relevant **effective** Lagrangian for the coherent μ -*e* conversion is

$$\mathcal{L}_{\text{short-range}} = -\frac{G_F}{\sqrt{2}} \underbrace{\frac{2(1+k_q)\sin^2\vartheta_W\cos\vartheta_W}{g}A_R(q'^2)}_{g_{RV(q)}} \overline{e_R}\,\gamma_\nu\,\mu_R\,\overline{q}\,\gamma^\nu\,q$$

$$\Xi_{\rm non-photonic}^2 \left[Z, N \right] = \frac{m_{\mu}^4 \sin^4 \vartheta_W \cos^2 \vartheta_W}{128 \, \pi \, \alpha \, Z^2 \, M_W^4} \left| (3N - Z) A_R(-m_{\mu}^2) \right|^2.$$

'Integrating out' the Z-boson:

The relevant effective Lagrangian for the coherent μ -e conversion is

$$\mathcal{L}_{\text{short-range}} = -\frac{G_F}{\sqrt{2}} \underbrace{\frac{2(1+k_q)\sin^2\vartheta_W\cos\vartheta_W}{g}}_{g_{RV(q)}} A_R(q'^2)}_{g_{RV(q)}} \overline{e_R} \gamma_{\nu} \mu_R \overline{q} \gamma^{\nu} q$$

$$\Xi_{\text{non-photonic}}^{2} \left[Z, N \right] = \frac{m_{\mu}^{4} \sin^{4} \vartheta_{W} \cos^{2} \vartheta_{W}}{128 \pi \alpha Z^{2} M_{W}^{4}} \left| \left(3N - Z \right) A_{R}(-m_{\mu}^{2}) \right|^{2}.$$

'Average Scenario' Couplings

	red	purple	blue
f _{ee}	10^{-16}	10^{-15}	10^{-1}
$f_{e\mu}$	10^{-2}	10 ⁻³	10^{-4}
$f_{e\tau}$	10^{-19}	10 ⁻²	10 ⁻²
$f_{\mu\mu}$	10^{-4}	10 ⁻³	10^{-3}
$f_{\mu au}$	10^{-5}	10 ⁻⁴	10^{-4}
$f_{ee} f_{e\mu}$	10^{-18}	10^{-18}	10 ⁻⁵
$f_{e\mu} f_{\mu\mu}$	10 ⁻⁶	10^{-6}	10^{-7}
$f_{e\tau} f_{\mu\tau}$	10^{-24}	10 ⁻⁶	10 ⁻⁶

Table: First part: 'average scenario' couplings for the benchmark points as extracted from Tab. 7 in *King, Merle, Panizzi: arXiv:1406.4137*. Second part: combination of couplings that enter the μ -*e* conversion amplitude. The bold values indicate the dominant photonic contribution.

Non-Photonic Bands

• The amplitude that enters the non-photonic Ξ takes the form

 $\mathcal{A} \propto \left| f_{ee}^* f_{e\mu} D(m_e) + f_{e\mu}^* f_{\mu\mu} D(m_\mu) + f_{e\tau}^* f_{\tau\mu} D(m_\tau) \right|.$

- The function $D(m_a)$ strongly varies with m_a .
 - ightarrow dominant term stems from the tau propagating within the loop, i.e. $D(m_{ au})$

 \rightarrow exeeds the muon and electron contribution by three to four orders of magnitude

- blue/purple scenario: neither $f_{ee}^* f_{e\mu}$ nor $f_{e\mu}^* f_{\mu\mu}$ bypasses this difference + identic $f_{e\tau}^* f_{\tau\mu}$ in both scenarios
 - \rightarrow indistinguishable curves
- red/grey scenario:

dominant contributions: $f_{e\mu}^* f_{\mu\mu} D(m_{\mu}) \sim f_{e\tau}^* f_{\tau\mu} D(m_{\tau})$

 \rightarrow same order of magnitude, i.e. comparable values of non-photonic contribution