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Direct detection vs. indirect detection with ©'s from the Sun

Two methods of probing dark matter within in the Solar System:
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distribution

v interactions

Capture and annihilation of
dark matter in the Sun

annhilaton.

@ Same particle physics:
Both approaches probe the scattering cross section gpm-nucleon
@ Different astrophysics:
Complementary dependence on the velocity distribution of dark matter



Astrophysical input for DD and capture in the Sun

Astrophysics of dark matter entering the recoil and capture rate:
@ ppm =~ (0.34+0.1) GeV/cm?® — fixed in this talk

@ f(¥): not known! — usual assumption: Maxwell-Boltzmann distribution
< however, deviations are possible and actually expected!
— stream(s), dark disc(s), 777
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= What is the impact of choosing different f(¥) on the upper limit on o7

Common approach:
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Our method for obtaining a halo-independent limit

Outline for the rest of the talk

Step 1: Only consider pure streams, i.e. f(7) = 6©) (7 — 1)
< We construct an upper limit on &, which is independent of

!

Step 2: We show analytically that this upper limit for stream distributions
automatically implies an upper limit on o which is valid for

all possible f(7)



Step 1: upper limit for f(7) = 6®)(7 — )
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@ The following discussion is for fixed mpm, and for Sl scattering
@ oD (vg): upper limit from direct detection, for f(7) = 6®) (7 — @)

@ We calculate 02D (v) for various experiments taking into account
detector efficiencies, form factors, etc.



Step 1: adding the neutrino telescopes
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@ oNT (vg): upper limit from neutrino telescopes, for f(7) = 6 (7 — )
max\V0): UPP pes, = 0

< for illustration, we fix the ann. channel to W+W~

@ We calculate oL (vg) with the usual techniques following Gould et. al.

(Standard Solar Model, 29 elements, Gaussian form factor)

@ In contrast to direct detection, the capture process is kinematically favored
for small dark matter velocities vg
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@ oNT (vg): upper limit from neutrino telescopes, for f(7) = 6 (7 — )
max\V0): UPP pes, = 0

< for illustration, we fix the ann. channel to W+W~

@ We calculate oL (vg) with the usual techniques following Gould et. al.

(Standard Solar Model, 29 elements, Gaussian form factor)

@ In contrast to direct detection, the capture process is kinematically favored
for small dark matter velocities vg

Direct detection and capture in the Sun are sensitive to
different, overlapping parts of the velocity space

=




Upper limit on

o valid for all stream distributions
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o, is an upper limit valid for all stream distributions




Step 2: halo-independent upper limit on o

Step 1 is done: o, is an upper limit on o, valid for all possible stream distributions

Step 2: Upper limit on o valid for all possible f(%)

@ Any f(?¥) can be decomposed into (infinitely many) streams:

£(5) = / By 5O (7 — 1) f ()
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Step 1 is done: o, is an upper limit on o, valid for all possible stream distributions

Step 2: Upper limit on o valid for all possible f(%)

@ Any f(?¥) can be decomposed into (infinitely many) streams:
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o All rates are linear in f(¥) = 1/0upper limit IS Iinear in f(")
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Main idea:

DD

bD (1) and oNT (vy) are bounded by o,

a) By construction, o
DD/NT

= b) l/o—lljjp?)éllf\ll-li—mit for f(5) 1S 3 normalized superposition of 1/o0may (o)

= There exists an upper bound on ¢ which is independent of f(v)!




Constructing a halo-independent upper limit on o,

Claim: 2 - o, is an upper limit valid for all possible distributions f (%)




Constructing a halo-independent upper limit on o,

Claim: 2 - o, is an upper limit valid for all possible distributions f (%)

Sketch of the proof: (all details in the paper)
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Halo-independent upper limits: results

SI scattering, ann. into WHW = /77~ SD scattering, ann. into WHW~ /777~
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@ The red curves show the halo-independent upper limit, valid in particular
for non-maxwellian f (%), streams, dark disc(s), anisotropic distributions, ...

@ The limit is still degenerate with piocal, which we fix to 0.3 GeV/cm?
— effectively, we constraint o - piocal

@ Black: upper limits assuming standard Maxwell-Boltzmann distribution

For some scenarios, the halo-independent upper limits are remarkably strong

Side remark: our method can also be used for setting a halo-independent lower limit
on o, arising from a positive signal in DD (see paper)



Conclusions

@ Direct detection and capture in the Sun are sensitive to different,
overlapping parts of the velocity space of dark matter
< Taken together, they probe the complete range of relevant velocities

@ First, we explicitly construct an upper limit on o valid for all possible
stream distributions

@ We then show analytically that this upper limit leads to a
halo-independent upper limit on ¢
< this limit applies in particular for anisotropic distributions, stream(s),
dark disc(s), ...

@ For some cases, the halo-independent upper limits on o can be remarkably
strong
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Halo-independent upper limits: comments

Only assumptions behind our halo-independent upper limits on o,:
@ Umax = (533 + 244) km/s (not crucial)

@ Equilibrium between capture and annhilation
< ensured for (ov) > 10728cm3/s

@ f(7) is homogeneous on the scale of the Solar system
@ f(7) has been constant in time (on scales of Tequilibrium)

@ Numerical value of the limit depends on the annihilation channel

In particular, our limits do apply for...

@ non-maxwellian f(¥), arbitrary number of streams, dark disc(s), ...

@ anisotropic velocity distributions
— Be aware: limit on o, is still degenerate with the local density pioc, of course.
Relation to other works:

@ All other halo-independent approaches (Fox et. al., Gondolo et. al.,
Kahlhoefer et. al.) directly compare DD experiments, without obtaining
upper limits on o),



Halo-independent upper limits: all cases
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Construction of the halo-independent upper limits
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