A novel approach to derive halo-independent limits on dark matter properties

> Sebastian Wild TUM, Munich

DESY Theory Workshop 2015 September 30, 2015

Based on [1506.03386] (JCAP '15) Francesc Ferrer, Alejandro Ibarra, SW

Direct detection vs. indirect detection with $\nu\,{}^{\prime}{\rm s}$ from the Sun

Two methods of probing dark matter within in the Solar System:

Direct detection

Capture and annihilation of dark matter in the Sun

• Same particle physics:

Both approaches probe the scattering cross section $\sigma_{\rm DM-nucleon}$

• Different astrophysics:

Complementary dependence on the velocity distribution of dark matter

Astrophysical input for DD and capture in the Sun

Astrophysics of dark matter entering the recoil and capture rate:

- $ho_{\rm DM}\simeq (0.3\pm 0.1)\,{\rm GeV/cm^3}~
 ightarrow {\rm fixed}$ in this talk
- f(v): not known! → usual assumption: Maxwell-Boltzmann distribution
 → however, deviations are possible and actually expected!
 → stream(s), dark disc(s), ???

Astrophysical input for DD and capture in the Sun

Astrophysics of dark matter entering the recoil and capture rate:

- $ho_{\rm DM}\simeq (0.3\pm 0.1)\,{\rm GeV/cm^3}~
 ightarrow {\rm fixed}$ in this talk
- f(v): not known! → usual assumption: Maxwell-Boltzmann distribution
 → however, deviations are possible and actually expected!
 → stream(s), dark disc(s), ???

 \Rightarrow What is the impact of choosing different $f(\vec{v})$ on the upper limit on σ ?

Common approach:

Astrophysical input for DD and capture in the Sun

Astrophysics of dark matter entering the recoil and capture rate:

- $ho_{\rm DM}\simeq (0.3\pm 0.1)\,{\rm GeV/cm^3}~
 ightarrow {\rm fixed}$ in this talk
- f(v): not known! → usual assumption: Maxwell-Boltzmann distribution
 → however, deviations are possible and actually expected!
 → stream(s), dark disc(s), ???

 \Rightarrow What is the impact of choosing different $f(\vec{v})$ on the upper limit on σ ?

Common approach:

Our method for obtaining a halo-independent limit

Outline for the rest of the talk

<u>Step 1</u>: Only consider **pure streams**, i.e. $f(\vec{v}) = \delta^{(3)}(\vec{v} - \vec{v}_0)$ \hookrightarrow We construct an upper limit on σ , which is independent of \vec{v}_0

 $\label{eq:step 2} \frac{\text{Step 2}}{\text{automatically implies an upper limit for stream distributions}} \\ \frac{\text{Automatically implies an upper limit on } \sigma \text{ which is valid for} \\ \frac{\text{all possible } f(\vec{v})}{\text{all possible } f(\vec{v})} \\ \end{array}$

- The following discussion is for fixed $m_{\rm DM}$, and for SI scattering
- $\sigma_{\max}^{DD}(v_0)$: upper limit from direct detection, for $f(\vec{v}) = \delta^{(3)}(\vec{v} \vec{v}_0)$
- We calculate $\sigma_{\max}^{DD}(v_0)$ for various experiments taking into account detector efficiencies, form factors, etc.

Step 1: adding the neutrino telescopes

• $\sigma_{\max}^{NT}(v_0)$: upper limit from neutrino telescopes, for $f(\vec{v}) = \delta^{(3)}(\vec{v} - \vec{v}_0)$ \hookrightarrow for illustration, we fix the ann. channel to W^+W^-

- We calculate $\sigma_{\max}^{NT}(v_0)$ with the usual techniques following Gould et. al. (Standard Solar Model, 29 elements, Gaussian form factor)
- In contrast to direct detection, the capture process is kinematically favored for small dark matter velocities v_0

Step 1: adding the neutrino telescopes

• $\sigma_{\max}^{NT}(v_0)$: upper limit from neutrino telescopes, for $f(\vec{v}) = \delta^{(3)}(\vec{v} - \vec{v}_0)$ \hookrightarrow for illustration, we fix the ann. channel to W^+W^-

- We calculate $\sigma_{\max}^{NT}(v_0)$ with the usual techniques following Gould et. al. (Standard Solar Model, 29 elements, Gaussian form factor)
- In contrast to direct detection, the capture process is kinematically favored for small dark matter velocities v_0

Direct detection and capture in the Sun are sensitive to **different, overlapping parts** of the velocity space

Upper limit on σ valid for all stream distributions

• We define σ_{\star} by the requirements

Step 2: halo-independent upper limit on σ

Step 1 is done: σ_{\star} is an upper limit on σ , valid for all possible <u>stream distributions</u> Step 2: Upper limit on σ valid for <u>all possible</u> $f(\vec{v})$

• Any $f(\vec{v})$ can be **decomposed** into (infinitely many) streams:

$$f(\vec{v}) = \int d^3 v_0 \,\delta^{(3)}(\vec{v} - \vec{v}_0) f(\vec{v}_0)$$

Step 2: halo-independent upper limit on σ

Step 1 is done: σ_{\star} is an upper limit on σ , valid for all possible <u>stream distributions</u> Step 2: Upper limit on σ valid for <u>all possible</u> $f(\vec{v})$

• Any $f(\vec{v})$ can be ${\rm decomposed}$ into (infinitely many) streams:

$$f(\vec{v}) = \int d^3 v_0 \, \delta^{(3)}(\vec{v} - \vec{v}_0) f(\vec{v}_0)$$

• All rates are linear in $f(\vec{v}) \ \Rightarrow \ 1/\sigma_{\rm upper\ limit}$ is linear in $f(\vec{v})$

$$\Rightarrow \quad \frac{1}{\sigma_{\text{upper limit for } f(\vec{v})}^{\text{DD}}} \equiv \int d^3 v_0 \frac{f(\vec{v}_0)}{\sigma_{\text{max}}^{\text{DD}}(v_0)}$$
$$\frac{1}{\sigma_{\text{upper limit for } f(\vec{v})}^{\text{NT}}} \equiv \int d^3 v_0 \frac{f(\vec{v}_0)}{\sigma_{\text{max}}^{\text{NT}}(v_0)}$$

 $\Rightarrow \begin{cases} \frac{\text{Main idea}:}{\text{a) By construction, } \sigma_{\max}^{\text{DD}}(v_0) \text{ and } \sigma_{\max}^{\text{NT}}(v_0) \text{ are bounded by } \sigma_{\star} \\ \text{b) } 1/\sigma_{\text{upper limit for} f(\vec{v})}^{\text{DD/NT}} \text{ is a normalized superposition of } 1/\sigma_{\max}^{\text{DD/NT}}(v_0) \\ \Rightarrow \text{ There exists an upper bound on } \sigma \text{ which is independent of } f(\vec{v})! \end{cases}$

Constructing a halo-independent upper limit on σ_p

<u>Claim</u>: $2 \cdot \sigma_{\star}$ is an upper limit valid for **all possible distributions** $f(\vec{v})$

Constructing a halo-independent upper limit on σ_p

<u>Claim</u>: $2 \cdot \sigma_{\star}$ is an upper limit valid for all possible distributions $f(\vec{v})$

Sketch of the proof: (all details in the paper)

$$\begin{split} \sigma_{\text{upper limit for } f(\vec{v})}^{\text{DD}} &= \left[\int d^3 v_0 \, \frac{f(\vec{v}_0)}{\sigma_{\max}^{\text{DD}}(v_0)} \right]^{-1}, \quad \sigma_{\max}^{\text{DD}}(v_0) \leq \sigma_\star \text{ for } \tilde{v} \leq v_0 \leq v_{\max} \\ \sigma_{\text{upper limit for } f(\vec{v})}^{\text{NT}} &= \left[\int d^3 v_0 \, \frac{f(\vec{v}_0)}{\sigma_{\max}^{\text{NT}}(v_0)} \right]^{-1}, \quad \sigma_{\max}^{\text{NT}}(v_0) \leq \sigma_\star \text{ for } 0 \leq v_0 \leq \tilde{v} \\ \Rightarrow \quad \sigma \leq \frac{\sigma_\star}{\delta_f} \text{ and } \sigma \leq \frac{\sigma_\star}{1-\delta_f} \text{ with } \delta_f \equiv \int_{\tilde{v} \leq |\vec{v}_0| \leq v_{\max}} d^3 v_0 \, f(\vec{v}_0) \\ \Rightarrow \quad \sigma = \delta_f \cdot \sigma + (1-\delta_f) \cdot \sigma \leq \sigma_\star + \sigma_\star = 2\sigma_\star \qquad q.e.d. \end{split}$$

Halo-independent upper limits: results

- The red curves show the **halo-independent upper limit**, valid in particular for non-maxwellian $f(\vec{v})$, streams, dark disc(s), anisotropic distributions, ...
- The limit is still degenerate with ρ_{local} , which we fix to 0.3 GeV/cm³ \hookrightarrow effectively, we constraint $\sigma \cdot \rho_{\text{local}}$
- Black: upper limits assuming standard Maxwell-Boltzmann distribution

For some scenarios, the halo-independent upper limits are remarkably strong

Side remark: our method can also be used for setting a halo-independent *lower limit* on σ , arising from a positive signal in DD (see paper)

Conclusions

- Direct detection and capture in the Sun are sensitive to different, overlapping parts of the velocity space of dark matter
 → Taken together, they probe the complete range of relevant velocities
- First, we explicitly construct an upper limit on σ valid for all possible stream distributions
- We then show analytically that this upper limit leads to a halo-independent upper limit on σ
 - \hookrightarrow this limit applies in particular for anisotropic distributions, stream(s), dark disc(s), ...
- For some cases, the halo-independent upper limits on σ can be remarkably strong

Backup slides

Halo-independent upper limits: comments

Only assumptions behind our halo-independent upper limits on σ_p :

- $v_{\rm max} = (533 + 244) \text{ km/s (not crucial)}$
- Equilibrium between capture and annhilation \hookrightarrow ensured for $\langle \sigma v \rangle \gtrsim 10^{-28} {\rm cm}^3/{\rm s}$
- $f(ec{v})$ is homogeneous on the scale of the Solar system
- $f(ec{v})$ has been constant in time (on scales of $au_{
 m equilibrium}$)
- Numerical value of the limit depends on the annihilation channel

In particular, our limits do apply for...

- non-maxwellian $f(ec{v})$, arbitrary number of streams, dark disc(s), ...
- anisotropic velocity distributions
- \hookrightarrow <u>Be aware:</u> limit on σ_p is still degenerate with the local density $ho_{
 m loc}$, of course.

Relation to other works:

• All other halo-independent approaches (Fox et. al., Gondolo et. al., Kahlhoefer et. al.) directly compare DD experiments, without obtaining upper limits on σ_p

Halo-independent upper limits: all cases

Construction of the halo-independent upper limits

Halo-independent *lower* limit on the scattering cross section

