Improved Estimates for the Parameters of the Heavy Quark Expansion

Johannes Heinonen

Universität Siegen

based on Nucl.Phys. **B889** (2014) 46-63 [arXiv:1407.4384] with Thomas Mannel

work in progress [arXiv:151x.xxxx] with Thomas Mannel, Alexei Pivovarov

DESY Theory Workshop 2015 September 29th - October 2nd

Motivation: Semileptonic B-decays

Decay rate in HQET

$$d\Gamma \sim d\Gamma_0 + \underbrace{\frac{\langle \bar{h}(iD)^2h\rangle}{m_b^2}d\Gamma_2}_{\text{2 parameters}} + \underbrace{\frac{\langle \bar{h}(iD)^3h\rangle}{m_b^3}d\Gamma_3}_{\text{2 parameters}} + \underbrace{\frac{\langle \bar{h}(iD)^4h\rangle}{m_b^4}d\Gamma_4}_{\text{9 parameters}} + \dots$$

Can only extract some from data, e.g.

$$\langle \bar{b}(iD)^2b\rangle\sim\mu_\pi^2,\mu_G^2$$
 (kinetic energy, chromomagnetic moment) $\langle \bar{b}(iD)^3b\rangle\sim\rho_D^3,\rho_{LS}^3$ (Darwin term, spin-orbit-coupling)

- Many more parameters at higher order: 18 at $1/m_h^5$.
- ⇒ Can we estimate the higher order parameters?

$$\langle \bar{b}(iD)^4b\rangle \stackrel{?}{\sim} \langle \bar{b}(iD)^2b\rangle^2$$

• How are matrix elements related to each other?

$$\rightarrow$$
 e.g. $\langle O^2 \rangle = \langle O \rangle^2 + \dots$?

• In quantum mechanics: Insert sum over all states

$$\begin{split} \langle 0|\textit{O}_{1}\textit{O}_{2}|0\rangle &= \sum_{\textit{n}} \left\langle 0|\textit{O}_{1}|\textit{n}\right\rangle \left\langle \textit{n}|\textit{O}_{2}|0\right\rangle \\ &= \left\langle 0|\textit{O}_{1}|0\right\rangle \left\langle 0|\textit{O}_{2}|0\right\rangle + \left\langle 0|\textit{O}_{1}|1\right\rangle \left\langle 1|\textit{O}_{2}|0\right\rangle + \dots \end{split}$$

• How to do this properly in field theory?

Want something like

$$\langle B|\bar{b}\mathcal{O}_{1}\mathcal{O}_{2}b|B\rangle = \langle B|\bar{b}\mathcal{O}_{1}b|B\rangle \langle B|\bar{b}\mathcal{O}_{2}b|B\rangle$$

$$+ \langle B|\bar{b}\mathcal{O}_{1}b|B^{*}\rangle \langle B^{*}|\bar{b}\mathcal{O}_{2}b|B\rangle + \dots$$

(systematically elaborate on the work of [Mannel, Turczyk, Uraltsev $\,^{'}10])$

Strategy: Overview

How To

1 Introduce an auxiliary heavy quark field Q(x) and consider

$$\langle B(p_B) | \mathcal{T}[\bar{b}(x)\mathcal{O}_1 \frac{Q(x)}{Q(0)} \bar{Q}(0)\mathcal{O}_2 b(0)] | B(p_B) \rangle$$

"Insertion of 1 as in QM"

$$\langle B|\bar{b}\mathcal{O}_1Q\bar{Q}\mathcal{O}_2b|B\rangle \sim \sum_n \langle B|\bar{b}\mathcal{O}_1Q|n\rangle \, \langle n|\bar{Q}\mathcal{O}_2b|B\rangle$$

- **3** Evaluate both sides in the static limit $m_Q\gg m_b\to\infty$
- \rightarrow heavy quark symmetry: Replace Q by b.

Technical details

- Consider first only operators \mathcal{O} with spacelike derivatives iD_{\perp} .
- Compute the Fourier transform

$$T(q) = \int d^4x \ e^{iq \cdot x} \langle B(p_B) | \mathcal{T}[[\bar{b}(x)\mathcal{O}_1 Q(x) \ Q(0)\mathcal{O}_2 b(0)] | B(p_B) \rangle$$

at $\vec{q} = 0$, with and without insertion of 1.

Without insertion of 1

• Do an OPE:

First term
$$Q$$
-propagator $\langle Q \bar{Q} \rangle \sim \frac{1}{\omega + v \cdot i D} \frac{1 + v}{2}$

With insertion of 1

- Compute FT
- Use heavy quark symmetry: $\langle \bar{b}\mathcal{O}_1 Q \rangle \to \langle \bar{b}\mathcal{O}_1 b \rangle$
- Expand both sides in large $\omega = q^0 m_Q + m_b$.

Results I

The "master equation"

$$\sum_{k} \langle B \left| \bar{b} \mathcal{O}_{1} \left(\frac{v \cdot iD}{\omega} \right)^{k} \mathcal{O}_{2} b \right| B \rangle$$

$$\sim \sum_{k} \sum_{n} \left(\frac{-\epsilon_{n}}{\omega} \right)^{k} \langle B | \bar{b} \mathcal{O}_{1} Q | n \rangle \langle n | \bar{Q} \mathcal{O}_{2} b | B \rangle$$

- ϵ_n = excitation energy of state $|n\rangle$
- k = 0: only spacelike derivatives iD_{\perp} , k = 1: exactly one timelike derivatives $(v \cdot iD)$, ...
- \rightarrow arbitrary number of $(v \cdot iD)$'s next to each other
 - To get several $(v \cdot iD)$'s separated by (iD_{\perp}) 's:
- \rightarrow Insert Q's and "1" several times, i.e.

$$\langle B|\dots(v\cdot iD)iD_{\perp}(v\cdot iD)\dots|B\rangle$$

$$\sim \sum_{n}\sum_{m}\epsilon_{n}\epsilon_{m}\langle B|\dots Q_{1}|n\rangle\langle n|\bar{Q}_{1}iD_{\perp}Q_{2}|m\rangle\langle m|\bar{Q}_{2}\dots|B\rangle$$

Calculation of B-Meson matrix elements I

 Need to truncate the sum: Let's only take the lowest lying modes, "Lowest lying state approximation" (LLSA)

Calculate the matrix elements using "trace formula"

$$\langle B|\bar{b}\mathcal{O}Q|n\rangle = Tr\left[\bar{\mathcal{M}}_B\Gamma_{\mathcal{O}}\mathcal{M}_QF_{\mathcal{O}}^j\right]$$

- $\mathcal{M}=$ Representation of B- or Q-Meson, e.g. $\mathcal{M}_B\sim \left[\frac{1+\psi}{2}\gamma_5\right]_{\alpha\beta}$ labeled by J^P of Meson and j of light d.o.f. (= "brown muck"). $\Gamma_{\mathcal{O}}=$ Dirac structure of \mathcal{O} $F_{\mathcal{O}}^j=$ Rep. of the light d.o.f of $|n\rangle$, depends on \mathcal{O} .
- \rightarrow Each doublet with same j shares the same function $F_{\mathcal{O}}^{j}$. \Rightarrow reduction of free parameters.

Calculation of B-Meson matrix elements II

- Order calculation by number of derivatives $(\sim 1/m_b^n)$
 - (1) $\langle B|iD|B\rangle = 0$.
 - (1') $\langle B|iD|B^*\rangle$: Two parameters R, R' (for $J^P=1^+$ and $j_Q=\frac{1}{2},\frac{3}{2}$).
 - (2) $\langle B|iD^2|B\rangle$: Two parameters μ_{π} , μ_{G}

$$2M_B\mu_\pi^2 = -\langle B|\bar{b}_\nu(iD)^2b_\nu|B\rangle$$

$$2M_B\mu_G^2 = -\langle B|\bar{b}_\nu iD_\mu^\perp iD_\nu^\perp i\sigma_\perp^{\mu\nu}b_\nu|B\rangle$$

- (3) $\langle B|iD^3|B\rangle$: Two parameters ρ_D , ρ_{LS}
- (4) $\langle B|iD^4|B\rangle$: 9 parameters m_i
- (5) $\langle B|iD^5|B\rangle$: 18 parameters r_i
- ullet Except (1'), must always have even number of iD_{\perp}
- \rightarrow (3) and (5) will contain $v \cdot iD \sim \epsilon_n$, as will some in (4).

Express all these matrix elements (@LLSA) in terms of

$$\mu_{\pi}, \mu_{G}, \epsilon_{1/2}$$
 and $\epsilon_{3/2}$

Calculation of B-Meson matrix elements III

- Go back recursively to get the parameters
 - (1) $\langle B|iD^2|B\rangle \sim \langle B|iD|n\rangle \langle n|iD|B\rangle \rightarrow |R|^2$, $|R'|^2$.
 - (2) $\mu_{\pi}, \, \mu_{G}: \, \checkmark$
 - (3) $\langle B|iD^3|B\rangle \sim \epsilon_n \langle B|iD|n\rangle \langle n|iD|B\rangle \rightarrow \rho_D, \rho_{LS}$
 - (4) $\langle B|iD^4|B\rangle \sim \langle B|iD^2|n\rangle \langle n|iD^2|B\rangle \rightarrow m_i$
 - (5) $\langle B|iD^5|B\rangle \sim \epsilon_n \langle B|iD^2|n\rangle \langle n|iD^2|B\rangle \rightarrow r_i$
- Example:

$$m_{8} \sim \langle B \left| \bar{b} (iD_{\perp}^{\mu} iD_{\mu}^{\perp}) (iD_{\alpha}^{\perp} iD_{\beta}^{\perp} i\sigma_{\perp}^{\alpha\beta}) b \right| B \rangle$$

$$\sim \langle B \left| \bar{b} iD_{\perp}^{\mu} iD_{\mu}^{\perp} b \right| B \rangle \langle B \left| \bar{b} iD_{\alpha}^{\perp} iD_{\beta}^{\perp} i\sigma_{\perp}^{\alpha\beta} b \right| B \rangle$$

$$\sim \mu_{\pi}^{2} \mu_{G}^{2}$$

(including all factors: $m_8 = -8\mu_\pi^2 \mu_G^2$)

Results II

	formula	GeV ³
ρ_D^3	$\frac{\epsilon_{1/2}}{3}(\mu_{\pi}^2 - \mu_G^2) + \frac{\epsilon_{3/2}}{3}(2\mu_{\pi}^2 + \mu_G^2)$	0.21
$ ho_{LS}^3$	$\frac{2\epsilon_{1/2}}{3}(\mu_{\pi}^2 - \mu_{G}^2) - \frac{\epsilon_{3/2}}{3}(2\mu_{\pi}^2 + \mu_{G}^2)$	-0.17
		GeV ⁴
m_1	$rac{5}{9}\mu_\pi^4$	0.095
<i>m</i> ₂	$-\frac{\epsilon_{1/2}^2}{3}(\mu_\pi^2-\mu_G^2)-\frac{\epsilon_{3/2}^2}{3}(2\mu_\pi^2+\mu_G^2)$	-0.082
<i>m</i> ₃	$-\frac{2}{3}\mu_G^4$	-0.077
m ₄	$\mu_G^4 - \frac{4}{3}\mu_\pi^4$	0.344
<i>m</i> ₅	$-\frac{2\epsilon_{1/2}^2}{3}(\mu_{\pi}^2 - \mu_{G}^2) + \frac{\epsilon_{3/2}^2}{3}(2\mu_{\pi}^2 + \mu_{G}^2)$	0.070
<i>m</i> ₆	$rac{2}{3}\mu_G^4$	0.077
<i>m</i> ₇	$-rac{8}{3}\mu_\pi^2\mu_G^2$	-0.375
<i>m</i> ₈	$-8\mu_\pi^2\mu_G^2$	-1.126
<i>m</i> ₉	$\mu_G^4 - \frac{10}{3}\mu_\pi^2\mu_G^2$	-0.354

Input

$$\mu_{\pi}^2 = 0.414 \text{ GeV}^2$$
 $\mu_G^2 = 0.340 \text{ GeV}^2$
 $\epsilon_{1/2} = 0.390 \text{ GeV}$
 $\epsilon_{3/2} = 0.476 \text{ GeV}$

- Similarly for r_i 's.
- Cross check (exp.): $\rho_D^3 \sim 0.154 \text{ GeV}^3$ $\rho_{LS}^3 \sim -0.147 \text{ GeV}^3$ (errors: $\sim 0.05\text{-}0.1$)

Error analysis

What is the error on these estimates?

Approach ist very systematic:

- Uncertainties from input $\mu_{\pi}, \mu_{G}, \epsilon_{1/2}$ and $\epsilon_{3/2}$: \checkmark
- QCD corrections in the OPE: √
- BUT error of truncation difficult to account for:
 - Compare to nonrelativistic QM: Spherical box, Coulomb potential, harmonic oscillator, ...
 - \rightarrow truncation gives \sim few 10 % error
 - 2 Better: Make toy model for the dispersion relation

$$\tilde{T}(\omega) = \sum_n g(n) \frac{1}{\omega - n\Lambda}$$
 with $g(n) \sim n^{-\beta}$ [In spherical box: $\beta = 2$.]

Compare full sum to first term $\rightarrow \sim$ few 10 % error

$$\Rightarrow$$
 Truncation error \sim 30 - 60 %.

→ Estimates still good for order of magnitude, sign and correlcations.

[Can also improve by including higher excitations.]

Cross check: work in progress I

• Try to estimate the matrix elements by using sum rules:

Consider the three point correlation function

$$\begin{split} T(\omega,\omega') \sim \int & d^4x \, e^{i(\omega x^0 + \omega' y^0)} \underbrace{\langle 0 | \mathcal{T}[\bar{q}(x) i \gamma^5 b(x) \, \bar{b}(0) \mathcal{O} b(0) \, \bar{b}(y) i \gamma^5 q(y)] | 0 \rangle}_{\sim \langle \mathcal{B} | \bar{b} \mathcal{O} b | \mathcal{B} \rangle} \\ \sim \int & \frac{dE}{E - \omega} \int & \frac{dE'}{E' - \omega'} \, \rho(E,E') \end{split}$$

ightarrow Calculate the spectral density, .g. for $\mathcal{O}\sim (\emph{i}D_{\perp})^2$:

$$\rho(E,E') \sim -\frac{N_c}{2\pi^2} E^4 \delta(E-E') + \frac{3}{16} \left\langle \bar{q} G q \right\rangle \delta(E) \delta(E') + \dots$$

Cross check: work in progress II

• Compare to "known" form of the correlation function

$$\hat{T}(\omega,\omega') \sim \frac{F^2 \langle B|\bar{b}\mathcal{O}b|B\rangle}{4(\bar{\Lambda}-\omega)(\bar{\Lambda}-\omega')} + \dots$$

and we obtain

Finite energy sum rules

$$\Rightarrow \frac{F^2 \langle B | \bar{b} \mathcal{O} b | B \rangle}{4} \sim \int_0^{E_0} ds \int_0^{E_0} ds' \, \rho(s, s')$$

• For example (incl. normalization/reasonable input)

$$\mu_{\pi}^2 \sim \frac{\frac{N_c}{10\pi^2} E_0^5 + \frac{3}{16} \langle \bar{q} Gq \rangle}{\frac{N_c}{3\pi^2} E_0^3 - \langle \bar{q} q \rangle} \sim 0.42 \text{ GeV}^2$$

• Now proceed to higher orders \rightarrow ... to come ...

Summary

What have we done:

• Higher order matrix elements can be estimated systematically

$$\langle B|\mathcal{O}_1\mathcal{O}_2|B\rangle \sim \langle B|\mathcal{O}_1|\textbf{n}\rangle\,\langle\textbf{n}|\mathcal{O}_2|B\rangle + \dots$$

- In lowest state approximation need only a few parameters: 2nd order ME μ_{π}^2, μ_{G}^2 and the excitation energies $\epsilon_{1/2}, \epsilon_{3/2}$
- Error of truncation $\sim 30-60\%$
- → still obtain orders of magnitude, sign and correlcations.

What's next:

- Estimate the ME using finite energy sum rules.
- ullet Include QCD corrections in OPE (o subtracted dispersion relations).