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Why  go  beyond  SCET?

Soft-­‐Collinear  Effective  Theory  is  a  powerful  and  versatile  tool  to  study  
multi-­‐scale  processes  involving  light,  energetic  particles:  

many  successful  applications  in  B  physics  and  collider  physics  
elegant  framework  in  which  to  study  factorization  properties  of  cross  
sections  and  perform  resummations  of  large  (Sudakov)  logarithms  using  
RG  equations  
for  sufficiently  inclusive  processes,  cross  sections  involving  energetic  
particles  can  be  factorized  into  products  (convolutions)  of  hard  functions,  
jet  functions,  and  soft  functions

Introduction

• Hadron-collider processes are prime 
examples of multi-scale problems 
involving several hierarchical scales

• Due to light-like nature of these 
processes, scale separation cannot be 
performed using a conventional OPE 

• Instead, any field-theory description of 
these processes must be intrinsically 
non-local

QCD factorization theorems:

H

J J

J J

S

d� ⇠ H({sij}, µ)
Y

i

Ji(M2
i , µ)⌦ S({⇤2

ij}, µ)

operators containing Wilson lines 

Bauer, Fleming, Pirjol, Stewart (2000); Bauer Pirjol, Stewart (2001)
Beneke, Chapovsky, Diehl, Feldmann (2002)



soft-­‐gluon  (threshold)  resummation  in  Drell-­‐Yan  
production,  Z-­‐boson  production,  Higgs  production,  
top-­‐quark  pair  production  etc.  (jet  functions  =  PDFs)  
pT  resummation  for  transverse-­‐momentum  
distributions  of  Z  and  Higgs  bosons                                                
(jet  functions  =  beam  functions  =  TMDPDFs)  
jet-­‐veto  cross  sections  
inclusive  jet  observables  such  as  jettiness

Factorization  into  hard,  jet  and  soft  functions
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Introduction

• Hadron-collider processes are prime 
examples of multi-scale problems 
involving several hierarchical scales

• Due to light-like nature of these 
processes, scale separation cannot be 
performed using a conventional OPE 

• Instead, any field-theory description of 
these processes must be intrinsically 
non-local

QCD factorization theorems:

H

J J

J J

S

d� ⇠ H({sij}, µ)
Y
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Ji(M2
i , µ)⌦ S({⇤2

ij}, µ)

operators containing Wilson lines 

Becher, Lübbert, MN, Wilhelm (in preparation)
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Such   a   simple   formula  does   not  work   for   jet   cross  
sections   defined   using   a   standard   cone   (or   hemi-­‐
sphere)  algorithm  

Previous  SCET  studies  of  hemisphere  soft  functions  
have   found   results   containing   large   logarithms,   i.e.  
depending  on  more  than  one  scale  

Recently,   an   approximate   (but   not   systematic)  
resummation  scheme  based  on   the   resummation  of  
observables  with  n  soft  subjects  was  proposed

This  finding  shows  that  the  effective  theory  is  
incomplete  and  misses  some  essential  physics!

Kelley, Schwartz, Schabinger, Zhu (2011)
Hornig, Lee, Stewart, Walsh, Zuberi (2011)
von Manteuffel, Schabinger, Zhu (2013)

Larkoski, Moult, Neill [arXiv:1501.04596]
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Non-­‐global   logarithms   (NGLs)   arise   whenever   soft  
radiation  is  not  distributed  evenly  in  the  final  state  of  
a  collider  process  

The   resummation   of   NGLs   has   thus   far   only   be  
accomplished  at  leading-­‐logarithmic  order  (LLO):  

large-­‐Nc   limit:  BMS   integral   equation   allows   for   a  
numerical  solution  using  Monte  Carlo  techniques  

generalizations  to  finite  Nc  have  been  studied

We   have   constructed   the   generalization   of   SCET  
needed  to  deal  with  NGLs  

For   the   first   time,   we   have   proposed   an   all-­‐order  
factorization   formula   for   cone-­‐jet   cross   sections  
(general  approach  applicable  to  many  processes)  

Our   approach   recasts   the   problem   of   resumming  
NGLs   in   the   language   of   RG   equations,   which   in  
principle  allows  for  a  solution  at  NLLO  and  beyond

Banfi, Marchesini, Smye (2002)

Weigert (2003)

Recently,  Simon  Caron-­‐Huot  has  proposed  a  functional  evolution  equation  for  the  resummation  of  NGLs  beyond  LO  
in  the  color  density-­‐matrix  approach.  His  resummation  approach  may  be  equivalent  to  ours  (difficult  to  show),    

but  it  does  not  (yet)  provide  a  factorization  formula  for  cross  sections  sensitive  to  NGLs
Caron-Huot [arXiv:1501.03754]

Dasgupta, Salam (2001)

Hatta, Ueda (2013)



after  hard  virtual  corrections  have  been  integrated  
out,  the  process  involves  (anti-­‐)collinear  particles  
contained  inside  the  jets  and  soft  particles  emitted  
outside  the  jet  cones  
naively  one  expects:  

NGLs  arise  because  the  energy  of  soft  emissions  
outside  the  cones  is  limited,  while  soft  radiation  
inside  the  cones  in  unconstrained

Consider  e+e-­‐  →  2  jets  at  √s=Q    (jet  axis=thrust  axis      )
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Q

Q�

Q�
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~n

n̄µ = (1,�~n)

n · p < �2 n̄ · p

n̄ · p < �2 n · p

2E
out

< Q�

nµ = (1,~n)



naively  one  expects:  

previous  SCET  work  for  jet  cross  sections  has  failed  
to  resum  NGLs  and  hence  does  not  provide  a  
complete  factorization  beyond  one-­‐loop  order:

Consider  e+e-­‐  →  2  jets  at  √s=Q    (jet  axis=thrust  axis      )
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while the soft ones are always outside the cone, since they
generically have large angle

n · ps
n̄ · ps

∼ 1 ≫ δ2 . (2)

It is clear that there also must be contributions which in-
volve both small energy and small angle. Indeed, analyz-
ing the relevant Feynman diagrams, we find that modes
which are simultaneously soft and collinear

coft: pt ∼ Qβ (δ2, 1, δ) , pt̄ ∼ Qβ (1, δ2, δ)

do give leading contributions to the cross section. It
would be natural to call these modes collinear-soft or soft-
collinear, but since dashes are silent this could lead to
ambiguities in discussions. We have therefore shortened
their name to “coft”. Coft modes can be emitted inside
or outside a jet and their natural scale is

√
p2t ∼ Qδβ,

which is much lower than the collinear scale Qδ and the
soft scale Qβ. Given these scalings, we can now write
down the expanded phase-space constraint for the jet
cross section, including the momentum conservation δ-
function. It reads

δ(Q− n̄ · pXc
) δd−2(p⊥Xc

) δ(Q − n · pXc̄
) δd−2(p⊥Xc̄

)

× θ(Qβ − 2EXs
− n̄ · pXout

t
− n · pXout

t̄
)

×
∏

i θ(δ
2n̄ · pic − n · pic)

∏
j θ(δ

2n · pjc̄ − n̄ · pjc̄) . (3)

The separate constraints on the transverse momentum
in each hemisphere ensure that n⃗ is indeed the thrust
axis, see e.g. [20]. The soft and coft momenta are not
constrained by momentum conservation, since they are
parametrically smaller than the collinear momenta. The
angle constraints in the last line enforce that all collinear
particles are inside the jets. As stated above, there are
no angle constraints on the soft particles, since the θ-
functions constraining them to be outside are trivially
fulfilled after multipole expansion due to (2). The right-
moving coft particles can be inside or outside the right
jet, and the energy constraint in (3) acts on them if they
are outside the right jet. These right-moving coft parti-
cles do not see the left jet, because after the multipole
expansion they are always outside this jet.
It is now a simple exercise to verify that one reproduces

the one-loop cone-jet rate by expanding the dijet cross
section in the above momentum regions, performing the
phase-space integrals in each region, and adding up the
resulting contributions. The soft and collinear matrix
elements can be found in [19], and the coft matrix element
is equal to the soft one at this order. Integrating over the
gluon phase space yields the following result for the one-
loop corrections from the different sectors:

∆σh =
αsCF

4π
σ0

(
µ

Q

)2ϵ (
−

4

ϵ2
−

6

ϵ
− 16 +

7π2

3

)

∆σc+c̄ =
αsCF

4π
σ0

(
µ

Qδ

)2ϵ( 4

ϵ2
+

6

ϵ
+ 16−

5π2

3
+ c0

)

∆σs =
αsCF

4π
σ0

(
µ

Qβ

)2ϵ ( 4

ϵ2
− π2

)

∆σt+t̄ =
αsCF

4π
σ0

(
µ

Qδβ

)2ϵ (
−

4

ϵ2
+

π2

3

)

∆σtot =
αsCF

4π
σ0 (−16 ln δ lnβ − 12 ln δ + c0) , (4)

where d = 4 − 2ϵ and σ0 is the Born-level cross section.
For thrust-axis cone jets one finds c0 = −2 + 12 ln 2,
while Sterman-Weinberg jets yield c0 = 10 − 4π2/3. In
the sum of the contributions the divergences and scale
dependence cancel, and we reproduce the full QCD result
[18]. Our collinear result is the same as the zero-bin
subtracted collinear contribution obtained in [19], and
the sum of our soft and coft contributions is equal to the
soft result in this reference. Importantly, however, our
result systematically disentangles the different scales, and
our computations are much simpler because the multi-
pole expansion simplifies the phase-space constraints and
makes zero-bin subtractions unnecessary.
Given the above one-loop result, one expects that the

cross section can be factorized into a product of a hard
function, jet functions, and a convolution of soft and coft
functions. On a basic level this is true, but the inter-
play between coft and collinear partons leads to a highly
non-trivial structure of the corresponding factorization
theorem, which is not just a simple product.

II. COLLINEAR-COFT FACTORIZATION

At first sight, the factorization of collinear and coft
contributions seems to be a trivial matter. Since every
single momentum component of a coft field is smaller
than the corresponding component of a collinear field,
we can treat coft modes as submodes of collinear fields.
In other words, we can construct the relevant effec-
tive Lagrangian and operators starting from the purely
collinear case and then split the fields as φc → φc + φt.
However, because all components of the coft fields are
power suppressed compared to their collinear counter-
parts, there are no coft-collinear interactions in the La-
grangian: Lc+t = Lc+Lt. The only place where the coft
field appears is in the collinear Wilson line, which splits
into a product of a collinear and a coft Wilson line

Wc ≡ P exp

[
igs

∫ 0

−∞

ds n̄ · Ac(s n̄)

]
→ Wc U(n̄) (5)

after the substitution Ac → Ac +At. The quantity U(n̄)
is defined exactly as Wc but with the coft gluon field
instead of the collinear field. Since we will encounter coft
Wilson lines along different directions, we have explicitly
included the vector n̄ as an argument.
There is an important second source of coft-collinear

interactions arising from on-shell collinear particles in the
final state. To understand the corresponding mechanism,

��s =
↵sCF

4⇡
�0

✓
µ

Q�

◆2✏ ✓8

✏
ln � � 8 ln2 � � 2⇡2

3

◆

requires a non-trivial 
zero-bin subtraction

pc ⇠ Q(�2, 1, �)
pc̄ ⇠ Q(1, �2, �)

ps ⇠ Q(�,�,�)

ph ⇠ Q(1, 1, 1)

Cheung, Luke, Zuberi (2009)

😢



Need  for  a  new  mode
Relevance  of  the  soft-­‐collinear  scale  for  cone-­‐jet  processes



A  consistent  EFT  must  be  based  on  a  systematic  
expansion  in  the  small  parameters  β  and  δ  everywhere,  
including  the  phase-­‐space  constraints  

then  no  zero-­‐bin  subtractions  are  required  
collinear  particles  have  small  angle  and  large  energy  
→  always  inside  the  jet  cones  
soft  particles  have  small  energy  and  large  angle              
→  always  outside  the  jet  cones  
relevance  of  a  new,  soft-­‐collinear  (“coft”)  scale  Qδβ    

Associated  particles  have  small  angle  and  small  energy  
and  give  rise  to  leading  contributions  to  the  cross  
section!
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Complete  scale  separation:
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while the soft ones are always outside the cone, since they
generically have large angle

n · ps
n̄ · ps

∼ 1 ≫ δ2 . (2)

It is clear that there also must be contributions which in-
volve both small energy and small angle. Indeed, analyz-
ing the relevant Feynman diagrams, we find that modes
which are simultaneously soft and collinear

coft: pt ∼ Qβ (δ2, 1, δ) , pt̄ ∼ Qβ (1, δ2, δ)

do give leading contributions to the cross section. It
would be natural to call these modes collinear-soft or soft-
collinear, but since dashes are silent this could lead to
ambiguities in discussions. We have therefore shortened
their name to “coft”. Coft modes can be emitted inside
or outside a jet and their natural scale is

√
p2t ∼ Qδβ,

which is much lower than the collinear scale Qδ and the
soft scale Qβ. Given these scalings, we can now write
down the expanded phase-space constraint for the jet
cross section, including the momentum conservation δ-
function. It reads

δ(Q− n̄ · pXc
) δd−2(p⊥Xc

) δ(Q − n · pXc̄
) δd−2(p⊥Xc̄

)

× θ(Qβ − 2EXs
− n̄ · pXout

t
− n · pXout

t̄
)

×
∏

i θ(δ
2n̄ · pic − n · pic)

∏
j θ(δ

2n · pjc̄ − n̄ · pjc̄) . (3)

The separate constraints on the transverse momentum
in each hemisphere ensure that n⃗ is indeed the thrust
axis, see e.g. [20]. The soft and coft momenta are not
constrained by momentum conservation, since they are
parametrically smaller than the collinear momenta. The
angle constraints in the last line enforce that all collinear
particles are inside the jets. As stated above, there are
no angle constraints on the soft particles, since the θ-
functions constraining them to be outside are trivially
fulfilled after multipole expansion due to (2). The right-
moving coft particles can be inside or outside the right
jet, and the energy constraint in (3) acts on them if they
are outside the right jet. These right-moving coft parti-
cles do not see the left jet, because after the multipole
expansion they are always outside this jet.
It is now a simple exercise to verify that one reproduces

the one-loop cone-jet rate by expanding the dijet cross
section in the above momentum regions, performing the
phase-space integrals in each region, and adding up the
resulting contributions. The soft and collinear matrix
elements can be found in [19], and the coft matrix element
is equal to the soft one at this order. Integrating over the
gluon phase space yields the following result for the one-
loop corrections from the different sectors:

∆σh =
αsCF

4π
σ0

(
µ

Q

)2ϵ (
−

4

ϵ2
−

6

ϵ
− 16 +

7π2

3

)

∆σc+c̄ =
αsCF

4π
σ0

(
µ

Qδ

)2ϵ( 4

ϵ2
+

6

ϵ
+ 16−

5π2

3
+ c0

)

∆σs =
αsCF

4π
σ0

(
µ

Qβ

)2ϵ ( 4

ϵ2
− π2

)

∆σt+t̄ =
αsCF

4π
σ0

(
µ

Qδβ

)2ϵ (
−

4

ϵ2
+

π2

3

)

∆σtot =
αsCF

4π
σ0 (−16 ln δ lnβ − 12 ln δ + c0) , (4)

where d = 4 − 2ϵ and σ0 is the Born-level cross section.
For thrust-axis cone jets one finds c0 = −2 + 12 ln 2,
while Sterman-Weinberg jets yield c0 = 10 − 4π2/3. In
the sum of the contributions the divergences and scale
dependence cancel, and we reproduce the full QCD result
[18]. Our collinear result is the same as the zero-bin
subtracted collinear contribution obtained in [19], and
the sum of our soft and coft contributions is equal to the
soft result in this reference. Importantly, however, our
result systematically disentangles the different scales, and
our computations are much simpler because the multi-
pole expansion simplifies the phase-space constraints and
makes zero-bin subtractions unnecessary.
Given the above one-loop result, one expects that the

cross section can be factorized into a product of a hard
function, jet functions, and a convolution of soft and coft
functions. On a basic level this is true, but the inter-
play between coft and collinear partons leads to a highly
non-trivial structure of the corresponding factorization
theorem, which is not just a simple product.

II. COLLINEAR-COFT FACTORIZATION

At first sight, the factorization of collinear and coft
contributions seems to be a trivial matter. Since every
single momentum component of a coft field is smaller
than the corresponding component of a collinear field,
we can treat coft modes as submodes of collinear fields.
In other words, we can construct the relevant effec-
tive Lagrangian and operators starting from the purely
collinear case and then split the fields as φc → φc + φt.
However, because all components of the coft fields are
power suppressed compared to their collinear counter-
parts, there are no coft-collinear interactions in the La-
grangian: Lc+t = Lc+Lt. The only place where the coft
field appears is in the collinear Wilson line, which splits
into a product of a collinear and a coft Wilson line

Wc ≡ P exp

[
igs

∫ 0

−∞

ds n̄ · Ac(s n̄)

]
→ Wc U(n̄) (5)

after the substitution Ac → Ac +At. The quantity U(n̄)
is defined exactly as Wc but with the coft gluon field
instead of the collinear field. Since we will encounter coft
Wilson lines along different directions, we have explicitly
included the vector n̄ as an argument.
There is an important second source of coft-collinear

interactions arising from on-shell collinear particles in the
final state. To understand the corresponding mechanism,

��sc+sc =
↵sCF

4⇡
�0

✓
µ

Q��

◆2✏ ✓
� 4

✏2
+

⇡2

3

◆

2

while the soft ones are always outside the cone, since they
generically have large angle

n · ps
n̄ · ps

∼ 1 ≫ δ2 . (2)

It is clear that there also must be contributions which in-
volve both small energy and small angle. Indeed, analyz-
ing the relevant Feynman diagrams, we find that modes
which are simultaneously soft and collinear

coft: pt ∼ Qβ (δ2, 1, δ) , pt̄ ∼ Qβ (1, δ2, δ)

do give leading contributions to the cross section. It
would be natural to call these modes collinear-soft or soft-
collinear, but since dashes are silent this could lead to
ambiguities in discussions. We have therefore shortened
their name to “coft”. Coft modes can be emitted inside
or outside a jet and their natural scale is

√
p2t ∼ Qδβ,

which is much lower than the collinear scale Qδ and the
soft scale Qβ. Given these scalings, we can now write
down the expanded phase-space constraint for the jet
cross section, including the momentum conservation δ-
function. It reads

δ(Q− n̄ · pXc
) δd−2(p⊥Xc

) δ(Q − n · pXc̄
) δd−2(p⊥Xc̄

)

× θ(Qβ − 2EXs
− n̄ · pXout

t
− n · pXout

t̄
)

×
∏

i θ(δ
2n̄ · pic − n · pic)

∏
j θ(δ

2n · pjc̄ − n̄ · pjc̄) . (3)

The separate constraints on the transverse momentum
in each hemisphere ensure that n⃗ is indeed the thrust
axis, see e.g. [20]. The soft and coft momenta are not
constrained by momentum conservation, since they are
parametrically smaller than the collinear momenta. The
angle constraints in the last line enforce that all collinear
particles are inside the jets. As stated above, there are
no angle constraints on the soft particles, since the θ-
functions constraining them to be outside are trivially
fulfilled after multipole expansion due to (2). The right-
moving coft particles can be inside or outside the right
jet, and the energy constraint in (3) acts on them if they
are outside the right jet. These right-moving coft parti-
cles do not see the left jet, because after the multipole
expansion they are always outside this jet.
It is now a simple exercise to verify that one reproduces

the one-loop cone-jet rate by expanding the dijet cross
section in the above momentum regions, performing the
phase-space integrals in each region, and adding up the
resulting contributions. The soft and collinear matrix
elements can be found in [19], and the coft matrix element
is equal to the soft one at this order. Integrating over the
gluon phase space yields the following result for the one-
loop corrections from the different sectors:

∆σh =
αsCF

4π
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∆σtot =
αsCF

4π
σ0 (−16 ln δ lnβ − 12 ln δ + c0) , (4)

where d = 4 − 2ϵ and σ0 is the Born-level cross section.
For thrust-axis cone jets one finds c0 = −2 + 12 ln 2,
while Sterman-Weinberg jets yield c0 = 10 − 4π2/3. In
the sum of the contributions the divergences and scale
dependence cancel, and we reproduce the full QCD result
[18]. Our collinear result is the same as the zero-bin
subtracted collinear contribution obtained in [19], and
the sum of our soft and coft contributions is equal to the
soft result in this reference. Importantly, however, our
result systematically disentangles the different scales, and
our computations are much simpler because the multi-
pole expansion simplifies the phase-space constraints and
makes zero-bin subtractions unnecessary.
Given the above one-loop result, one expects that the

cross section can be factorized into a product of a hard
function, jet functions, and a convolution of soft and coft
functions. On a basic level this is true, but the inter-
play between coft and collinear partons leads to a highly
non-trivial structure of the corresponding factorization
theorem, which is not just a simple product.

II. COLLINEAR-COFT FACTORIZATION

At first sight, the factorization of collinear and coft
contributions seems to be a trivial matter. Since every
single momentum component of a coft field is smaller
than the corresponding component of a collinear field,
we can treat coft modes as submodes of collinear fields.
In other words, we can construct the relevant effec-
tive Lagrangian and operators starting from the purely
collinear case and then split the fields as φc → φc + φt.
However, because all components of the coft fields are
power suppressed compared to their collinear counter-
parts, there are no coft-collinear interactions in the La-
grangian: Lc+t = Lc+Lt. The only place where the coft
field appears is in the collinear Wilson line, which splits
into a product of a collinear and a coft Wilson line

Wc ≡ P exp

[
igs

∫ 0

−∞

ds n̄ · Ac(s n̄)

]
→ Wc U(n̄) (5)

after the substitution Ac → Ac +At. The quantity U(n̄)
is defined exactly as Wc but with the coft gluon field
instead of the collinear field. Since we will encounter coft
Wilson lines along different directions, we have explicitly
included the vector n̄ as an argument.
There is an important second source of coft-collinear

interactions arising from on-shell collinear particles in the
final state. To understand the corresponding mechanism,
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where d = 4 − 2ϵ and σ0 is the Born-level cross section.
For thrust-axis cone jets one finds c0 = −2 + 12 ln 2,
while Sterman-Weinberg jets yield c0 = 10 − 4π2/3. In
the sum of the contributions the divergences and scale
dependence cancel, and we reproduce the full QCD result
[18]. Our collinear result is the same as the zero-bin
subtracted collinear contribution obtained in [19], and
the sum of our soft and coft contributions is equal to the
soft result in this reference. Importantly, however, our
result systematically disentangles the different scales, and
our computations are much simpler because the multi-
pole expansion simplifies the phase-space constraints and
makes zero-bin subtractions unnecessary.
Given the above one-loop result, one expects that the

cross section can be factorized into a product of a hard
function, jet functions, and a convolution of soft and coft
functions. On a basic level this is true, but the inter-
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theorem, which is not just a simple product.
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than the corresponding component of a collinear field,
we can treat coft modes as submodes of collinear fields.
In other words, we can construct the relevant effec-
tive Lagrangian and operators starting from the purely
collinear case and then split the fields as φc → φc + φt.
However, because all components of the coft fields are
power suppressed compared to their collinear counter-
parts, there are no coft-collinear interactions in the La-
grangian: Lc+t = Lc+Lt. The only place where the coft
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ph ⇠ Q(1, 1, 1)

psc ⇠ Q�(�2, 1, �)
psc ⇠ Q�(1, �2, �)

� = H(Q) [J(Q�)⌦ U(Q��)]2 ⌦ S(Q�)

This  analysis  suggests  a  factorization  theorem  of  the  
form:  

have  shown  explicitly  that  this  works  to  two  loops
8

It is conventional to choose µ = Q and write the expansion of the cross section in the form

σ(β)
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)2
B(β, δ) + . . . . (B3)

The coefficient A(β, δ) was given in the main text in (4). The two-loop coefficient B(β, δ) has the form
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+
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(B4)

The quantities cF2 , c
A
2 and cf2 are directly related to the unknown constants cJ,F2 , cJ,F2 and cJ,f2 in (A12). We have

determined them numerically by running the Event2 generator at low values of δ and β. Subtracting the known
logarithmic structure exhibited in (B4), we can then fit for the numerical values of the constants and obtain

cF2 = 17.1+3.0
−4.7 , cA2 = −28.7+0.7

−1.0 , cf2 = 17.3+0.3
−9.0 . (B5)

The uncertainty on the last constant is fairly large due to numerical instabilities [24].
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→ have performed detailed comparisons with EVENT2
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This  analysis  suggests  a  factorization  theorem  of  the  
form:  

have  shown  explicitly  that  this  works  to  two  loops  
however,  we  find  a  highly  non-­‐trivial  interplay  of  jet  
and  coft  functions  beyond  one-­‐loop  order
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Soft-­‐collinear  gluons  can  interact  with  collinear  fields  
in  two  ways:  

split-­‐up                                                    yields                                                    with:        

in  addition,  coft  gluons  can  couple  to  on-­‐shell  
external  collinear  particles;  e.g.  for  a  (gauge-­‐
invariant)  quark  field                                      :

Squaring  the  amplitude  gives  

which   is   the  matrix   element   for   the   emission   from  
two  Wilson  lines  

For   a   final   state   consisting   of  m   collinear   particles,  
the   coft   emissions   are   described   by   the   matrix  
element  of  the  operator  

where                  are  the  light-­‐like  directions  of  the  
collinear  particles  

Ac ! Ac +Asc Wc ! Wc U(n̄)

U(n̄) = P exp


igs

Z 0

�1
dt n̄ ·Asc(tn̄)

�

3

k

p1

+

FIG. 1. Emission of a coft gluon from a collinear field χc =
W †

c ξc. The double line indicates the Wilson line Wc.

consider the diagrams for the emission of a single coft
gluon with momentum k from a collinear field χc shown
in Figure 1. Since the coft field can be treated as a sub-
mode of the collinear field, we can compute the diagrams
using the collinear Feynman rules and then expand them
in the coft momentum k. The first diagram describes
the emission from the Wilson line U(n̄) derived in (5). If
the collinear quark momentum p1 in the final state would
have generic scaling, we would write the propagator de-
nominator in the second diagram as (p1 + k)2 = p21 at
leading power and its contribution would be power sup-
pressed. However, if the virtuality of the collinear quark
is zero, the leading contribution is (p1 + k)2 = 2p1 · k.
Computing the amplitude squared, one finds

|M|2 = 2CF g
2
s

n1 · n̄

(n1 · k) (n̄ · k)
, (6)

with nµ
1 = 2pµ1/n̄ ·p1. This is the matrix element squared

for gluon emission from two Wilson lines, one in the n̄
direction and a second one along the direction n1 of the
collinear final-state particle. Repeating the computation
with two gluons, we find that the corresponding matrix
element is indeed the two-gluon matrix element of the
same operator.
For a single collinear particle in the final state, the

coft function is given by two Wilson lines, as would be
the case for soft emissions. To see the physics difference
between soft and coft modes one needs to consider the
case with several collinear particles inside the jet. Doing
so, one finds that every collinear final-state particle gets
dressed by a coft Wilson line. In color-space notation
[21], the coft emissions in the presence of a final state
with m collinear particles can be obtained by taking the
matrix element of the operator

U0(n̄)U1(n1) . . . Um(nm)|Mm(p0; {p})⟩ (7)

where |Mm⟩ is the amplitude for the collinear quark field
with momentum p0 ≈ Q n̄/2 to split into particles with
momenta {p} = {p1, . . . , pm}, and Ui(ni) is a Wilson
line along the direction ni = pi/Ei in the color represen-
tation relevant for the given particle. The fact that soft
emissions build up Wilson lines is of course very familiar.
What is special in the present case is that the coft par-
ticles are emitted in a narrow cone and can therefore re-
solve the individual collinear partons. As a consequence,
we end up with individual Wilson lines for each of the
collinear final-state partons, instead of just one overall
Wilson line describing all soft emissions, see Figure 2.
To write down a factorized form of the cross section

based on the result (7), we first perform a Laplace trans-

FIG. 2. Soft factorization (left) versus coft factorization
(right). Collinear particles are shown in blue, soft emissions
in green and the small-angle soft radiation described by the
coft mode in red. The double lines indicate the direction of
the associated Wilson lines.

formation with respect to β, i.e.

σ̃(τ) =

∫ ∞

0
dβ e−β/(τeγE ) dσ

dβ
. (8)

This is convenient, since the outside energy is shared
among the soft and coft degrees of freedom. The Laplace
transformation factorizes the corresponding constraint in
(3). Since the cone constraint acts on the individual par-
tons, it trivially factorizes. In Laplace space we then
obtain the factorization formula

σ̃(τ) = σ0 H(Q) S̃(Qτ)

[
∞∑

m=1

〈
Jm(Qδ)⊗ Ũm(Qδτ)

〉]2

(9)
for the jet cross section, where the angle brackets de-
note the color trace ⟨M⟩ = 1

Nc
tr(M). The jet functions

Jm(Qδ) and the coft functions Ũm(Qδτ) are obtained
from squaring the amplitude (7). Both depend on the
directions ni of the collinear partons. The symbol ⊗ in-
dicates that the product of the jet and coft functions
needs to be integrated over the directions of the vectors
ni, and the square in (9) takes into account the identi-
cal contributions of the left and right cone jets. H(Q)
is the familiar hard function for two-jet processes. The
soft function S(Qβ) is the squared matrix element of two
Wilson lines along the jet directions, with a constraint on
the energy but no angle constraint, as explained earlier.
The same soft function arises in threshold resummation
for Drell-Yan production, up to the fact that the Wilson
lines are now outgoing. This does not change the pertur-
bative result, which at two loops was obtained in [22, 23].
The coft function with m Wilson lines is given by

Um(Qδβ) =

∫
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∑
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consider the diagrams for the emission of a single coft
gluon with momentum k from a collinear field χc shown
in Figure 1. Since the coft field can be treated as a sub-
mode of the collinear field, we can compute the diagrams
using the collinear Feynman rules and then expand them
in the coft momentum k. The first diagram describes
the emission from the Wilson line U(n̄) derived in (5). If
the collinear quark momentum p1 in the final state would
have generic scaling, we would write the propagator de-
nominator in the second diagram as (p1 + k)2 = p21 at
leading power and its contribution would be power sup-
pressed. However, if the virtuality of the collinear quark
is zero, the leading contribution is (p1 + k)2 = 2p1 · k.
Computing the amplitude squared, one finds
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, (6)

with nµ
1 = 2pµ1/n̄ ·p1. This is the matrix element squared

for gluon emission from two Wilson lines, one in the n̄
direction and a second one along the direction n1 of the
collinear final-state particle. Repeating the computation
with two gluons, we find that the corresponding matrix
element is indeed the two-gluon matrix element of the
same operator.
For a single collinear particle in the final state, the

coft function is given by two Wilson lines, as would be
the case for soft emissions. To see the physics difference
between soft and coft modes one needs to consider the
case with several collinear particles inside the jet. Doing
so, one finds that every collinear final-state particle gets
dressed by a coft Wilson line. In color-space notation
[21], the coft emissions in the presence of a final state
with m collinear particles can be obtained by taking the
matrix element of the operator
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where |Mm⟩ is the amplitude for the collinear quark field
with momentum p0 ≈ Q n̄/2 to split into particles with
momenta {p} = {p1, . . . , pm}, and Ui(ni) is a Wilson
line along the direction ni = pi/Ei in the color represen-
tation relevant for the given particle. The fact that soft
emissions build up Wilson lines is of course very familiar.
What is special in the present case is that the coft par-
ticles are emitted in a narrow cone and can therefore re-
solve the individual collinear partons. As a consequence,
we end up with individual Wilson lines for each of the
collinear final-state partons, instead of just one overall
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formation with respect to β, i.e.
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∫ ∞

0
dβ e−β/(τeγE ) dσ

dβ
. (8)

This is convenient, since the outside energy is shared
among the soft and coft degrees of freedom. The Laplace
transformation factorizes the corresponding constraint in
(3). Since the cone constraint acts on the individual par-
tons, it trivially factorizes. In Laplace space we then
obtain the factorization formula

σ̃(τ) = σ0 H(Q) S̃(Qτ)

[
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〈
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(9)
for the jet cross section, where the angle brackets de-
note the color trace ⟨M⟩ = 1

Nc
tr(M). The jet functions

Jm(Qδ) and the coft functions Ũm(Qδτ) are obtained
from squaring the amplitude (7). Both depend on the
directions ni of the collinear partons. The symbol ⊗ in-
dicates that the product of the jet and coft functions
needs to be integrated over the directions of the vectors
ni, and the square in (9) takes into account the identi-
cal contributions of the left and right cone jets. H(Q)
is the familiar hard function for two-jet processes. The
soft function S(Qβ) is the squared matrix element of two
Wilson lines along the jet directions, with a constraint on
the energy but no angle constraint, as explained earlier.
The same soft function arises in threshold resummation
for Drell-Yan production, up to the fact that the Wilson
lines are now outgoing. This does not change the pertur-
bative result, which at two loops was obtained in [22, 23].
The coft function with m Wilson lines is given by

Um(Qδβ) =

∫

Xt

∑
⟨0|U†

0 (n̄)U
†
1 (n1) . . .U

†
m(nm)|Xt⟩

× ⟨Xt|U0(n̄) . . .Um(nm)|0⟩ δ(Qβ − n̄ · pXout

t
) , (10)

and the jet function containing m partons is defined as

n/

2
Jm(Qδ) =

∑

spins

∫
dΠm|Mm(p0; {p})⟩⟨Mm(p0; {p})|

×2 (2π)d−1δ(Q−n̄·pXc
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)
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FIG. 1. Emission of a coft gluon from a collinear field χc =
W †

c ξc. The double line indicates the Wilson line Wc.

consider the diagrams for the emission of a single coft
gluon with momentum k from a collinear field χc shown
in Figure 1. Since the coft field can be treated as a sub-
mode of the collinear field, we can compute the diagrams
using the collinear Feynman rules and then expand them
in the coft momentum k. The first diagram describes
the emission from the Wilson line U(n̄) derived in (5). If
the collinear quark momentum p1 in the final state would
have generic scaling, we would write the propagator de-
nominator in the second diagram as (p1 + k)2 = p21 at
leading power and its contribution would be power sup-
pressed. However, if the virtuality of the collinear quark
is zero, the leading contribution is (p1 + k)2 = 2p1 · k.
Computing the amplitude squared, one finds

|M|2 = 2CF g
2
s

n1 · n̄

(n1 · k) (n̄ · k)
, (6)

with nµ
1 = 2pµ1/n̄ ·p1. This is the matrix element squared

for gluon emission from two Wilson lines, one in the n̄
direction and a second one along the direction n1 of the
collinear final-state particle. Repeating the computation
with two gluons, we find that the corresponding matrix
element is indeed the two-gluon matrix element of the
same operator.
For a single collinear particle in the final state, the

coft function is given by two Wilson lines, as would be
the case for soft emissions. To see the physics difference
between soft and coft modes one needs to consider the
case with several collinear particles inside the jet. Doing
so, one finds that every collinear final-state particle gets
dressed by a coft Wilson line. In color-space notation
[21], the coft emissions in the presence of a final state
with m collinear particles can be obtained by taking the
matrix element of the operator

U0(n̄)U1(n1) . . . Um(nm)|Mm(p0; {p})⟩ (7)

where |Mm⟩ is the amplitude for the collinear quark field
with momentum p0 ≈ Q n̄/2 to split into particles with
momenta {p} = {p1, . . . , pm}, and Ui(ni) is a Wilson
line along the direction ni = pi/Ei in the color represen-
tation relevant for the given particle. The fact that soft
emissions build up Wilson lines is of course very familiar.
What is special in the present case is that the coft par-
ticles are emitted in a narrow cone and can therefore re-
solve the individual collinear partons. As a consequence,
we end up with individual Wilson lines for each of the
collinear final-state partons, instead of just one overall
Wilson line describing all soft emissions, see Figure 2.
To write down a factorized form of the cross section

based on the result (7), we first perform a Laplace trans-

FIG. 2. Soft factorization (left) versus coft factorization
(right). Collinear particles are shown in blue, soft emissions
in green and the small-angle soft radiation described by the
coft mode in red. The double lines indicate the direction of
the associated Wilson lines.

formation with respect to β, i.e.

σ̃(τ) =

∫ ∞

0
dβ e−β/(τeγE ) dσ

dβ
. (8)

This is convenient, since the outside energy is shared
among the soft and coft degrees of freedom. The Laplace
transformation factorizes the corresponding constraint in
(3). Since the cone constraint acts on the individual par-
tons, it trivially factorizes. In Laplace space we then
obtain the factorization formula

σ̃(τ) = σ0 H(Q) S̃(Qτ)

[
∞∑

m=1

〈
Jm(Qδ)⊗ Ũm(Qδτ)

〉]2

(9)
for the jet cross section, where the angle brackets de-
note the color trace ⟨M⟩ = 1

Nc
tr(M). The jet functions

Jm(Qδ) and the coft functions Ũm(Qδτ) are obtained
from squaring the amplitude (7). Both depend on the
directions ni of the collinear partons. The symbol ⊗ in-
dicates that the product of the jet and coft functions
needs to be integrated over the directions of the vectors
ni, and the square in (9) takes into account the identi-
cal contributions of the left and right cone jets. H(Q)
is the familiar hard function for two-jet processes. The
soft function S(Qβ) is the squared matrix element of two
Wilson lines along the jet directions, with a constraint on
the energy but no angle constraint, as explained earlier.
The same soft function arises in threshold resummation
for Drell-Yan production, up to the fact that the Wilson
lines are now outgoing. This does not change the pertur-
bative result, which at two loops was obtained in [22, 23].
The coft function with m Wilson lines is given by

Um(Qδβ) =

∫

Xt

∑
⟨0|U†

0 (n̄)U
†
1 (n1) . . .U

†
m(nm)|Xt⟩

× ⟨Xt|U0(n̄) . . .Um(nm)|0⟩ δ(Qβ − n̄ · pXout

t
) , (10)

and the jet function containing m partons is defined as

n/

2
Jm(Qδ) =

∑

spins

∫
dΠm|Mm(p0; {p})⟩⟨Mm(p0; {p})|

×2 (2π)d−1δ(Q−n̄·pXc
) δd−2(p⊥Xc

)
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FIG. 1. Emission of a coft gluon from a collinear field χc =
W †

c ξc. The double line indicates the Wilson line Wc.

consider the diagrams for the emission of a single coft
gluon with momentum k from a collinear field χc shown
in Figure 1. Since the coft field can be treated as a sub-
mode of the collinear field, we can compute the diagrams
using the collinear Feynman rules and then expand them
in the coft momentum k. The first diagram describes
the emission from the Wilson line U(n̄) derived in (5). If
the collinear quark momentum p1 in the final state would
have generic scaling, we would write the propagator de-
nominator in the second diagram as (p1 + k)2 = p21 at
leading power and its contribution would be power sup-
pressed. However, if the virtuality of the collinear quark
is zero, the leading contribution is (p1 + k)2 = 2p1 · k.
Computing the amplitude squared, one finds

|M|2 = 2CF g
2
s

n1 · n̄

(n1 · k) (n̄ · k)
, (6)

with nµ
1 = 2pµ1/n̄ ·p1. This is the matrix element squared

for gluon emission from two Wilson lines, one in the n̄
direction and a second one along the direction n1 of the
collinear final-state particle. Repeating the computation
with two gluons, we find that the corresponding matrix
element is indeed the two-gluon matrix element of the
same operator.
For a single collinear particle in the final state, the

coft function is given by two Wilson lines, as would be
the case for soft emissions. To see the physics difference
between soft and coft modes one needs to consider the
case with several collinear particles inside the jet. Doing
so, one finds that every collinear final-state particle gets
dressed by a coft Wilson line. In color-space notation
[21], the coft emissions in the presence of a final state
with m collinear particles can be obtained by taking the
matrix element of the operator

U0(n̄)U1(n1) . . . Um(nm)|Mm(p0; {p})⟩ (7)

where |Mm⟩ is the amplitude for the collinear quark field
with momentum p0 ≈ Q n̄/2 to split into particles with
momenta {p} = {p1, . . . , pm}, and Ui(ni) is a Wilson
line along the direction ni = pi/Ei in the color represen-
tation relevant for the given particle. The fact that soft
emissions build up Wilson lines is of course very familiar.
What is special in the present case is that the coft par-
ticles are emitted in a narrow cone and can therefore re-
solve the individual collinear partons. As a consequence,
we end up with individual Wilson lines for each of the
collinear final-state partons, instead of just one overall
Wilson line describing all soft emissions, see Figure 2.
To write down a factorized form of the cross section

based on the result (7), we first perform a Laplace trans-

FIG. 2. Soft factorization (left) versus coft factorization
(right). Collinear particles are shown in blue, soft emissions
in green and the small-angle soft radiation described by the
coft mode in red. The double lines indicate the direction of
the associated Wilson lines.

formation with respect to β, i.e.

σ̃(τ) =

∫ ∞

0
dβ e−β/(τeγE ) dσ

dβ
. (8)

This is convenient, since the outside energy is shared
among the soft and coft degrees of freedom. The Laplace
transformation factorizes the corresponding constraint in
(3). Since the cone constraint acts on the individual par-
tons, it trivially factorizes. In Laplace space we then
obtain the factorization formula

σ̃(τ) = σ0 H(Q) S̃(Qτ)

[
∞∑

m=1

〈
Jm(Qδ)⊗ Ũm(Qδτ)

〉]2

(9)
for the jet cross section, where the angle brackets de-
note the color trace ⟨M⟩ = 1

Nc
tr(M). The jet functions

Jm(Qδ) and the coft functions Ũm(Qδτ) are obtained
from squaring the amplitude (7). Both depend on the
directions ni of the collinear partons. The symbol ⊗ in-
dicates that the product of the jet and coft functions
needs to be integrated over the directions of the vectors
ni, and the square in (9) takes into account the identi-
cal contributions of the left and right cone jets. H(Q)
is the familiar hard function for two-jet processes. The
soft function S(Qβ) is the squared matrix element of two
Wilson lines along the jet directions, with a constraint on
the energy but no angle constraint, as explained earlier.
The same soft function arises in threshold resummation
for Drell-Yan production, up to the fact that the Wilson
lines are now outgoing. This does not change the pertur-
bative result, which at two loops was obtained in [22, 23].
The coft function with m Wilson lines is given by

Um(Qδβ) =

∫

Xt

∑
⟨0|U†

0 (n̄)U
†
1 (n1) . . .U

†
m(nm)|Xt⟩

× ⟨Xt|U0(n̄) . . .Um(nm)|0⟩ δ(Qβ − n̄ · pXout

t
) , (10)

and the jet function containing m partons is defined as

n/

2
Jm(Qδ) =

∑

spins

∫
dΠm|Mm(p0; {p})⟩⟨Mm(p0; {p})|

×2 (2π)d−1δ(Q−n̄·pXc
) δd−2(p⊥Xc

)
∏

i θ(δ
2n̄·pic−n·pic) ,

(11)
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FIG. 1. Emission of a coft gluon from a collinear field χc =
W †

c ξc. The double line indicates the Wilson line Wc.

consider the diagrams for the emission of a single coft
gluon with momentum k from a collinear field χc shown
in Figure 1. Since the coft field can be treated as a sub-
mode of the collinear field, we can compute the diagrams
using the collinear Feynman rules and then expand them
in the coft momentum k. The first diagram describes
the emission from the Wilson line U(n̄) derived in (5). If
the collinear quark momentum p1 in the final state would
have generic scaling, we would write the propagator de-
nominator in the second diagram as (p1 + k)2 = p21 at
leading power and its contribution would be power sup-
pressed. However, if the virtuality of the collinear quark
is zero, the leading contribution is (p1 + k)2 = 2p1 · k.
Computing the amplitude squared, one finds

|M|2 = 2CF g
2
s

n1 · n̄

(n1 · k) (n̄ · k)
, (6)

with nµ
1 = 2pµ1/n̄ ·p1. This is the matrix element squared

for gluon emission from two Wilson lines, one in the n̄
direction and a second one along the direction n1 of the
collinear final-state particle. Repeating the computation
with two gluons, we find that the corresponding matrix
element is indeed the two-gluon matrix element of the
same operator.
For a single collinear particle in the final state, the

coft function is given by two Wilson lines, as would be
the case for soft emissions. To see the physics difference
between soft and coft modes one needs to consider the
case with several collinear particles inside the jet. Doing
so, one finds that every collinear final-state particle gets
dressed by a coft Wilson line. In color-space notation
[21], the coft emissions in the presence of a final state
with m collinear particles can be obtained by taking the
matrix element of the operator

U0(n̄)U1(n1) . . . Um(nm)|Mm(p0; {p})⟩ (7)

where |Mm⟩ is the amplitude for the collinear quark field
with momentum p0 ≈ Q n̄/2 to split into particles with
momenta {p} = {p1, . . . , pm}, and Ui(ni) is a Wilson
line along the direction ni = pi/Ei in the color represen-
tation relevant for the given particle. The fact that soft
emissions build up Wilson lines is of course very familiar.
What is special in the present case is that the coft par-
ticles are emitted in a narrow cone and can therefore re-
solve the individual collinear partons. As a consequence,
we end up with individual Wilson lines for each of the
collinear final-state partons, instead of just one overall
Wilson line describing all soft emissions, see Figure 2.
To write down a factorized form of the cross section

based on the result (7), we first perform a Laplace trans-

FIG. 2. Soft factorization (left) versus coft factorization
(right). Collinear particles are shown in blue, soft emissions
in green and the small-angle soft radiation described by the
coft mode in red. The double lines indicate the direction of
the associated Wilson lines.

formation with respect to β, i.e.

σ̃(τ) =

∫ ∞

0
dβ e−β/(τeγE ) dσ

dβ
. (8)

This is convenient, since the outside energy is shared
among the soft and coft degrees of freedom. The Laplace
transformation factorizes the corresponding constraint in
(3). Since the cone constraint acts on the individual par-
tons, it trivially factorizes. In Laplace space we then
obtain the factorization formula

σ̃(τ) = σ0 H(Q) S̃(Qτ)

[
∞∑

m=1

〈
Jm(Qδ)⊗ Ũm(Qδτ)

〉]2

(9)
for the jet cross section, where the angle brackets de-
note the color trace ⟨M⟩ = 1

Nc
tr(M). The jet functions

Jm(Qδ) and the coft functions Ũm(Qδτ) are obtained
from squaring the amplitude (7). Both depend on the
directions ni of the collinear partons. The symbol ⊗ in-
dicates that the product of the jet and coft functions
needs to be integrated over the directions of the vectors
ni, and the square in (9) takes into account the identi-
cal contributions of the left and right cone jets. H(Q)
is the familiar hard function for two-jet processes. The
soft function S(Qβ) is the squared matrix element of two
Wilson lines along the jet directions, with a constraint on
the energy but no angle constraint, as explained earlier.
The same soft function arises in threshold resummation
for Drell-Yan production, up to the fact that the Wilson
lines are now outgoing. This does not change the pertur-
bative result, which at two loops was obtained in [22, 23].
The coft function with m Wilson lines is given by

Um(Qδβ) =

∫

Xt

∑
⟨0|U†

0 (n̄)U
†
1 (n1) . . .U

†
m(nm)|Xt⟩

× ⟨Xt|U0(n̄) . . .Um(nm)|0⟩ δ(Qβ − n̄ · pXout

t
) , (10)

and the jet function containing m partons is defined as

n/

2
Jm(Qδ) =

∑

spins

∫
dΠm|Mm(p0; {p})⟩⟨Mm(p0; {p})|

×2 (2π)d−1δ(Q−n̄·pXc
) δd−2(p⊥Xc

)
∏

i θ(δ
2n̄·pic−n·pic) ,
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FIG. 1. Emission of a coft gluon from a collinear field χc =
W †

c ξc. The double line indicates the Wilson line Wc.

consider the diagrams for the emission of a single coft
gluon with momentum k from a collinear field χc shown
in Figure 1. Since the coft field can be treated as a sub-
mode of the collinear field, we can compute the diagrams
using the collinear Feynman rules and then expand them
in the coft momentum k. The first diagram describes
the emission from the Wilson line U(n̄) derived in (5). If
the collinear quark momentum p1 in the final state would
have generic scaling, we would write the propagator de-
nominator in the second diagram as (p1 + k)2 = p21 at
leading power and its contribution would be power sup-
pressed. However, if the virtuality of the collinear quark
is zero, the leading contribution is (p1 + k)2 = 2p1 · k.
Computing the amplitude squared, one finds

|M|2 = 2CF g
2
s

n1 · n̄

(n1 · k) (n̄ · k)
, (6)

with nµ
1 = 2pµ1/n̄ ·p1. This is the matrix element squared

for gluon emission from two Wilson lines, one in the n̄
direction and a second one along the direction n1 of the
collinear final-state particle. Repeating the computation
with two gluons, we find that the corresponding matrix
element is indeed the two-gluon matrix element of the
same operator.
For a single collinear particle in the final state, the

coft function is given by two Wilson lines, as would be
the case for soft emissions. To see the physics difference
between soft and coft modes one needs to consider the
case with several collinear particles inside the jet. Doing
so, one finds that every collinear final-state particle gets
dressed by a coft Wilson line. In color-space notation
[21], the coft emissions in the presence of a final state
with m collinear particles can be obtained by taking the
matrix element of the operator

U0(n̄)U1(n1) . . . Um(nm)|Mm(p0; {p})⟩ (7)

where |Mm⟩ is the amplitude for the collinear quark field
with momentum p0 ≈ Q n̄/2 to split into particles with
momenta {p} = {p1, . . . , pm}, and Ui(ni) is a Wilson
line along the direction ni = pi/Ei in the color represen-
tation relevant for the given particle. The fact that soft
emissions build up Wilson lines is of course very familiar.
What is special in the present case is that the coft par-
ticles are emitted in a narrow cone and can therefore re-
solve the individual collinear partons. As a consequence,
we end up with individual Wilson lines for each of the
collinear final-state partons, instead of just one overall
Wilson line describing all soft emissions, see Figure 2.
To write down a factorized form of the cross section

based on the result (7), we first perform a Laplace trans-

FIG. 2. Soft factorization (left) versus coft factorization
(right). Collinear particles are shown in blue, soft emissions
in green and the small-angle soft radiation described by the
coft mode in red. The double lines indicate the direction of
the associated Wilson lines.

formation with respect to β, i.e.

σ̃(τ) =

∫ ∞

0
dβ e−β/(τeγE ) dσ

dβ
. (8)

This is convenient, since the outside energy is shared
among the soft and coft degrees of freedom. The Laplace
transformation factorizes the corresponding constraint in
(3). Since the cone constraint acts on the individual par-
tons, it trivially factorizes. In Laplace space we then
obtain the factorization formula

σ̃(τ) = σ0 H(Q) S̃(Qτ)

[
∞∑

m=1

〈
Jm(Qδ)⊗ Ũm(Qδτ)

〉]2

(9)
for the jet cross section, where the angle brackets de-
note the color trace ⟨M⟩ = 1

Nc
tr(M). The jet functions

Jm(Qδ) and the coft functions Ũm(Qδτ) are obtained
from squaring the amplitude (7). Both depend on the
directions ni of the collinear partons. The symbol ⊗ in-
dicates that the product of the jet and coft functions
needs to be integrated over the directions of the vectors
ni, and the square in (9) takes into account the identi-
cal contributions of the left and right cone jets. H(Q)
is the familiar hard function for two-jet processes. The
soft function S(Qβ) is the squared matrix element of two
Wilson lines along the jet directions, with a constraint on
the energy but no angle constraint, as explained earlier.
The same soft function arises in threshold resummation
for Drell-Yan production, up to the fact that the Wilson
lines are now outgoing. This does not change the pertur-
bative result, which at two loops was obtained in [22, 23].
The coft function with m Wilson lines is given by

Um(Qδβ) =

∫

Xt

∑
⟨0|U†

0 (n̄)U
†
1 (n1) . . .U

†
m(nm)|Xt⟩

× ⟨Xt|U0(n̄) . . .Um(nm)|0⟩ δ(Qβ − n̄ · pXout

t
) , (10)

and the jet function containing m partons is defined as
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2
Jm(Qδ) =

∑
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∫
dΠm|Mm(p0; {p})⟩⟨Mm(p0; {p})|

×2 (2π)d−1δ(Q−n̄·pXc
) δd−2(p⊥Xc
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FIG. 1. Emission of a coft gluon from a collinear field χc =
W †

c ξc. The double line indicates the Wilson line Wc.

consider the diagrams for the emission of a single coft
gluon with momentum k from a collinear field χc shown
in Figure 1. Since the coft field can be treated as a sub-
mode of the collinear field, we can compute the diagrams
using the collinear Feynman rules and then expand them
in the coft momentum k. The first diagram describes
the emission from the Wilson line U(n̄) derived in (5). If
the collinear quark momentum p1 in the final state would
have generic scaling, we would write the propagator de-
nominator in the second diagram as (p1 + k)2 = p21 at
leading power and its contribution would be power sup-
pressed. However, if the virtuality of the collinear quark
is zero, the leading contribution is (p1 + k)2 = 2p1 · k.
Computing the amplitude squared, one finds

|M|2 = 2CF g
2
s

n1 · n̄

(n1 · k) (n̄ · k)
, (6)

with nµ
1 = 2pµ1/n̄ ·p1. This is the matrix element squared

for gluon emission from two Wilson lines, one in the n̄
direction and a second one along the direction n1 of the
collinear final-state particle. Repeating the computation
with two gluons, we find that the corresponding matrix
element is indeed the two-gluon matrix element of the
same operator.
For a single collinear particle in the final state, the

coft function is given by two Wilson lines, as would be
the case for soft emissions. To see the physics difference
between soft and coft modes one needs to consider the
case with several collinear particles inside the jet. Doing
so, one finds that every collinear final-state particle gets
dressed by a coft Wilson line. In color-space notation
[21], the coft emissions in the presence of a final state
with m collinear particles can be obtained by taking the
matrix element of the operator

U0(n̄)U1(n1) . . . Um(nm)|Mm(p0; {p})⟩ (7)

where |Mm⟩ is the amplitude for the collinear quark field
with momentum p0 ≈ Q n̄/2 to split into particles with
momenta {p} = {p1, . . . , pm}, and Ui(ni) is a Wilson
line along the direction ni = pi/Ei in the color represen-
tation relevant for the given particle. The fact that soft
emissions build up Wilson lines is of course very familiar.
What is special in the present case is that the coft par-
ticles are emitted in a narrow cone and can therefore re-
solve the individual collinear partons. As a consequence,
we end up with individual Wilson lines for each of the
collinear final-state partons, instead of just one overall
Wilson line describing all soft emissions, see Figure 2.
To write down a factorized form of the cross section

based on the result (7), we first perform a Laplace trans-

FIG. 2. Soft factorization (left) versus coft factorization
(right). Collinear particles are shown in blue, soft emissions
in green and the small-angle soft radiation described by the
coft mode in red. The double lines indicate the direction of
the associated Wilson lines.

formation with respect to β, i.e.

σ̃(τ) =

∫ ∞

0
dβ e−β/(τeγE ) dσ

dβ
. (8)

This is convenient, since the outside energy is shared
among the soft and coft degrees of freedom. The Laplace
transformation factorizes the corresponding constraint in
(3). Since the cone constraint acts on the individual par-
tons, it trivially factorizes. In Laplace space we then
obtain the factorization formula
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Jm(Qδ) and the coft functions Ũm(Qδτ) are obtained
from squaring the amplitude (7). Both depend on the
directions ni of the collinear partons. The symbol ⊗ in-
dicates that the product of the jet and coft functions
needs to be integrated over the directions of the vectors
ni, and the square in (9) takes into account the identi-
cal contributions of the left and right cone jets. H(Q)
is the familiar hard function for two-jet processes. The
soft function S(Qβ) is the squared matrix element of two
Wilson lines along the jet directions, with a constraint on
the energy but no angle constraint, as explained earlier.
The same soft function arises in threshold resummation
for Drell-Yan production, up to the fact that the Wilson
lines are now outgoing. This does not change the pertur-
bative result, which at two loops was obtained in [22, 23].
The coft function with m Wilson lines is given by

Um(Qδβ) =
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consider the diagrams for the emission of a single coft
gluon with momentum k from a collinear field χc shown
in Figure 1. Since the coft field can be treated as a sub-
mode of the collinear field, we can compute the diagrams
using the collinear Feynman rules and then expand them
in the coft momentum k. The first diagram describes
the emission from the Wilson line U(n̄) derived in (5). If
the collinear quark momentum p1 in the final state would
have generic scaling, we would write the propagator de-
nominator in the second diagram as (p1 + k)2 = p21 at
leading power and its contribution would be power sup-
pressed. However, if the virtuality of the collinear quark
is zero, the leading contribution is (p1 + k)2 = 2p1 · k.
Computing the amplitude squared, one finds

|M|2 = 2CF g
2
s

n1 · n̄

(n1 · k) (n̄ · k)
, (6)

with nµ
1 = 2pµ1/n̄ ·p1. This is the matrix element squared

for gluon emission from two Wilson lines, one in the n̄
direction and a second one along the direction n1 of the
collinear final-state particle. Repeating the computation
with two gluons, we find that the corresponding matrix
element is indeed the two-gluon matrix element of the
same operator.
For a single collinear particle in the final state, the

coft function is given by two Wilson lines, as would be
the case for soft emissions. To see the physics difference
between soft and coft modes one needs to consider the
case with several collinear particles inside the jet. Doing
so, one finds that every collinear final-state particle gets
dressed by a coft Wilson line. In color-space notation
[21], the coft emissions in the presence of a final state
with m collinear particles can be obtained by taking the
matrix element of the operator

U0(n̄)U1(n1) . . . Um(nm)|Mm(p0; {p})⟩ (7)

where |Mm⟩ is the amplitude for the collinear quark field
with momentum p0 ≈ Q n̄/2 to split into particles with
momenta {p} = {p1, . . . , pm}, and Ui(ni) is a Wilson
line along the direction ni = pi/Ei in the color represen-
tation relevant for the given particle. The fact that soft
emissions build up Wilson lines is of course very familiar.
What is special in the present case is that the coft par-
ticles are emitted in a narrow cone and can therefore re-
solve the individual collinear partons. As a consequence,
we end up with individual Wilson lines for each of the
collinear final-state partons, instead of just one overall
Wilson line describing all soft emissions, see Figure 2.
To write down a factorized form of the cross section

based on the result (7), we first perform a Laplace trans-

FIG. 2. Soft factorization (left) versus coft factorization
(right). Collinear particles are shown in blue, soft emissions
in green and the small-angle soft radiation described by the
coft mode in red. The double lines indicate the direction of
the associated Wilson lines.
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ni, and the square in (9) takes into account the identi-
cal contributions of the left and right cone jets. H(Q)
is the familiar hard function for two-jet processes. The
soft function S(Qβ) is the squared matrix element of two
Wilson lines along the jet directions, with a constraint on
the energy but no angle constraint, as explained earlier.
The same soft function arises in threshold resummation
for Drell-Yan production, up to the fact that the Wilson
lines are now outgoing. This does not change the pertur-
bative result, which at two loops was obtained in [22, 23].
The coft function with m Wilson lines is given by
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consider the diagrams for the emission of a single coft
gluon with momentum k from a collinear field χc shown
in Figure 1. Since the coft field can be treated as a sub-
mode of the collinear field, we can compute the diagrams
using the collinear Feynman rules and then expand them
in the coft momentum k. The first diagram describes
the emission from the Wilson line U(n̄) derived in (5). If
the collinear quark momentum p1 in the final state would
have generic scaling, we would write the propagator de-
nominator in the second diagram as (p1 + k)2 = p21 at
leading power and its contribution would be power sup-
pressed. However, if the virtuality of the collinear quark
is zero, the leading contribution is (p1 + k)2 = 2p1 · k.
Computing the amplitude squared, one finds

|M|2 = 2CF g
2
s

n1 · n̄

(n1 · k) (n̄ · k)
, (6)

with nµ
1 = 2pµ1/n̄ ·p1. This is the matrix element squared

for gluon emission from two Wilson lines, one in the n̄
direction and a second one along the direction n1 of the
collinear final-state particle. Repeating the computation
with two gluons, we find that the corresponding matrix
element is indeed the two-gluon matrix element of the
same operator.
For a single collinear particle in the final state, the

coft function is given by two Wilson lines, as would be
the case for soft emissions. To see the physics difference
between soft and coft modes one needs to consider the
case with several collinear particles inside the jet. Doing
so, one finds that every collinear final-state particle gets
dressed by a coft Wilson line. In color-space notation
[21], the coft emissions in the presence of a final state
with m collinear particles can be obtained by taking the
matrix element of the operator

U0(n̄)U1(n1) . . . Um(nm)|Mm(p0; {p})⟩ (7)

where |Mm⟩ is the amplitude for the collinear quark field
with momentum p0 ≈ Q n̄/2 to split into particles with
momenta {p} = {p1, . . . , pm}, and Ui(ni) is a Wilson
line along the direction ni = pi/Ei in the color represen-
tation relevant for the given particle. The fact that soft
emissions build up Wilson lines is of course very familiar.
What is special in the present case is that the coft par-
ticles are emitted in a narrow cone and can therefore re-
solve the individual collinear partons. As a consequence,
we end up with individual Wilson lines for each of the
collinear final-state partons, instead of just one overall
Wilson line describing all soft emissions, see Figure 2.
To write down a factorized form of the cross section

based on the result (7), we first perform a Laplace trans-
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This is convenient, since the outside energy is shared
among the soft and coft degrees of freedom. The Laplace
transformation factorizes the corresponding constraint in
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tons, it trivially factorizes. In Laplace space we then
obtain the factorization formula

σ̃(τ) = σ0 H(Q) S̃(Qτ)

[
∞∑

m=1

〈
Jm(Qδ)⊗ Ũm(Qδτ)
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for the jet cross section, where the angle brackets de-
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Jm(Qδ) and the coft functions Ũm(Qδτ) are obtained
from squaring the amplitude (7). Both depend on the
directions ni of the collinear partons. The symbol ⊗ in-
dicates that the product of the jet and coft functions
needs to be integrated over the directions of the vectors
ni, and the square in (9) takes into account the identi-
cal contributions of the left and right cone jets. H(Q)
is the familiar hard function for two-jet processes. The
soft function S(Qβ) is the squared matrix element of two
Wilson lines along the jet directions, with a constraint on
the energy but no angle constraint, as explained earlier.
The same soft function arises in threshold resummation
for Drell-Yan production, up to the fact that the Wilson
lines are now outgoing. This does not change the pertur-
bative result, which at two loops was obtained in [22, 23].
The coft function with m Wilson lines is given by

Um(Qδβ) =

∫
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consider the diagrams for the emission of a single coft
gluon with momentum k from a collinear field χc shown
in Figure 1. Since the coft field can be treated as a sub-
mode of the collinear field, we can compute the diagrams
using the collinear Feynman rules and then expand them
in the coft momentum k. The first diagram describes
the emission from the Wilson line U(n̄) derived in (5). If
the collinear quark momentum p1 in the final state would
have generic scaling, we would write the propagator de-
nominator in the second diagram as (p1 + k)2 = p21 at
leading power and its contribution would be power sup-
pressed. However, if the virtuality of the collinear quark
is zero, the leading contribution is (p1 + k)2 = 2p1 · k.
Computing the amplitude squared, one finds

|M|2 = 2CF g
2
s

n1 · n̄

(n1 · k) (n̄ · k)
, (6)

with nµ
1 = 2pµ1/n̄ ·p1. This is the matrix element squared

for gluon emission from two Wilson lines, one in the n̄
direction and a second one along the direction n1 of the
collinear final-state particle. Repeating the computation
with two gluons, we find that the corresponding matrix
element is indeed the two-gluon matrix element of the
same operator.
For a single collinear particle in the final state, the

coft function is given by two Wilson lines, as would be
the case for soft emissions. To see the physics difference
between soft and coft modes one needs to consider the
case with several collinear particles inside the jet. Doing
so, one finds that every collinear final-state particle gets
dressed by a coft Wilson line. In color-space notation
[21], the coft emissions in the presence of a final state
with m collinear particles can be obtained by taking the
matrix element of the operator

U0(n̄)U1(n1) . . . Um(nm)|Mm(p0; {p})⟩ (7)

where |Mm⟩ is the amplitude for the collinear quark field
with momentum p0 ≈ Q n̄/2 to split into particles with
momenta {p} = {p1, . . . , pm}, and Ui(ni) is a Wilson
line along the direction ni = pi/Ei in the color represen-
tation relevant for the given particle. The fact that soft
emissions build up Wilson lines is of course very familiar.
What is special in the present case is that the coft par-
ticles are emitted in a narrow cone and can therefore re-
solve the individual collinear partons. As a consequence,
we end up with individual Wilson lines for each of the
collinear final-state partons, instead of just one overall
Wilson line describing all soft emissions, see Figure 2.
To write down a factorized form of the cross section

based on the result (7), we first perform a Laplace trans-

FIG. 2. Soft factorization (left) versus coft factorization
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in green and the small-angle soft radiation described by the
coft mode in red. The double lines indicate the direction of
the associated Wilson lines.
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This is convenient, since the outside energy is shared
among the soft and coft degrees of freedom. The Laplace
transformation factorizes the corresponding constraint in
(3). Since the cone constraint acts on the individual par-
tons, it trivially factorizes. In Laplace space we then
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Jm(Qδ) and the coft functions Ũm(Qδτ) are obtained
from squaring the amplitude (7). Both depend on the
directions ni of the collinear partons. The symbol ⊗ in-
dicates that the product of the jet and coft functions
needs to be integrated over the directions of the vectors
ni, and the square in (9) takes into account the identi-
cal contributions of the left and right cone jets. H(Q)
is the familiar hard function for two-jet processes. The
soft function S(Qβ) is the squared matrix element of two
Wilson lines along the jet directions, with a constraint on
the energy but no angle constraint, as explained earlier.
The same soft function arises in threshold resummation
for Drell-Yan production, up to the fact that the Wilson
lines are now outgoing. This does not change the pertur-
bative result, which at two loops was obtained in [22, 23].
The coft function with m Wilson lines is given by

Um(Qδβ) =

∫
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consider the diagrams for the emission of a single coft
gluon with momentum k from a collinear field χc shown
in Figure 1. Since the coft field can be treated as a sub-
mode of the collinear field, we can compute the diagrams
using the collinear Feynman rules and then expand them
in the coft momentum k. The first diagram describes
the emission from the Wilson line U(n̄) derived in (5). If
the collinear quark momentum p1 in the final state would
have generic scaling, we would write the propagator de-
nominator in the second diagram as (p1 + k)2 = p21 at
leading power and its contribution would be power sup-
pressed. However, if the virtuality of the collinear quark
is zero, the leading contribution is (p1 + k)2 = 2p1 · k.
Computing the amplitude squared, one finds

|M|2 = 2CF g
2
s

n1 · n̄

(n1 · k) (n̄ · k)
, (6)

with nµ
1 = 2pµ1/n̄ ·p1. This is the matrix element squared

for gluon emission from two Wilson lines, one in the n̄
direction and a second one along the direction n1 of the
collinear final-state particle. Repeating the computation
with two gluons, we find that the corresponding matrix
element is indeed the two-gluon matrix element of the
same operator.
For a single collinear particle in the final state, the

coft function is given by two Wilson lines, as would be
the case for soft emissions. To see the physics difference
between soft and coft modes one needs to consider the
case with several collinear particles inside the jet. Doing
so, one finds that every collinear final-state particle gets
dressed by a coft Wilson line. In color-space notation
[21], the coft emissions in the presence of a final state
with m collinear particles can be obtained by taking the
matrix element of the operator

U0(n̄)U1(n1) . . . Um(nm)|Mm(p0; {p})⟩ (7)

where |Mm⟩ is the amplitude for the collinear quark field
with momentum p0 ≈ Q n̄/2 to split into particles with
momenta {p} = {p1, . . . , pm}, and Ui(ni) is a Wilson
line along the direction ni = pi/Ei in the color represen-
tation relevant for the given particle. The fact that soft
emissions build up Wilson lines is of course very familiar.
What is special in the present case is that the coft par-
ticles are emitted in a narrow cone and can therefore re-
solve the individual collinear partons. As a consequence,
we end up with individual Wilson lines for each of the
collinear final-state partons, instead of just one overall
Wilson line describing all soft emissions, see Figure 2.
To write down a factorized form of the cross section

based on the result (7), we first perform a Laplace trans-

FIG. 2. Soft factorization (left) versus coft factorization
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in green and the small-angle soft radiation described by the
coft mode in red. The double lines indicate the direction of
the associated Wilson lines.
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This is convenient, since the outside energy is shared
among the soft and coft degrees of freedom. The Laplace
transformation factorizes the corresponding constraint in
(3). Since the cone constraint acts on the individual par-
tons, it trivially factorizes. In Laplace space we then
obtain the factorization formula

σ̃(τ) = σ0 H(Q) S̃(Qτ)
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Jm(Qδ) and the coft functions Ũm(Qδτ) are obtained
from squaring the amplitude (7). Both depend on the
directions ni of the collinear partons. The symbol ⊗ in-
dicates that the product of the jet and coft functions
needs to be integrated over the directions of the vectors
ni, and the square in (9) takes into account the identi-
cal contributions of the left and right cone jets. H(Q)
is the familiar hard function for two-jet processes. The
soft function S(Qβ) is the squared matrix element of two
Wilson lines along the jet directions, with a constraint on
the energy but no angle constraint, as explained earlier.
The same soft function arises in threshold resummation
for Drell-Yan production, up to the fact that the Wilson
lines are now outgoing. This does not change the pertur-
bative result, which at two loops was obtained in [22, 23].
The coft function with m Wilson lines is given by
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consider the diagrams for the emission of a single coft
gluon with momentum k from a collinear field χc shown
in Figure 1. Since the coft field can be treated as a sub-
mode of the collinear field, we can compute the diagrams
using the collinear Feynman rules and then expand them
in the coft momentum k. The first diagram describes
the emission from the Wilson line U(n̄) derived in (5). If
the collinear quark momentum p1 in the final state would
have generic scaling, we would write the propagator de-
nominator in the second diagram as (p1 + k)2 = p21 at
leading power and its contribution would be power sup-
pressed. However, if the virtuality of the collinear quark
is zero, the leading contribution is (p1 + k)2 = 2p1 · k.
Computing the amplitude squared, one finds

|M|2 = 2CF g
2
s

n1 · n̄

(n1 · k) (n̄ · k)
, (6)

with nµ
1 = 2pµ1/n̄ ·p1. This is the matrix element squared

for gluon emission from two Wilson lines, one in the n̄
direction and a second one along the direction n1 of the
collinear final-state particle. Repeating the computation
with two gluons, we find that the corresponding matrix
element is indeed the two-gluon matrix element of the
same operator.
For a single collinear particle in the final state, the

coft function is given by two Wilson lines, as would be
the case for soft emissions. To see the physics difference
between soft and coft modes one needs to consider the
case with several collinear particles inside the jet. Doing
so, one finds that every collinear final-state particle gets
dressed by a coft Wilson line. In color-space notation
[21], the coft emissions in the presence of a final state
with m collinear particles can be obtained by taking the
matrix element of the operator

U0(n̄)U1(n1) . . . Um(nm)|Mm(p0; {p})⟩ (7)

where |Mm⟩ is the amplitude for the collinear quark field
with momentum p0 ≈ Q n̄/2 to split into particles with
momenta {p} = {p1, . . . , pm}, and Ui(ni) is a Wilson
line along the direction ni = pi/Ei in the color represen-
tation relevant for the given particle. The fact that soft
emissions build up Wilson lines is of course very familiar.
What is special in the present case is that the coft par-
ticles are emitted in a narrow cone and can therefore re-
solve the individual collinear partons. As a consequence,
we end up with individual Wilson lines for each of the
collinear final-state partons, instead of just one overall
Wilson line describing all soft emissions, see Figure 2.
To write down a factorized form of the cross section

based on the result (7), we first perform a Laplace trans-
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This is convenient, since the outside energy is shared
among the soft and coft degrees of freedom. The Laplace
transformation factorizes the corresponding constraint in
(3). Since the cone constraint acts on the individual par-
tons, it trivially factorizes. In Laplace space we then
obtain the factorization formula

σ̃(τ) = σ0 H(Q) S̃(Qτ)

[
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〈
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for the jet cross section, where the angle brackets de-
note the color trace ⟨M⟩ = 1

Nc
tr(M). The jet functions

Jm(Qδ) and the coft functions Ũm(Qδτ) are obtained
from squaring the amplitude (7). Both depend on the
directions ni of the collinear partons. The symbol ⊗ in-
dicates that the product of the jet and coft functions
needs to be integrated over the directions of the vectors
ni, and the square in (9) takes into account the identi-
cal contributions of the left and right cone jets. H(Q)
is the familiar hard function for two-jet processes. The
soft function S(Qβ) is the squared matrix element of two
Wilson lines along the jet directions, with a constraint on
the energy but no angle constraint, as explained earlier.
The same soft function arises in threshold resummation
for Drell-Yan production, up to the fact that the Wilson
lines are now outgoing. This does not change the pertur-
bative result, which at two loops was obtained in [22, 23].
The coft function with m Wilson lines is given by

Um(Qδβ) =

∫

Xt

∑
⟨0|U†

0 (n̄)U
†
1 (n1) . . .U

†
m(nm)|Xt⟩

× ⟨Xt|U0(n̄) . . .Um(nm)|0⟩ δ(Qβ − n̄ · pXout

t
) , (10)

and the jet function containing m partons is defined as

n/

2
Jm(Qδ) =

∑

spins

∫
dΠm|Mm(p0; {p})⟩⟨Mm(p0; {p})|

×2 (2π)d−1δ(Q−n̄·pXc
) δd−2(p⊥Xc

)
∏

i θ(δ
2n̄·pic−n·pic) ,

(11)

jet function coft function

integration over directions ni 
of collinear particles

{ni}

fixed directions
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Our  approach

Matthias  Neubert:    An  EFT  for  Jet  Processes

Once   all   scales   are   factorized,   large   logarithms   can   be   resummed   by  
solving  RG  evolution  equations  to  connect  one  scale  to  another    

In  this  sense  NGLs  are  as  global  as  any  other  large  logarithms  

The  resummation  of  NGLs  has  so  far  only  been  achieved  at  LLO  using  
numerical   Monte   Carlo   techniques;   our   goal   is   to   understand   their  
resummation  using  the  language  of  the  renormalization  group
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UV  subtractions  for  jet  and  coft  functions

Matthias  Neubert:    An  EFT  for  Jet  Processes

Structure  of  bare  jet  functions:  

This   requires   a   matrix   of   Z-­‐factors   with   triangular  
structure  (with  m≥k):  

with:

4

where the integral over the m-particle phase-space Πm

is performed holding the directions ni of the particles
fixed, i.e. one only integrates over their energies. The jet
functions suffer from singularities when particles become
soft and collinear and are therefore distribution-valued in
the angles formed by the vectors n, n̄ and ni.
We have derived all ingredients needed to evaluate the

factorization formula (9) at two-loop order. Their deter-
mination will be detailed in a longer paper [24], but let
us mention that the two-loop coft function U1(Qδβ) can
be extracted from the result for the hemisphere soft func-
tion obtained in [7, 8]. Putting the ingredients together
provides a nontrivial consistency check of our framework,
since the individual contributions diverge as strongly as
1/ϵ4 for ϵ → 0 and scale differently, cf. (4). These diver-
gences cancel in the final result, which can then be com-
pared to numerical results obtained by running a fixed-
order event generator such asEvent2 [21] at small values
of β and δ [24]. For completeness, we supply the explicit
two-loop expressions for all relevant functions as supple-
mentary material in the arXiv version of this letter.

III. RENORMALIZATION

Our factorization formula achieves a complete scale
separation. Once the ingredients are renormalized and
the RG evolution equations are solved, one can evaluate
each ingredient at its natural scale and thereby resum
all large logarithms of β and δ in the cross section. The
renormalization of the hard and soft functions is mul-
tiplicative and the relevant anomalous dimensions are
known to three-loop accuracy. The renormalization of
the jet functions, on the other hand, cannot be multi-
plicative, since Jm starts at O(αm

s ) and contains diver-
gences. These real-emission divergences arise from de-
generate parton configurations and cancel against virtual
corrections present in lower-point amplitudes. This im-
plies that the Z factor relating the bare and renormalized
jet functions, defined as (summed over k ≤ m)

Jm(Qδ, ϵ) = Jk(Qδ, µ)ZJ
km(Qδ, ϵ, µ) , (12)

is an upper triangular matrix with a hierarchical struc-
ture, i.e. the off-diagonal elements are suppressed by pow-
ers ZJ

km ∼ αm−k
s . The matrix elements depend on the

directions of the partons in Jm and act on their color
indices. The jet-function renormalization factor contains
logarithmic dependence on the jet scale Qδ, as is typical
for Sudakov problems.
Having renormalized all other elements of the factor-

ization formula, one must now find that the matrix

Z
U (Qδτ, ϵ, µ) ≡ Z1/2

H (Q, ϵ, µ)Z1/2
S (Qτ, ϵ, µ)ZJ(Qδ, ϵ, µ)

(13)
renormalizes the coft functions, i.e.

Ũm(Qδτ, µ) = Z
U
mk(Qδτ, ϵ, µ) ⊗̂ Ũk(Qδτ, ϵ) . (14)

This relation has several interesting features. First of all,
it implies that the Sudakov logarithms in the other Z
factors must conspire to produce a dependence on only
the coft scale. Closer inspection shows that the logarith-
mic dependence associated with Sudakov logarithms is
universal and can be factored out. The remaining de-
pendence on the jet scale drops out once ZU is applied
to the coft functions. A second, interesting feature of the
matrix structure is that higher-multiplicity coft functions
enter the renormalization of the lower ones. For example,
the two-loop renormalization of the coft function with
two Wilson lines has the form

Ũ1(µ) = Z
U
11 Ũ1(ϵ) +Z

U
12 ⊗̂ Ũ2(ϵ) +Z

U
13 ⊗̂ 1+O(α3

s) ,
(15)

where we have used the fact that Ũ3 = 1+O(αs). The
off-diagonal contributions depend on the directions of
the additional partons, and the symbol ⊗̂ indicates that
one has to integrate over these since the renormalized
function Ũ1(µ) multiplies the jet function J1(µ), which
does not depend on these additional degrees of freedom.
The renormalization condition (14) is at first sight quite
surprising, because Wilson-line matrix elements can usu-
ally be renormalized multiplicatively. However, we have
checked explicitly that the condition (15) renormalizes
the function Ũ1(µ) correctly to two-loop order. For the
case δ ∼ 1 discussed below, we have furthermore veri-
fied that the renormalization condition (14) is fulfilled at
one-loop order for arbitrary m [24].
The off-diagonal structure of the matrix ZU and the

associated anomalous-dimension matrix Γ has important
consequences when performing the resummation. At
leading order in RG-improved perturbation theory, the
resummed result is obtained by working with tree-level
functions and evolving them with one-loop anomalous
dimensions (two-loop accuracy is needed for the cusp
pieces, which can be factored out). At tree-level only
the jet-function J1 = 1 is nonzero, while all Wilson-line
matrix elements are trivially given by Ũm = 1. To this
accuracy, the anomalous-dimension matrix only has en-
tries in the diagonal and above the diagonal, Vm = Γmm

and Rm = Γm(m+1). We can write the formal solution of
the associated RG equation as a path-ordered exponen-
tial. At the nth order in its fixed-order expansion, one
needs the nth power of the anomalous dimension matrix,
multiplied by the tree-level jet and coft functions. The
first three orders have the form

αs : R1 + V1 ,

α2
s : R1(R2 + V2) + V1(R1 + V1) , (16)

α3
s : R1

[
R2(R3 + V3) + V2(R2 + V2)

]

+ V1

[
R1(R2 + V2) + V1(R1 + V1)

]
.

As in (15) one has to integrate over the angles of the ad-
ditional partons, but for simplicity we suppress the cor-
responding ⊗̂ symbols. Note that due to the additional
logarithms encountered when solving the RG equations,
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Scale   invariance   of   the   physical   cross   section   then  
implies  that  the  coft  functions  must  be  renormalized  
by  the  matrix  (with  k≥m):  

with:  

Non-­‐trivial  features:  

Sudakov  logarithms  in  ZH,  ZS  and  ZJ  must  conspire  
to   give   logarithms   of   the   coft   scale  Qδτ,   modulo  
terms  that  vanish  when  projected  onto  
higher-­‐multiplicity   coft   functions   enter   the  
renormalization  of  lower-­‐multiplicity  ones,  e.g.:  

4

where the integral over the m-particle phase-space Πm

is performed holding the directions ni of the particles
fixed, i.e. one only integrates over their energies. The jet
functions suffer from singularities when particles become
soft and collinear and are therefore distribution-valued in
the angles formed by the vectors n, n̄ and ni.
We have derived all ingredients needed to evaluate the

factorization formula (9) at two-loop order. Their deter-
mination will be detailed in a longer paper [24], but let
us mention that the two-loop coft function U1(Qδβ) can
be extracted from the result for the hemisphere soft func-
tion obtained in [7, 8]. Putting the ingredients together
provides a nontrivial consistency check of our framework,
since the individual contributions diverge as strongly as
1/ϵ4 for ϵ → 0 and scale differently, cf. (4). These diver-
gences cancel in the final result, which can then be com-
pared to numerical results obtained by running a fixed-
order event generator such asEvent2 [21] at small values
of β and δ [24]. For completeness, we supply the explicit
two-loop expressions for all relevant functions as supple-
mentary material in the arXiv version of this letter.

III. RENORMALIZATION

Our factorization formula achieves a complete scale
separation. Once the ingredients are renormalized and
the RG evolution equations are solved, one can evaluate
each ingredient at its natural scale and thereby resum
all large logarithms of β and δ in the cross section. The
renormalization of the hard and soft functions is mul-
tiplicative and the relevant anomalous dimensions are
known to three-loop accuracy. The renormalization of
the jet functions, on the other hand, cannot be multi-
plicative, since Jm starts at O(αm

s ) and contains diver-
gences. These real-emission divergences arise from de-
generate parton configurations and cancel against virtual
corrections present in lower-point amplitudes. This im-
plies that the Z factor relating the bare and renormalized
jet functions, defined as (summed over k ≤ m)

Jm(Qδ, ϵ) = Jk(Qδ, µ)ZJ
km(Qδ, ϵ, µ) , (12)

is an upper triangular matrix with a hierarchical struc-
ture, i.e. the off-diagonal elements are suppressed by pow-
ers ZJ

km ∼ αm−k
s . The matrix elements depend on the

directions of the partons in Jm and act on their color
indices. The jet-function renormalization factor contains
logarithmic dependence on the jet scale Qδ, as is typical
for Sudakov problems.
Having renormalized all other elements of the factor-

ization formula, one must now find that the matrix

Z
U (Qδτ, ϵ, µ) ≡ Z1/2

H (Q, ϵ, µ)Z1/2
S (Qτ, ϵ, µ)ZJ(Qδ, ϵ, µ)

(13)
renormalizes the coft functions, i.e.

Ũm(Qδτ, µ) = Z
U
mk(Qδτ, ϵ, µ) ⊗̂ Ũk(Qδτ, ϵ) . (14)

This relation has several interesting features. First of all,
it implies that the Sudakov logarithms in the other Z
factors must conspire to produce a dependence on only
the coft scale. Closer inspection shows that the logarith-
mic dependence associated with Sudakov logarithms is
universal and can be factored out. The remaining de-
pendence on the jet scale drops out once ZU is applied
to the coft functions. A second, interesting feature of the
matrix structure is that higher-multiplicity coft functions
enter the renormalization of the lower ones. For example,
the two-loop renormalization of the coft function with
two Wilson lines has the form

Ũ1(µ) = Z
U
11 Ũ1(ϵ) +Z

U
12 ⊗̂ Ũ2(ϵ) +Z

U
13 ⊗̂ 1+O(α3

s) ,
(15)

where we have used the fact that Ũ3 = 1+O(αs). The
off-diagonal contributions depend on the directions of
the additional partons, and the symbol ⊗̂ indicates that
one has to integrate over these since the renormalized
function Ũ1(µ) multiplies the jet function J1(µ), which
does not depend on these additional degrees of freedom.
The renormalization condition (14) is at first sight quite
surprising, because Wilson-line matrix elements can usu-
ally be renormalized multiplicatively. However, we have
checked explicitly that the condition (15) renormalizes
the function Ũ1(µ) correctly to two-loop order. For the
case δ ∼ 1 discussed below, we have furthermore veri-
fied that the renormalization condition (14) is fulfilled at
one-loop order for arbitrary m [24].
The off-diagonal structure of the matrix ZU and the

associated anomalous-dimension matrix Γ has important
consequences when performing the resummation. At
leading order in RG-improved perturbation theory, the
resummed result is obtained by working with tree-level
functions and evolving them with one-loop anomalous
dimensions (two-loop accuracy is needed for the cusp
pieces, which can be factored out). At tree-level only
the jet-function J1 = 1 is nonzero, while all Wilson-line
matrix elements are trivially given by Ũm = 1. To this
accuracy, the anomalous-dimension matrix only has en-
tries in the diagonal and above the diagonal, Vm = Γmm

and Rm = Γm(m+1). We can write the formal solution of
the associated RG equation as a path-ordered exponen-
tial. At the nth order in its fixed-order expansion, one
needs the nth power of the anomalous dimension matrix,
multiplied by the tree-level jet and coft functions. The
first three orders have the form

αs : R1 + V1 ,

α2
s : R1(R2 + V2) + V1(R1 + V1) , (16)

α3
s : R1

[
R2(R3 + V3) + V2(R2 + V2)

]

+ V1

[
R1(R2 + V2) + V1(R1 + V1)

]
.

As in (15) one has to integrate over the angles of the ad-
ditional partons, but for simplicity we suppress the cor-
responding ⊗̂ symbols. Note that due to the additional
logarithms encountered when solving the RG equations,
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where the integral over the m-particle phase-space Πm

is performed holding the directions ni of the particles
fixed, i.e. one only integrates over their energies. The jet
functions suffer from singularities when particles become
soft and collinear and are therefore distribution-valued in
the angles formed by the vectors n, n̄ and ni.
We have derived all ingredients needed to evaluate the

factorization formula (9) at two-loop order. Their deter-
mination will be detailed in a longer paper [24], but let
us mention that the two-loop coft function U1(Qδβ) can
be extracted from the result for the hemisphere soft func-
tion obtained in [7, 8]. Putting the ingredients together
provides a nontrivial consistency check of our framework,
since the individual contributions diverge as strongly as
1/ϵ4 for ϵ → 0 and scale differently, cf. (4). These diver-
gences cancel in the final result, which can then be com-
pared to numerical results obtained by running a fixed-
order event generator such asEvent2 [21] at small values
of β and δ [24]. For completeness, we supply the explicit
two-loop expressions for all relevant functions as supple-
mentary material in the arXiv version of this letter.

III. RENORMALIZATION

Our factorization formula achieves a complete scale
separation. Once the ingredients are renormalized and
the RG evolution equations are solved, one can evaluate
each ingredient at its natural scale and thereby resum
all large logarithms of β and δ in the cross section. The
renormalization of the hard and soft functions is mul-
tiplicative and the relevant anomalous dimensions are
known to three-loop accuracy. The renormalization of
the jet functions, on the other hand, cannot be multi-
plicative, since Jm starts at O(αm

s ) and contains diver-
gences. These real-emission divergences arise from de-
generate parton configurations and cancel against virtual
corrections present in lower-point amplitudes. This im-
plies that the Z factor relating the bare and renormalized
jet functions, defined as (summed over k ≤ m)

Jm(Qδ, ϵ) = Jk(Qδ, µ)ZJ
km(Qδ, ϵ, µ) , (12)

is an upper triangular matrix with a hierarchical struc-
ture, i.e. the off-diagonal elements are suppressed by pow-
ers ZJ

km ∼ αm−k
s . The matrix elements depend on the

directions of the partons in Jm and act on their color
indices. The jet-function renormalization factor contains
logarithmic dependence on the jet scale Qδ, as is typical
for Sudakov problems.
Having renormalized all other elements of the factor-

ization formula, one must now find that the matrix

Z
U (Qδτ, ϵ, µ) ≡ Z1/2

H (Q, ϵ, µ)Z1/2
S (Qτ, ϵ, µ)ZJ(Qδ, ϵ, µ)

(13)
renormalizes the coft functions, i.e.

Ũm(Qδτ, µ) = Z
U
mk(Qδτ, ϵ, µ) ⊗̂ Ũk(Qδτ, ϵ) . (14)

This relation has several interesting features. First of all,
it implies that the Sudakov logarithms in the other Z
factors must conspire to produce a dependence on only
the coft scale. Closer inspection shows that the logarith-
mic dependence associated with Sudakov logarithms is
universal and can be factored out. The remaining de-
pendence on the jet scale drops out once ZU is applied
to the coft functions. A second, interesting feature of the
matrix structure is that higher-multiplicity coft functions
enter the renormalization of the lower ones. For example,
the two-loop renormalization of the coft function with
two Wilson lines has the form

Ũ1(µ) = Z
U
11 Ũ1(ϵ) +Z

U
12 ⊗̂ Ũ2(ϵ) +Z

U
13 ⊗̂ 1+O(α3

s) ,
(15)

where we have used the fact that Ũ3 = 1+O(αs). The
off-diagonal contributions depend on the directions of
the additional partons, and the symbol ⊗̂ indicates that
one has to integrate over these since the renormalized
function Ũ1(µ) multiplies the jet function J1(µ), which
does not depend on these additional degrees of freedom.
The renormalization condition (14) is at first sight quite
surprising, because Wilson-line matrix elements can usu-
ally be renormalized multiplicatively. However, we have
checked explicitly that the condition (15) renormalizes
the function Ũ1(µ) correctly to two-loop order. For the
case δ ∼ 1 discussed below, we have furthermore veri-
fied that the renormalization condition (14) is fulfilled at
one-loop order for arbitrary m [24].
The off-diagonal structure of the matrix ZU and the

associated anomalous-dimension matrix Γ has important
consequences when performing the resummation. At
leading order in RG-improved perturbation theory, the
resummed result is obtained by working with tree-level
functions and evolving them with one-loop anomalous
dimensions (two-loop accuracy is needed for the cusp
pieces, which can be factored out). At tree-level only
the jet-function J1 = 1 is nonzero, while all Wilson-line
matrix elements are trivially given by Ũm = 1. To this
accuracy, the anomalous-dimension matrix only has en-
tries in the diagonal and above the diagonal, Vm = Γmm

and Rm = Γm(m+1). We can write the formal solution of
the associated RG equation as a path-ordered exponen-
tial. At the nth order in its fixed-order expansion, one
needs the nth power of the anomalous dimension matrix,
multiplied by the tree-level jet and coft functions. The
first three orders have the form

αs : R1 + V1 ,

α2
s : R1(R2 + V2) + V1(R1 + V1) , (16)

α3
s : R1

[
R2(R3 + V3) + V2(R2 + V2)

]

+ V1

[
R1(R2 + V2) + V1(R1 + V1)

]
.

As in (15) one has to integrate over the angles of the ad-
ditional partons, but for simplicity we suppress the cor-
responding ⊗̂ symbols. Note that due to the additional
logarithms encountered when solving the RG equations,

eUk

integration over unresolved directions
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where the integral over the m-particle phase-space Πm

is performed holding the directions ni of the particles
fixed, i.e. one only integrates over their energies. The jet
functions suffer from singularities when particles become
soft and collinear and are therefore distribution-valued in
the angles formed by the vectors n, n̄ and ni.
We have derived all ingredients needed to evaluate the

factorization formula (9) at two-loop order. Their deter-
mination will be detailed in a longer paper [24], but let
us mention that the two-loop coft function U1(Qδβ) can
be extracted from the result for the hemisphere soft func-
tion obtained in [7, 8]. Putting the ingredients together
provides a nontrivial consistency check of our framework,
since the individual contributions diverge as strongly as
1/ϵ4 for ϵ → 0 and scale differently, cf. (4). These diver-
gences cancel in the final result, which can then be com-
pared to numerical results obtained by running a fixed-
order event generator such asEvent2 [21] at small values
of β and δ [24]. For completeness, we supply the explicit
two-loop expressions for all relevant functions as supple-
mentary material in the arXiv version of this letter.

III. RENORMALIZATION

Our factorization formula achieves a complete scale
separation. Once the ingredients are renormalized and
the RG evolution equations are solved, one can evaluate
each ingredient at its natural scale and thereby resum
all large logarithms of β and δ in the cross section. The
renormalization of the hard and soft functions is mul-
tiplicative and the relevant anomalous dimensions are
known to three-loop accuracy. The renormalization of
the jet functions, on the other hand, cannot be multi-
plicative, since Jm starts at O(αm

s ) and contains diver-
gences. These real-emission divergences arise from de-
generate parton configurations and cancel against virtual
corrections present in lower-point amplitudes. This im-
plies that the Z factor relating the bare and renormalized
jet functions, defined as (summed over k ≤ m)

Jm(Qδ, ϵ) = Jk(Qδ, µ)ZJ
km(Qδ, ϵ, µ) , (12)

is an upper triangular matrix with a hierarchical struc-
ture, i.e. the off-diagonal elements are suppressed by pow-
ers ZJ

km ∼ αm−k
s . The matrix elements depend on the

directions of the partons in Jm and act on their color
indices. The jet-function renormalization factor contains
logarithmic dependence on the jet scale Qδ, as is typical
for Sudakov problems.
Having renormalized all other elements of the factor-

ization formula, one must now find that the matrix

Z
U (Qδτ, ϵ, µ) ≡ Z1/2

H (Q, ϵ, µ)Z1/2
S (Qτ, ϵ, µ)ZJ(Qδ, ϵ, µ)

(13)
renormalizes the coft functions, i.e.

Ũm(Qδτ, µ) = Z
U
mk(Qδτ, ϵ, µ) ⊗̂ Ũk(Qδτ, ϵ) . (14)

This relation has several interesting features. First of all,
it implies that the Sudakov logarithms in the other Z
factors must conspire to produce a dependence on only
the coft scale. Closer inspection shows that the logarith-
mic dependence associated with Sudakov logarithms is
universal and can be factored out. The remaining de-
pendence on the jet scale drops out once ZU is applied
to the coft functions. A second, interesting feature of the
matrix structure is that higher-multiplicity coft functions
enter the renormalization of the lower ones. For example,
the two-loop renormalization of the coft function with
two Wilson lines has the form

Ũ1(µ) = Z
U
11 Ũ1(ϵ) +Z

U
12 ⊗̂ Ũ2(ϵ) +Z

U
13 ⊗̂ 1+O(α3

s) ,
(15)

where we have used the fact that Ũ3 = 1+O(αs). The
off-diagonal contributions depend on the directions of
the additional partons, and the symbol ⊗̂ indicates that
one has to integrate over these since the renormalized
function Ũ1(µ) multiplies the jet function J1(µ), which
does not depend on these additional degrees of freedom.
The renormalization condition (14) is at first sight quite
surprising, because Wilson-line matrix elements can usu-
ally be renormalized multiplicatively. However, we have
checked explicitly that the condition (15) renormalizes
the function Ũ1(µ) correctly to two-loop order. For the
case δ ∼ 1 discussed below, we have furthermore veri-
fied that the renormalization condition (14) is fulfilled at
one-loop order for arbitrary m [24].
The off-diagonal structure of the matrix ZU and the

associated anomalous-dimension matrix Γ has important
consequences when performing the resummation. At
leading order in RG-improved perturbation theory, the
resummed result is obtained by working with tree-level
functions and evolving them with one-loop anomalous
dimensions (two-loop accuracy is needed for the cusp
pieces, which can be factored out). At tree-level only
the jet-function J1 = 1 is nonzero, while all Wilson-line
matrix elements are trivially given by Ũm = 1. To this
accuracy, the anomalous-dimension matrix only has en-
tries in the diagonal and above the diagonal, Vm = Γmm

and Rm = Γm(m+1). We can write the formal solution of
the associated RG equation as a path-ordered exponen-
tial. At the nth order in its fixed-order expansion, one
needs the nth power of the anomalous dimension matrix,
multiplied by the tree-level jet and coft functions. The
first three orders have the form

αs : R1 + V1 ,

α2
s : R1(R2 + V2) + V1(R1 + V1) , (16)

α3
s : R1

[
R2(R3 + V3) + V2(R2 + V2)

]

+ V1

[
R1(R2 + V2) + V1(R1 + V1)

]
.

As in (15) one has to integrate over the angles of the ad-
ditional partons, but for simplicity we suppress the cor-
responding ⊗̂ symbols. Note that due to the additional
logarithms encountered when solving the RG equations,
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All-­‐order   resummation   of   NGLs   is   accomplished   by  
the  formal  expression:  

with:  

The  anomalous  dimension  matrix  ΓU  follows  from  ZU

U(µc, µsc) = P⌦̂ exp
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At  LLO,  we  only  need  the  tree-­‐level  expressions  
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matrix:  
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Taking   higher   powers   of   this  matrix   generates   progressively  more   complicated   color   factors   and  
angular  integrals:  

We  have   analyzed   the   case  of  wide-­‐angle   jets   (δ~1)   in   detail   (simpler,   since  no  Sudakov  double  
logarithms)  

We  find  that  in  the  large-­‐Nc  limit  the  first  three  terms  in  the  expansion  of  the  evolution  matrix  U  
agree  with  the  corresponding  expansion  of  the  BMS  equation,  as  performed  recently  in  Schwartz,  
Zhu  (2014)  and  Khelifa-­‐Kerfa,  Delenda  [arXiv:1501.00475]  →  a  strong  cross-­‐check!

reminiscent of a parton shower

4

where the integral over the m-particle phase-space Πm

is performed holding the directions ni of the particles
fixed, i.e. one only integrates over their energies. The jet
functions suffer from singularities when particles become
soft and collinear and are therefore distribution-valued in
the angles formed by the vectors n, n̄ and ni.
We have derived all ingredients needed to evaluate the

factorization formula (9) at two-loop order. Their deter-
mination will be detailed in a longer paper [24], but let
us mention that the two-loop coft function U1(Qδβ) can
be extracted from the result for the hemisphere soft func-
tion obtained in [7, 8]. Putting the ingredients together
provides a nontrivial consistency check of our framework,
since the individual contributions diverge as strongly as
1/ϵ4 for ϵ → 0 and scale differently, cf. (4). These diver-
gences cancel in the final result, which can then be com-
pared to numerical results obtained by running a fixed-
order event generator such asEvent2 [21] at small values
of β and δ [24]. For completeness, we supply the explicit
two-loop expressions for all relevant functions as supple-
mentary material in the arXiv version of this letter.

III. RENORMALIZATION

Our factorization formula achieves a complete scale
separation. Once the ingredients are renormalized and
the RG evolution equations are solved, one can evaluate
each ingredient at its natural scale and thereby resum
all large logarithms of β and δ in the cross section. The
renormalization of the hard and soft functions is mul-
tiplicative and the relevant anomalous dimensions are
known to three-loop accuracy. The renormalization of
the jet functions, on the other hand, cannot be multi-
plicative, since Jm starts at O(αm

s ) and contains diver-
gences. These real-emission divergences arise from de-
generate parton configurations and cancel against virtual
corrections present in lower-point amplitudes. This im-
plies that the Z factor relating the bare and renormalized
jet functions, defined as (summed over k ≤ m)

Jm(Qδ, ϵ) = Jk(Qδ, µ)ZJ
km(Qδ, ϵ, µ) , (12)

is an upper triangular matrix with a hierarchical struc-
ture, i.e. the off-diagonal elements are suppressed by pow-
ers ZJ

km ∼ αm−k
s . The matrix elements depend on the

directions of the partons in Jm and act on their color
indices. The jet-function renormalization factor contains
logarithmic dependence on the jet scale Qδ, as is typical
for Sudakov problems.
Having renormalized all other elements of the factor-

ization formula, one must now find that the matrix

Z
U (Qδτ, ϵ, µ) ≡ Z1/2

H (Q, ϵ, µ)Z1/2
S (Qτ, ϵ, µ)ZJ(Qδ, ϵ, µ)

(13)
renormalizes the coft functions, i.e.

Ũm(Qδτ, µ) = Z
U
mk(Qδτ, ϵ, µ) ⊗̂ Ũk(Qδτ, ϵ) . (14)

This relation has several interesting features. First of all,
it implies that the Sudakov logarithms in the other Z
factors must conspire to produce a dependence on only
the coft scale. Closer inspection shows that the logarith-
mic dependence associated with Sudakov logarithms is
universal and can be factored out. The remaining de-
pendence on the jet scale drops out once ZU is applied
to the coft functions. A second, interesting feature of the
matrix structure is that higher-multiplicity coft functions
enter the renormalization of the lower ones. For example,
the two-loop renormalization of the coft function with
two Wilson lines has the form

Ũ1(µ) = Z
U
11 Ũ1(ϵ) +Z

U
12 ⊗̂ Ũ2(ϵ) +Z

U
13 ⊗̂ 1+O(α3

s) ,
(15)

where we have used the fact that Ũ3 = 1+O(αs). The
off-diagonal contributions depend on the directions of
the additional partons, and the symbol ⊗̂ indicates that
one has to integrate over these since the renormalized
function Ũ1(µ) multiplies the jet function J1(µ), which
does not depend on these additional degrees of freedom.
The renormalization condition (14) is at first sight quite
surprising, because Wilson-line matrix elements can usu-
ally be renormalized multiplicatively. However, we have
checked explicitly that the condition (15) renormalizes
the function Ũ1(µ) correctly to two-loop order. For the
case δ ∼ 1 discussed below, we have furthermore veri-
fied that the renormalization condition (14) is fulfilled at
one-loop order for arbitrary m [24].
The off-diagonal structure of the matrix ZU and the

associated anomalous-dimension matrix Γ has important
consequences when performing the resummation. At
leading order in RG-improved perturbation theory, the
resummed result is obtained by working with tree-level
functions and evolving them with one-loop anomalous
dimensions (two-loop accuracy is needed for the cusp
pieces, which can be factored out). At tree-level only
the jet-function J1 = 1 is nonzero, while all Wilson-line
matrix elements are trivially given by Ũm = 1. To this
accuracy, the anomalous-dimension matrix only has en-
tries in the diagonal and above the diagonal, Vm = Γmm

and Rm = Γm(m+1). We can write the formal solution of
the associated RG equation as a path-ordered exponen-
tial. At the nth order in its fixed-order expansion, one
needs the nth power of the anomalous dimension matrix,
multiplied by the tree-level jet and coft functions. The
first three orders have the form

αs : R1 + V1 ,

α2
s : R1(R2 + V2) + V1(R1 + V1) , (16)

α3
s : R1

[
R2(R3 + V3) + V2(R2 + V2)

]

+ V1

[
R1(R2 + V2) + V1(R1 + V1)

]
.

As in (15) one has to integrate over the angles of the ad-
ditional partons, but for simplicity we suppress the cor-
responding ⊗̂ symbols. Note that due to the additional
logarithms encountered when solving the RG equations,

4

where the integral over the m-particle phase-space Πm

is performed holding the directions ni of the particles
fixed, i.e. one only integrates over their energies. The jet
functions suffer from singularities when particles become
soft and collinear and are therefore distribution-valued in
the angles formed by the vectors n, n̄ and ni.
We have derived all ingredients needed to evaluate the

factorization formula (9) at two-loop order. Their deter-
mination will be detailed in a longer paper [24], but let
us mention that the two-loop coft function U1(Qδβ) can
be extracted from the result for the hemisphere soft func-
tion obtained in [7, 8]. Putting the ingredients together
provides a nontrivial consistency check of our framework,
since the individual contributions diverge as strongly as
1/ϵ4 for ϵ → 0 and scale differently, cf. (4). These diver-
gences cancel in the final result, which can then be com-
pared to numerical results obtained by running a fixed-
order event generator such asEvent2 [21] at small values
of β and δ [24]. For completeness, we supply the explicit
two-loop expressions for all relevant functions as supple-
mentary material in the arXiv version of this letter.

III. RENORMALIZATION

Our factorization formula achieves a complete scale
separation. Once the ingredients are renormalized and
the RG evolution equations are solved, one can evaluate
each ingredient at its natural scale and thereby resum
all large logarithms of β and δ in the cross section. The
renormalization of the hard and soft functions is mul-
tiplicative and the relevant anomalous dimensions are
known to three-loop accuracy. The renormalization of
the jet functions, on the other hand, cannot be multi-
plicative, since Jm starts at O(αm

s ) and contains diver-
gences. These real-emission divergences arise from de-
generate parton configurations and cancel against virtual
corrections present in lower-point amplitudes. This im-
plies that the Z factor relating the bare and renormalized
jet functions, defined as (summed over k ≤ m)

Jm(Qδ, ϵ) = Jk(Qδ, µ)ZJ
km(Qδ, ϵ, µ) , (12)

is an upper triangular matrix with a hierarchical struc-
ture, i.e. the off-diagonal elements are suppressed by pow-
ers ZJ

km ∼ αm−k
s . The matrix elements depend on the

directions of the partons in Jm and act on their color
indices. The jet-function renormalization factor contains
logarithmic dependence on the jet scale Qδ, as is typical
for Sudakov problems.
Having renormalized all other elements of the factor-

ization formula, one must now find that the matrix

Z
U (Qδτ, ϵ, µ) ≡ Z1/2

H (Q, ϵ, µ)Z1/2
S (Qτ, ϵ, µ)ZJ(Qδ, ϵ, µ)

(13)
renormalizes the coft functions, i.e.
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Outlook



Our  formalism  provides  for  the  first  time:  
a  complete  factorization  theorem  for  cone-­‐jet  cross  
sections  
a  resummation  of  non-­‐global  logs  using  RG  equations  
extension  beyond  the  leading  logarithmic  order  is  in  
principle  straightforward,  if  tedious  …
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