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Factorization and resummation for jet processes @
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Introduction

~—~~— Why go beyond SCE[? />~~~

Bauer, Fleming, Pirjol, Stewart (2000); Bauer Pirjol, Stewart (2001)
Beneke, Chapovsky, Diehl, Feldmann (2002)

Soft-Collinear Effective Theory is a powerful and versatile tool to study

multi-scale processes involving light, energetic particles:

o many successful applications in B physics and col

o elegant framework in which to study factorizatio

lider physics

N properties of Cross

sections and perform resummations of large (Suc
RG equations

akov) logarithms using

o for sufficiently inclusive processes, cross sections involving energetic

jet functions, and soft functions

narticles can be factorized into products (convolutions) of hard functions,
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Conventional SCET factorization theorems

Factorization into hard, jet and soft functions

do ~ H({sigho ) [T M2, ) @ SUAZ b

@)

AN /!

operators containing Wilson lines

soft-gluon (threshold) resummation in Drell-Yan

production, Z-boson production,

top-quark pair production etc. (jet functions = PDFs)

pT resummation for transverse-momentum
distributions of Z and Higgs bosons

(jet functions = beam functions = TMDPDFs)
jet-veto cross sections

iInclusive jet observables such as jettiness
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Cone-jet processes

Such a simple formula does not work for jet cross
sections defined using a standard cone (or hemi-

sphere) algorithm

depending on more t

Recently, an approximate (but not systematic)
resummation scheme based on the resummation of

Previous SCET studies of hemisphere soft functions
nave found results containing large logarithms, I.e.

nan one scale

Kelley, Schwartz, Schabinger, Zhu (2011)
Hornig, Lee, Stewart, Walsh, Zuberi (2011)
von Manteuffel, Schabinger, Zhu (2013)

observables with n soft subjects was proposed

Larkoski, Moult, Neill [arXiv:1501.04596]
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This finding shows that the effective theory is
incomplete and misses some essential physics!



Non-global logarithms

Non-global logarithms (NGLs) arise whenever soft
radiation is not distributed evenly in the final state of

a collider process Dasgupta, Salam (2001)

The resummation of NGLs has thus far only be
accomplished at leading-logarithmic order (LLO):

o |arge-N¢ limit: BMS Integral equation allows for a

numerical solution using Monte Carlo technigues
Banfi, Marchesini, Smye (2002)

o generalizations to finite N¢: have been studied
Weigert (2003)

Hatta, Ueda (2013)

@

We have constructed the generalization of SCET
needed to deal with NGLs

For the first time, we have proposed an all-order
factorization formula for cone-jet cross sections
(general approach applicable to many processes)

Our approach recasts the problem of resumming
NGLs in the language of RG equations, which in
orinciple allows for a solution at NLLO and beyonc

Recently, Simon Caron-Huot has proposed a functional evolution equation for the resummation of NGLs beyond LO
in the color density-matrix approach. His resummmation approach may be equivalent to ours (difficult to show),

but it does not (yet) provide a factorization formula for cross sections sensitive to NGLs
Caron-Huot [arXiv:1501.03754]
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Jet productionine

Consider efe” = 2 jets at Vs=Q (jet axis=thrust axis 77)

o after
out, t

nard virtual corrections have been integrated

ne process involves (anti-)collinear particles

contained inside the jets and soft particles emitted

outside the jet cones

o nalvely one expects:

\0 = H(Q) J(Q0) ® J(QI) & S(Qﬁ)\

o NGLs arise because the energy of soft emissions

outside the cones is limited, while soft radiation

iNnside the cones In unconstrained
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Jet productionine

|
Consider efe” = 2 jets at Vs=Q (jet axis=thrust axis 77) 2Fout < Q8 |

o nalvely one expects:

\°~ H(Q) J(Qd) ® J(Q9) & S(Qﬁ)\

o previous SCET work for jet cross sections has failed
to resum NGLs and hence does not provide a
complete factorization beyond one-loop order:

2e 2
s 4
Aah:aCFO()(ﬂ) (——2—9—16 77T>

-1 Q hard Ph ™~ Q(lalvl)

Pc ™ Q(527 17 5)

i 0 2 ¢ 3 -+ Qo collinear pe ~ O(1, 82.0)
2€ C ’ ’
asCr p 4 6 b2 requires a non-trivial
Aotz = s — 4+ —+ 16 — | | |
e ar 0 <Q5> <€2 i € i 3 CO) zero-bin subtraction -+ QB soft ps ~ Q(S, B, B)
2€ 2
OZSCF ,Ll‘ 8 2 27-‘_ o o)
Ao, = - 00 (—5) (Z Ino — 81n 6_T) A

Cheung, Luke, Zuberi (2009)
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Need for a new mode

Relevance of the soft-collinear scale for cone-jet processes




Jet productionine

A consistent EFT must be based on a systematic

expansion in the small parameters 5 and 6 everywhere,

iIncluding the phase-space constraints

o then no zero-bin subtractions are required

o collinear particles have small angle and large energy
— always inside the jet cones

o soft particles have small energy and large angle
— always outside the jet cones -+ @ hard ph ~ Q(1,1,1)

o relevance of a new, soft-collinear (“coft”) scale Q683 | pe ~ Q(62,1,6)
—+ @9 collinear pf ~ Q1 32’5)
Associated particles have small angle and small energy C o

and give rise to leading contributions to the cross T QB soft ps ~ Q(B, 8, 5)

section!

- 5 ft_ || Psc ™ Qﬁ(éﬂa 17 5)
Q38 sottcotinear e G4
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Jet productionine

Complete scale separation:

2€ 2
S 4
Aah:aCFcfo(ﬂ) ( 5 9—16!77T)

47 @, € € 3
2€
asCr L4 4 6 572
ACerz = S — 4+ — 4+ 16 |
e w0 (Q5) (62 " € i 3 CO)

oo (—16IndInB —12Ind + ¢g) (22
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Q hard Ph ™ Q(lalvl)

Q6 collinear **

QB soft Ds ~

Q0B soft-collinear
(“coft”)

N T

~Q(6%,1,9)
Pe ™~ Q(la 527 5)

Q(B, 5, B)

Psc ™ Qﬁ((sza 1, 5)
Pse ™~ Qﬁ(la 527 5)




Jet productionine

Expected factorization formula:

This analysis suggests a factorization theorem of the

form:

o =H(Q)[J(Q)) ® U(QIB)]" ® S(QB)

o have shown explicitly that this works to two loops

O _ 14 &A@+ (%) BB.0) + t
oy s s
—1— Q hard Ph ™~ Q(L 1, 1)
B(p,0) = C% [(321n2/3+481n/3+18— 16”2)1n25+(—2+10g3—121n22+41n2)1n5
9 3 —+ Qo collinear pe~ Q0% 1,9)
+ ((8—481n2)ln5—1— 5 + 272 — 24(3 —361112) ln5+c§] Pe ~~ Q(la 527 5)
—|—CFOA[(44:1;6+11) 1n25_¥1n25+(§_317:_4§3—61n22—41n2)1n6 + QB soft ps ~ Q(8,5,5)
2
. (441;1 B, <_¥+$> 1n5_%7+12g3—221n2> 1n5+c§‘] -
- _ ' pscNQﬁ((S 7175)
0o [(~22 Y (204 2 0 i) e (<2 ] Q0P soft-collinear - 051,52, 5)
3 3 9 3 9 (uCOftu) SC 9 9

— have performed detailed comparisons with EVENT2
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Jet productionine

Expected factorization formula:

This analysis suggests a factorization theorem of the

form:

o =H(Q)[J(Q)) ® U(QIB)])" @ S(QB)

o have shown explicitly that this works to two loops

o however, we find a highly non-trivial interplay of jet
and coft functions beyond one-loop order

-1 Q hard Ph ™~ Q(lalvl)

Pc ™ Q(527 17 5)

—+ (o collinear pe ~ Q(1, 62, 5)

1 Qﬁ SOft Ps ™ Q(ﬁaﬁaﬁ)

- _ ' Psc ™~ Q5(527175)
Q0 sofvclinear £ 314
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Factorization theorem

Subtleties of coft-collinear factorization




Interactions of coft gluon with collinear fields

Soft-collinear gluons can interact with collinear fields
IN tWo ways:

o split-up A. — A, + Ascyields W, — W, U (n) with:

— O

i . i
U(n) =P exp igS/ dtn - Ag.(tn)

o in addition, coft gluons can couple to on-shell
external collinear particles; e.g. for a (gauge-
invariant) quark field y. = W&,

k only important
M + It pr*= ;‘6‘;

!

(P1 + k)" oy
p3 + 2k - p1 + k2 ni -k
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Squaring the amplitude gives
T1 - n

(n1-k)(n-k)’
which Is the matrix element for the emission from

IM|? = 2Crg>

two Wilson lines

For a final state consisting of m collinear particles,
the coft emissions are described by the matrix
element of the operator

Uo(n) Ur(n1) - .. Un(nm)| M (po; {p}))

where {n;} are the light-like directions of the
collinear particles




Interactions of coft gluon with collinear fields @

Coft particles are emitted at small angle and low This Is different from standard soft emissions, which
energy, so they can resolve the directions and color only resolves the overall direction and color charge
charges of individual collinear particles: of a jet:

e r———— ) 1N |
"~
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Interactions of coft gluon with collinear fields @

One must then square this operator and integrate Operator definitions of the coft and jet functions:

over phase space (including the directions {n; } of the
collinear particles) to obtain the cross section

Um (Q0S) :Zf O[T (@) U (m1) . .. Uf (nn) | Xe) (Xe|Uo (1) . .. Upn (1) [0)

Xt _
X0(QB — 7 - pxout)

%jm(Qé) =) /del/\/lm(po; {p}))(Mm(po; {r})

spins

fixed directions 9 (QW)d—lg(Q_ﬁ.ch) 5d_2(p§—<c) 11, 9(527_1-]92—71']92)

Laplace-transformed cross section:

Factorized cross section: o g
- ¥ (1) = [ dse o 2
- > - 0
5(r) = 00 H(Q) S(Q7) | Y ( Fn(Q0) © Upn(Q0T) )
m=1

jet function | coft function

integration over directions n;
of collinear particles
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Renormalization and resummation

Subtraction of UV divergences and RG-based resummation of NGLs




Our approach

Once a
solving

| scales are factorized, large logarithms can be resummed by
RG evolution equations to connect one scale to another

In this sense NGLs are as global as any other large logarithms

The res

ummation of NGLs has so far only been achieved at LLO using

numerical Monte Carlo technigues; our goal I1s to understand their
resummation using the language of the renormalization group
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UV subtractions for jet and coft functions

Structure of bare jet functions:

jlbare —1

€

j2bare . OKSCF ( 9! )26 |:l2 5(\/5) 5(\/@) + % k‘(91,(92) -+ h(91,92)

47 @
bare Qg 2 H . 1
J3 " = (E) (@) [6—4 )+ }

This requires a matrix of Z-factors with triangular
structure (with m=k):

Tn(Q0, €) = Ti(Q0, 1) Zj,, (Q0, €, 1)

with: o a?
0 1 «

J S

2"~ 0 0 1

0O 0 O
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Scale invariance of the physical cross section then
implies that the coft functions must be renormalizec

by the matrix (with k=m):

U, (QOT, 1) = ZT,(QOT, €, 11) @UL(QJT, €)
with: T

iIntegration over unresolved directions

ZY(Qor, e, 1) = Z312(Q, e, 1) 25 (QT, ¢, 11) Z7 (Q0, ¢, 1)
Non-trivial features:

o Sudakov logarithms in Zy, Zs and Z/ must conspire
to give logarithms of the coft scale Qot, modulo
terms that vanish when projected onto U,

o higher-multiplicity coft functions enter the
renormalization of lower-multiplicity ones, e.g.:

Ui () = ZU U (e) + ZL, dUs(e) + Z &1 + O(a)

N o T



RG evolution and resummation @

All-order resummation of NGLs is accomplished by At LLO, we only need the tree-level expressions
the formal expression: Jo=1, Tnz1=0, U,=1
D> Tm(Q0, 12) @ Un (QOT, ) S T (@6, 1) @ U (Q07, 1) = 3 U (Q5, Q57)
— Z T:(Q8, Q8) @ Upon (Q8, Q67) @ Uy, (Q5T, Q) along with the one-loop anomalous dimension
ke,m matrix:
with: ] ] a, o, 0 .- Vi Ry 0
as(pe) I‘U o U 0 g g - o 0 V2 R2
Ul(pie, prse) = P® EXPp / do () Iy~ 0 0 a«as --- | 0 0 V3
sty Ple) 0 0 0 0 0 0

The anomalous dimension matrix 'Y follows from ZY Taking higher powers of this matrix generates

progressive =~ more complicated color factors and
angular integrals
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RG evolution and resummation @

Taking higher powers of this matrix generates progressively more complicated color factors and
angular integrals:

a, Ry +V;
o Ri(Ry+ Vo) +Vi(R + V)

S

o’ Ry [Rg(Rg + V3) + Vo(Rs + ‘/2)] + WV [R1(R2 + Vo) + Vi(R; + Vl)}

S

reminiscent of a parton shower

We have analyzed the case of wide-angle jets (6~1) in detail (simpler, since no Sudakov double
logarithms)

We find that in the large-Nc¢ limit the first three terms in the expansion of the evolution matrix U

agree with the corresponding expansion of the BMS equation, as performed recently in Schwartz,
/hu (2014) and Khelifa-Kerfa, Delenda [arXiv:1501.004 /5] = a strong cross-check!
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Qutlook




Our formalism provides for the first time:

o a complete factorization theorem for cone-jet cross
sections

o a resummation of non-global logs using RG equations

o extension beyond the leading logarithmic order Is In
principle straighttorward, If tedious ...
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