

Partially Composite Dark Matter in Composite Higgs Model

Masaki Asano

(Bonn University)

JHEP 1409(2014)171

MA, Ryuichiro Kitano and more...

Topics of this talk

Composite Higgs & Dark Matter

Topics of this talk

1. Brief review of

Composite Higgs

&

2. Model with

Dark Matter

Topics of this talk

1. Brief review of

Composite Higgs

&

2. Model with

produce the Higgs potential

Higgs boson is a pseudo-NG boson arising from a Global symmetry breaking.

Minimal Composite Higgs Model (MCHM)

Agashe, Contino, Pomarol '04

SO(5)/SO(4) breaking \downarrow 4 NG bosons $\pi(x)$,
Higgs!!

Higgs boson is a pseudo-NG boson arising from a Global symmetry breaking.

Minimal Composite Higgs Model (MCHM)

Agashe, Contino, Pomarol '04

SO(5)/SO(4) breaking
$$\begin{array}{c} & & \\ &$$

Higgs boson is a pseudo-NG boson arising from a Global symmetry breaking.

□ Higgs potential is protected by the Global Symmetry.

☐ EWSB scale is produced by the Explicit Breaking.

(Yukawa & gauge couplings)

[Next] How implement the top quark? ->

Top quark is implemented as

Partially composite fermions

Kaplan '91

Elementary sector

Composite sector

Elementary

-Composite mixing

 $+ (L \Leftrightarrow R)$

Top quark is implemented as

Partially composite fermions

Kaplan '91

Elementary sector

Composite

sector

Elementary

-Composite mixing

$$\mathcal{L} \ni \lambda_{\mathbf{L}} \psi_{\mathbf{L}} O_{\mathbf{R}}$$

 $+ (L \Leftrightarrow R)$

Explicit breaking couplings

produce Yukawa coupling & Higgs potential.

Yukawa coupling

(very rough discussion)

Higgs potential

$$V(h) = \frac{\lambda}{\text{Fermion loop}} + \frac{\lambda}{\lambda} \frac{\lambda}{\lambda} + \dots \longrightarrow m_h^2 \sim \frac{\lambda^4}{(16\pi^2)^2} \frac{v^2}{f^4} m_T^4$$

Light top partner (~1 TeV) is favored. $\sim \frac{y_t^2}{16\pi^2} \frac{v^2}{t^4}$

For current study with m_h~ 125GeV, e.g., Matsedonskyi, Panico, Wulzer '12; Marzocca, Serone, Shu '12 ;...

Before Dark matter discussion,

We'll see how to get v ~246GeV.

 O_t : spinorial rep. 4 of SO(4)

$$V(h) \simeq \alpha_t \cos \frac{h}{f} - \beta_t \sin^2 \frac{h}{f}$$

Explicit breaking couplings

O_t : spinorial rep. 4 of SO(4)

$$V(h) \simeq \alpha_t \cos \frac{h}{f} - \beta_t \sin^2 \frac{h}{f}$$

$$\alpha_t \sim \frac{\lambda^2}{(4\pi)^2} \left[\frac{m_{t'}^4}{(4\pi)^2} \right] \quad \beta_t \sim \left(\frac{\lambda^2}{(4\pi)^2} \right)^2 \left[\frac{m_{t'}^4}{(4\pi)^2} \right]$$

Explicit breaking couplings

 O_t : spinorial rep. 4 of SO(4)

$$V(h) \simeq \alpha_t \cos \frac{h}{f} - \beta_t \sin^2 \frac{h}{f}$$

Explicit breaking couplings

O_t : spinorial rep. 4 of SO(4)

$$V(h) \simeq \alpha_t \cos \frac{h}{f} - \beta_t \sin^2 \frac{h}{f}$$

$$\frac{\partial V}{\partial h} = 0$$

$$v/f = \sqrt{1 - \frac{\alpha_t^2}{4\beta_t^2}} \equiv \epsilon$$

NDA $lpha_t\ggeta$

Small ϵ (i.e. v << f) is favored by experiments.

O_t : spinorial rep. 4 of SO(4)

$$V(h) \simeq \alpha_t \cos \frac{h}{f} - \beta_t \sin^2 \frac{h}{f}$$

$$\epsilon \equiv v/f < 1$$

$$\alpha_t \simeq 2\beta_t$$

NDA

$$\alpha_t \gg \beta_t$$

$$v/f = \sqrt{1 - \frac{\alpha_t^2}{4\beta_t^2}} \equiv \epsilon$$

Small ϵ (i.e. v << f) is favored by experiments.

 O_t : spinorial rep. 4 of SO(4)

$$V(h) \simeq \alpha_t \cos \frac{h}{f} - \beta_t \sin^2 \frac{h}{f}$$

$$\epsilon = v/f$$
 < 1 $\alpha_t \simeq 2\beta_t$

$$\alpha_t \simeq 2\beta_t$$

$$\alpha_t \gg \beta_t$$

To solve the tension,

People consider, for example, another representations,

4 -> 5 or 10 or $14 \leftarrow$

Panico, Redi Tesi, Wulzer '12

The situation can change by considering Dark matter!

■ Dark matter exists $\Omega_{\rm DM}h^2 = 0.12$

- We know "WIMP Miracle"
 - Observed DM relic can be explained by
 - a DM has weak scale mass & weak coupling

■ Dark matter exists $\Omega_{\rm DM}h^2=0.12$

- We know "WIMP Miracle"
 - □ Observed DM relic can be explained by
 a DM has weak scale mass & weak coupling

DM may also couple to Higgs weakly.

■ Dark matter exists $\Omega_{\rm DM}h^2=0.12$

- We know "WIMP Miracle"
 - **□** Observed DM relic can be explained by
 - a DM has weak scale mass & weak coupling

DM may also couple to Higgs (i.e. strong sector) weakly.

DM is also a partially composite fermion & the explicit breaking also contributes to Higgs potential!

Ot: spinorial rep. 4 of SO(4)

$$V(h) \simeq \alpha_t \cos \frac{h}{f} - \beta_t \sin^2 \frac{h}{f}$$

$$v/f = \sqrt{1 - \frac{\alpha_t^2}{4\beta_t^2}} \equiv \epsilon$$

$$\epsilon \equiv v/f$$
 < 1

$$\epsilon = v/f$$
 < 1 $\alpha_t \simeq 2\beta_t$

$$\alpha_t \gg \beta_t$$

If O_{DM} is in SO(5) vector representation, 5, the leading Dark sector contribution is $\propto \sin^2(h/f)$.

Ot: spinorial rep 4 of SO(4)

$$V(h) = \alpha_t \cos \frac{h}{f} - (\beta + \beta_t) \sin^2 \frac{h}{f}$$

$$v/f = \sqrt{1 - \frac{\alpha_t^2}{4\beta_t^2}} \equiv \epsilon$$

$$\epsilon \equiv v/f$$
 < 1

$$\epsilon = v/f$$
 < 1 $\alpha_t \simeq 2\beta_t$

$$\alpha_t \gg \beta_t$$

If O_{DM} is in SO(5) vector representation, 5, the leading Dark sector contribution is $\propto \sin^2(h/f)$.

Ot: spinorial rep. 4 of SO(4)

$$V(h) = \alpha_t \cos \frac{h}{f} - (\beta + \beta_t) \sin^2 \frac{h}{f}$$

$$v/f = \sqrt{1 - \frac{\alpha_t^2}{4(\beta + \beta_t)^2}} \equiv \epsilon$$

$$\epsilon \equiv v/f < 1$$

$$\epsilon \equiv v/f < 1 \mid \beta \simeq \alpha_t \gg \beta_t$$

$$\alpha_t \gg \beta_t$$

If O_{DM} is in SO(5) vector representation, 5, the leading Dark sector contribution is $\propto \sin^2(h/f)$.

Ot: spinorial rep. 4 of SO(4)

$$V(h) = \alpha_t \cos \frac{h}{f} - (\beta + \beta_t) \sin^2 \frac{h}{f}$$

$$v/f = \sqrt{1 - \frac{\alpha_t^2}{4(\beta + \beta_t)^2}} = \epsilon$$

$$\epsilon \equiv v/f < 1$$

$$\epsilon \equiv v/f < 1 \mid \beta \simeq \alpha_t \gg \beta_t$$

$$\alpha_t \gg \beta_t$$

It's also consistent with DM relic!

Dark matter phenomenology

After integrating out Composite O, we obtain the low-energy effective theory as

$$\mathcal{L}_{\text{eff}} = -\frac{m_{\text{DM}}}{2}\bar{\psi}_S\psi_S + \frac{\kappa}{2}\bar{\psi}_S\psi_S\sin^2\frac{h}{f} + \frac{i\kappa_5}{2}\bar{\psi}_S\gamma_5\psi_S\sin^2\frac{h}{f}$$

This is similar to "Higgs portal DM model".

$$m_{\rm DM} \sim \kappa \sim \kappa_5 = c \left(\frac{\lambda}{4\pi}\right)^2 m_{\mathcal{O}}$$

Annihilation cross section

$$\langle \sigma_{\rm ann.} v \rangle \propto (\kappa^2 \, {\rm v}^2 \, {\rm term}) + \kappa_5^2$$

Direct detection cross section

$$\sigma_{\rm SI}$$
 \propto κ^2 + $(\kappa_5^2 \, {\rm v}^2 \, {\rm term})$

$$\mathcal{L}_{\text{eff}} = -\frac{m_{\text{DM}}}{2}\bar{\psi}_S\psi_S + \frac{\kappa}{2}\bar{\psi}_S\psi_S\sin^2\frac{h}{f} + \frac{i\kappa_5}{2}\bar{\psi}_S\gamma_5\psi_S\sin^2\frac{h}{f}$$

Annihilation cross section

$$\langle \sigma_{\rm ann.} v \rangle \propto (\kappa^2 \, {\rm v}^2 \, {\rm term}) + \kappa_5^2$$

Direct detection cross section

$$\sigma_{\rm SI}$$
 \propto κ^2 + ($\kappa_5^2 \, {
m v}^2 \, {
m term}$)

 $1/3 < \kappa/\kappa_5 < 3$

$$\mathbf{5_0} = (\mathbf{2}, \mathbf{2})_0 + (\mathbf{1}, \mathbf{1})_0$$

Spin-1 resonance
$$\rho^{\mu}$$

$$\mathcal{O} = \left(\begin{array}{c} \mathcal{O}_4 \\ \mathcal{O}_1 \end{array} \right)$$

Due to the ε^2 supression, this Br is small.

If it is kinematically allowed,

Summary

Summary

We consider a composite Higgs scenario in which Dark matter is also a partially composite fermion.

- DM also contribute making Higgs potential.
- Parameter space consists with both Higgs & DM observables.
- It would be measure by DM DD in near future.

$$\Omega_{\rm DM}h^2 = 0.12$$

$$\kappa_5 = 160 \text{ GeV} \left(\frac{\epsilon}{0.2}\right)^{-2}$$

$$\lambda f_{\mathcal{O}} = 900 \text{ GeV} \cdot c_{\kappa_5}^{-1/2} \left(\frac{m_{\mathcal{O}}}{5 \text{ TeV}} \right)^{1/2} \left(\frac{\epsilon}{0.2} \right)^{-1}$$

$$m_{\rm DM} = 160 \; {\rm GeV} \left(\frac{c_{\rm DM}}{c_{\kappa_5}}\right) \left(\frac{\epsilon}{0.2}\right)^{-2}$$

$$\sigma_{\rm SI} \simeq 1.2 \times 10^{-45} {\rm cm}^2 \left(\frac{c_{\kappa}}{c_{\kappa_5}}\right)^2$$

$$m_h^2 = (126 \text{ GeV})^2 = \frac{2(\beta + \beta_t)\epsilon^2}{f^2}$$

$$m_{\mathcal{O}} = 4.9 \text{ TeV} \cdot c_{\beta}^{-1/2} \left(\frac{\lambda f_{\mathcal{O}}}{1 \text{ TeV}}\right)^{-1} \left(\frac{\epsilon}{0.2}\right)^{-2}$$

$$m_{t'} = 2.4 \text{ TeV} \left(\frac{c_t \cdot 2\lambda_q \lambda_u}{c_q \lambda_q^2 + c_u \lambda_u^2} \right)^{1/3} \left(\frac{\epsilon}{0.2} \right)^{-1}$$

$$\leq 2.4 \text{ TeV} \left(\frac{c_t}{\sqrt{c_q c_u}}\right)^{1/3} \left(\frac{\epsilon}{0.2}\right)^{-1}$$

$$\frac{\lambda_q \lambda_u f_{t'}^2}{m_{t'}^2} = 0.5 \cdot c_t^{-1} \left(\frac{\epsilon}{0.2} \right)^{-1} \left(\frac{m_{t'}}{2.4 \text{ TeV}} \right)^{-1}$$

$$\mathcal{L} \ni -\frac{m}{2}\bar{\psi}_S\psi_S + \lambda\bar{\psi}_S\mathcal{O}_5 + i\lambda'\bar{\psi}_S\gamma_5\mathcal{O}_5$$

$$\mathcal{O} = \left(egin{array}{c} \mathcal{O}_1 \\ \mathcal{O}_2 \\ \mathcal{O}_3 \\ \mathcal{O}_4 \\ \mathcal{O}_5 \end{array}
ight)$$

$$\langle \psi_S(x)\bar{\psi}_S(0)\rangle = -\int \frac{d^4k}{i(2\pi)^4} \frac{e^{-ikx}}{\not k + \lambda^2 \Pi_{55}(k)}, \quad \Pi_{ij}(q) = i \int d^4x \langle \mathcal{O}_i(x)\bar{\mathcal{O}}_j(0)\rangle e^{iqx}$$

$$\Pi_{ij}(q) = i \int d^4x \langle \mathcal{O}_i(x)\bar{\mathcal{O}}_j(0)\rangle e^{iqx}
= \Pi_4(q)(\delta_{ij} - \Sigma_i\Sigma_j) + \Pi_1(q)\Sigma_i\Sigma_j.$$

decompose Π 's

in terms of the unbroken SO(4)

$$\begin{split} V(h) &= -\frac{1}{2} \int \frac{d^4k}{i(2\pi)^4} \mathrm{Tr} \log[\not k + \lambda^2 \Pi_{55}(k) + i\epsilon] \\ &= \mathrm{const.} - \frac{1}{2} \int \frac{d^4k}{i(2\pi)^4} \mathrm{Tr} \left[\frac{-\lambda^2}{\not k + i\epsilon} (\Pi_4(k) - \Pi_1(k)) \Sigma_5 \Sigma_5 \right] + O(\lambda^4) \\ &\equiv \mathrm{const.} - \beta \sin^2 \frac{h}{f} + O(\lambda^4), \end{split}$$

Top sector A spinorial

representation of SO(5), a 4 of SO(5), contains two (complex) doublets, one transforming under $SU(2)_L$, the other transforming under $SU(2)_R$.

$$\Psi_q = \begin{bmatrix} q_L \\ Q_L \end{bmatrix}, \qquad \Psi_u = \begin{bmatrix} q_R^u \\ \binom{u_R}{d_R'} \end{bmatrix}, \qquad \Psi_d = \begin{bmatrix} q_R^d \\ \binom{u_R}{d_R} \end{bmatrix}$$

$$\mathcal{L}_{ ext{eff}} =$$

$$\sum_{r=q,u,d} \bar{\Psi}_r \not\!p \Big[\Pi_0^r(p) + \Pi_1^r(p) \Gamma^i \Sigma_i \Big] \Psi_r + \sum_{r=u,d} \bar{\Psi}_q \big[M_0^r(p) + M_1^r(p) \Gamma^i \Sigma_i \big] \Psi_r$$

 $P_{\mu\nu} = \eta_{\mu\nu} - p_{\mu}p_{\nu}/p^2$ and Γ^i , i = 1, ... 5, are the gamma matrices for SO(5)