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Motivation

Why shall we study multi-differential cross sections?

LHC analyses often involve several measurements/cuts

If the measurements lead to widely separated energy scales
— resummation required

So far: resummed calculation mostly restricted to single variables
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Motivation

Why shall we study multi-differential cross sections?

Another important reason to study the resummation of multi/double -
differential cross sections:

One goal: Discriminate QCD jets from heavy boosted particles (W, Z, H, t)

Most powerful discrimination observables are ratios of infrared and
collinear (IRC) safe observables

These observables are not IRC safe (cannot be computed order-by-oder
in os), but can calculated in a well-defined way by marginalising over
the resummed double differential cross section. |arkoski, Thaler, ‘13
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Measuring two angularities on one jet

Deﬁnition Of angularities: Almeida, Lee, Perez, Sterman, Sung, Virzi, '09; Ellis,Vermilion, Walsh,

Hornig, Lee, '10;
1 3 0;\ "
Ca — @ Ez (E)

Berger, Kucs, Sterman, '03;
/ 1€J

Jet energy

» Jet axis

Simultaneous measurement of two different angularities provides
information about the jet structure: » = e, /eg (not IRC safe)

Differential cross section is calculable, by resuming large logs in the
double differential cross section to all orders:

do d?o e
2 = [ dend 5(r— =)
dr / c 8Bdeade@ : €3
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Measuring two angularities on one jet

Deﬁnition Of angularities: Almeida, Lee, Perez, Sterman, Sung, Virzi, '09; Ellis,Vermilion, Walsh,

Hornig, Lee, '10;
1 0;\ "
=g 25 (%)
1€J
/'

Jet energy

Berger, Kucs, Sterman, '03;

» Jet axis

Phase space for the measurement of two angularities e, and eg
between a>fB:ies > e,

1.0

Ca — €3
(from jet radius requirement) os

Boundary B2: ef = €5 06

(from energy conservation) &

04+

0.2+
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Boundary factorization theorems

At the B1 identify relevant SCET modes: |
Mode Scaling (—,+, L) Measurement 038

collinear | Q(1,\2/8 \/B) 5 eg 0c

QA AN €a ?

1.0\\*\“‘\“‘\“w\ww\

04
FaCtOrizatiOn theorem: Larkoski, Moult, Neill, ‘14
1 d?c
oo dey, deg

= H X J(eg) & S(em 65) 0.0

Similarly at B2:

1  d%c
=H xJ Qs S o
[ngeadeﬁ < J(earen) ® S(e >]

In the bulk: Factorization of the cross section not possible using only
soft and collinear modes Larkoski, Moult, Neill, ‘14
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Factorization theorem in the bulk

What to do in the bulk?

Larkoski, Moult, Neill: Interpolate

Our approach: Additional mode
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Factorization theorem in the bulk
What to do in the bulk? Lo

0.8+

Larkoski, Moult, Neill: Interpolate

Our approach: Additional mode 5

Extension of SCET (SCET+) containing
additional collinear-soft mode resums

0.2+

all logarithms in the bulk 00
Mode Scaling (—, 4+, 1) Measurement
n-collinear Q(1, A\2r/B )\7“/5) > eg3
_ ar—f  (a=2r—(f-2) _ (a=1)r—(5-1)
n-collinear-soft Q()\ a=B A =B , A a—P )\ Bla<r<1
soft Q()\, )\, )\) (P and A\ ~ e, ~ 6;/’”

Collinear-soft modes (with different scaling) are introduced also in other contexts to

(

deSCI’ibe multi—scale prob|ems Bauer, Tackmann, Walsh, Zuberi, '12: Larkoski, Moult, Neill, '15, |
Becher, Neubert, Rothen, Shao, '15; Chien, Hornig, Lee, ‘15
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Factorization theorem in the bulk

Factorization formula (valid to NLL)

_ ~(0) 2 C Ccs cs S

Jendey 1 H;(Q%) /deﬁQﬁ deZQ deFQ” del,Q
i = q (quarks) Jz(e%QB) %(efo, B%SQB)
i = g (gluons)

CS

X 0(eq — € — €g)0(eg — €5 —e3)

NLL resummation:
Evolve all to the collinear-soft scale — double cumulative distribution

g Co s 0’0
Z(ea,eﬁ) :/O deg/o de’B ae’aae%

_ .o eKun+EKi+Ks—yens—yens , Q) )an (6;/662)577] (eaQ)ns
P +n)TA+ns) Apn (g ¢ s
|

|
Hard scale Jet scale
Page 9 | Lisa Zeune | Resummation of double-differential cross sections

\_ /




Measurement of pr and thrust 7= pretn

Consider Z 4 0 jet production:
JetP =" min{p;,p; }

T Stewart, Tackmann,
Waalewijn, ‘09

Hierarchy between 7 and pr determines the appropriate SCET version:

SCET |I:
Py~ Q1/27-1/2

SCET+: i
pr~Q "T" i
with 1/2 <r <1 T |

SCET II:
pr ~T
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Modes and factorization theorems

SCET]
-
0 4 Collinear
P~ P~ TQ
T -
..__-_.p_2_f_v T?
| >t
T Q

SCET,

P _ Collinear-soft
T p? ~ p2
T —
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Modes and factorization theorems

~ SCET,
p
Q_A Collinear
P~ P~ TQ
7'_
.______p_2_f_v7'2
| >t
T ©
Mode Scaling (—, 4+, L) Measurement
n-collinear | Q(1, A%, \) > DT~ O\
soft Q()\2,)\2’)\2)\ T ~ QN
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Modes and factorization theorems

Mode

SCETyg
.
19
p° ~pp~T?
T - \
| - | !p+
T Q

Scaling (—, 4+, L) Measurement

n-collinear

soft
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Modes and factorization theorems

~ SCET,
A
10
P | . @\ Collinear-soft
T PP~ DT
T_ ~.
p* ~ T2 -
| | > pt
T /T @
Mode Scaling (—,+, 1) Measurement
n-collinear Q(1, A", \") > DT
n-collinear-soft | Q(A\*"~1, \, \")
soft QN A N) T

with 1/2 < r < 1,
A~T/Q ~ (pr/Q)Y"
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Modes and factorization theorems
SCET;

Fully-unintegrated (FU)
beam functions
Soft function

SCET,  SCETy
p
19
p°~pp~T?

do = H(Q?)

X By(k11) By(kay)
x (kT k) 7 (kLK) x S(ET k)

x S(k")
TMD beam functions TMD beam functions
Collinear-soft function FU soft function

Soft function
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NNLL resummation and consistency checks

The SCET I, SCET+ and SCET |l factorization theorems can be
matched achieving a continuous cross section description

All ingredients entering the factorisation calculated to the accuracy
needed for NNLL resummation

FU soft function and collinear soft function,
both calculated at one-loop

No more details here — see paper

Checks of our SCET+ framework

Cancellation of anomalous dimensions between the various ingredients

Full differential NLO cross section calculated and expanded in the SCET I,
SCET+ and SCET Il regions of phase space: Agreement with the
predictions from factorization theorems
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Conclusions

Resummation of double-differential measurements achieved via a new
effective theory framework SCET++ containing collinear-soft modes

Two applications we studied:

Thank you!
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Back-up slides



RG equations

Hard function

non-cusp piece

o
d 2 2 2 7x (@) ZVXW( )

u@H(Q ) =y (Q7, 1) H(Q, 1),

n—+1

2
i1(Q% 1) = Tonp (02) In % T ym(ay)

Jet function cusp piece
d RN RPN B 1B ! B
s JesQ” ) = [ dey Q% (eaQ? — Q%) J(5Q7 ),
M 0
9 B
’yJ(eﬁQﬁwu) — _ﬂ FCUSp(aS) ,Uﬁ EO(eifg ) _|_’7J(Oés) 5(65Qﬁ)
e 5000 = [ debQas(eaQ — €4 @) S Q.10
5(ea@e i) = g Tenen() 3 Lo “2%) +5(02) 6ea)

Collinear-soft function constrained by consistency
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Comparison to Larkoski, Moult, Neill
Their NLL conjecture:

6_/7E R(eoc 766)

_ e_R(eoz>€B)_7iT(ea7€B)
['(1+ R(eq, 65))

2(6 6B)conjecture L
% —

his mostly agrees with our result with

NLL
R(ea,e5) + VT (eq,e8) = —Kpg(pm,py) — Ki(pr, py) — Ks(ps, o),

~ NLL
R(ea,e3) = ny(ps, ) +ns(ps, ps)

Difference in the denominator:
(ignoring power-suppressed terms and terms beyond NLL)

Our result: I'(1 + ns)I'(1 +7ns) Difference at O(a?)
JHEP 1409 (2014) 046: T'(1 + ny + ns) in the bulk
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Scale choices

- Boundary conditions o

Y (eq,e5 = €5/Y) = (eq)

(e has been integrated over its entire range)

Yi(ea = ep,ep) = N(ep)

( €a has been integrated over its entire range)

derivative:

0 do
Z S(eq, _ %Y
aea (6 66) eﬂzeg/a dea

9,

—i(€eq, € = ()
8604 (6 B) eg=eq

and similarly for 9/0eg with B1 < B2

» Boundary conditions in JHEP 1409

(2014) 046 fulfilled by adding power-
suppressed terms
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Profile scales

Boundary conditions can be ful-

filled by appropriate scale choice:
o (earep)| = ps(easep)|

o leases)| = Hileasep)|
%W(@meﬁ)‘m d(:a pilearen’®)
o torleases)| = 2 paleared
o isearea)|, = 2 msear el
(QXMX(GOMQB)’Bl =0 ,X=J75

r
ll

and similarly for 9/0eg



Effective theory framework
Matching the QCD quark current onto SCET+

T U = C(Q%, 1) & W, S XIVa T VIX, S, WiE,
AT 1

QCD quark fields | matching coefficient collinear quark moving in n-direction

Dirac structure collinear antiquark moving
in n-direction
Wilson lines

W n-collinear gluons emitted from U (7i-collinear)

V.- n-collinear-soft gluons emitted from ¥ (A-collinear)
. soft gluons emitted from ¥ ( n-collinear)

Xy n-collinear-soft gluons emitted from W ( n-collinear)

The ordering of the Wilson lines is fixed by gauge invariance
of SCET+

Page 22| Lisa Zeune | Resummation of double-differential cross sections



Effective theory framework

n-collinear gauge transformation:
Groups together W&, (W — WIUT)

(& = Unén,  Wo = UWa,) Su—=Sn, Vo= Ve, X,— X,

Similarly & Wy is grouped together by 7i-collinear gauge transformation

n-collinear-soft gauge transformation:
Groups together V1 X,

Wico = Wic,  Su—=5Su, (Vo= UnesVu,  Xn = UnesX,)

Similarly X1V, is grouped together by fi-collinear-soft gauge transformation

soft gauge transformation:

wie, - wlie,, | 8, —=US,, V,—=UWVU, X,—UXU!
EaWn = EaWn, | Sp = UsSn, Vi UVLUN, X, — UXpU!
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Effective theory framework b
BPS field redefinition '

At this point the soft fields still interact
with the collinear-soft fields

Performing an analog to the BPS field
redefinition: Bauer, Pirjol, Stewart, ‘02

V,, = S, V871 X, = SpnX,ST
Va — SﬁVﬁS;, ; Xp — SﬁXﬁS;z
Finally:

No interaction between various modes anymore
— Derive factorisation theorems
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Stewart, Tackmann, Waalewijn, '09;

FaCtOrisatiOn thEOremSZ SCET l Jain, Procura, Waalewijn, ‘11

— OO [ dty dts | A%k A%k / dkt S(L"
d02dY dp2 dT zq: 7 H(Q )/ : 2/ e (k)

X [Bq(t1,$17 Eu) Bg(ta, 22, Eu) + (g « 67)}

G_Ytl -+ €Yt2

X 5(7-_ 0 _k+) 5(2?72“— \Eu +E2¢\2)
Ingredients: P operator returns momentum
FU beam function of intermediate state Xn = W&,
[ — . B B B * B f \

: Born cross section

: Hard function

: Transverse virtuality

: Momentum- fraction;
Y = rapidity
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Stewart, Tackmann, Waalewijn, '09;

FaCtOrisatiOn thEOrems: SCET l Jain, Procura, Waalewijn, ‘11
dio A ~ .
dQ? Y dp2dT zq: 74 H(Q) / dy dt / ks A%k / dkt

X [Bq(thxh Eu) Bg(ta, 22, Eu) + (g « CY)}

e_Ytl -+ €Yt2

X 5(7'— 0 —k+) (p7 — 1y +/Z2L\2)
Ingredients:
Time frdering
S(k*) = - (TR [T(S](0)5:(0)) 6(k* — P — P3) T(S1(0)S,(0))][0)

P, operator returns momentum of soft
radiation in hemisphere 1 (p™ < p™)

(32 : Born cross section
H(Q?, 1) =1C(Q* w)|* : Hard function
—t; = k; ki (i =1,2) : Transverse virtuality
T, = Q/Feme™Y (i =1,2) : Momentum: fraction;

Y = rapidity
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Factorisation theorems: SCET |

d%o 0 R R s . . B
— 59 H(O?) | d%kyy d%ky | d2k /dk+5 2 k1| +ko +k,|?
dQQdep%dT qu 04 (Q )/ 11 21 1 (pT k1 +ko +E | )
X 8(T k) | By(wr, ki) By(wa, Far ) + (g @) | SO F)
Extension of: Chiu, Jain, Neill, Rothstein, ‘12
- ] See also: Becher, Neubert, ‘10
Ingredients:

TMD beam function
(Bq(xa EJ-) — <pn(p_)

() D3k —p +PO)(EL B xa(0)]

pn(p)D

S(k* k1) = 7 (0/Tr[T(5](0)8(0)) §(k* — P{ — Py)

1
Ne
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Factorisation theorems: SCET+

40?2 dgi:gp% a7 ; 572 H(Q%) /dQEu d2ky, d2 _)ﬁ d2/2§i /d/-cfr dky dk™
X Bq(xl,/gu) Bg(ajg,lzu)
(ki F) 7 (kB O(T — ke — b — k)
x §(p2 — k1L +koy + KSS +ES D) +(q < @)
Ingredients:

TMD beam function — SCET |l

In SCET+ we have a TMD beam function without a TMD soft

function

We cannot combine them as was done in Becher, Neubert, '11; Echevarria, Idilbi, Scimemi, ‘12
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Factorisation theorems: SCET+

T d;i:gp% e :Eq: 69 H(Q?) / A2k, | d2ky, d2KSS d2kS / dk; dk3 dkt
X By(z1,k11) Bg(za, ka1 )
(kL RL) 7 (R ) 6(T — K — b — &)
X 6(p2 — k1L +kay +ES +5S %)+ (g < 9)
Ingredients:
Collinear-soft functions (separately for n and 7 directions)
G”(/~€+, ki) = ]\1[ (0] Tr [T(X}(0)V,(0)) 6(k™ — PT) 8> (ky — PL)T(V,(0)X,(0))] 10>\
g = Ni (OITx [T (V72 (0)X7(0)) (k™ — P7) 8> (k1 — PL)T(X}(0)Va(0))] |O>/

FU soft function and collinear-soft function look quite similar
Difference: Collinear-soft radiation goes only into one hemisphere

— Different treatment of the two hemispheres
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Matching of the effective theories

The SCET I, SCET+ and SCET |l factorization theorems can be
matched achieving a continuous cross section description

SCET | « SCET+

beam function matching coefficients*

Tii(t,x, k1) = /dzl_ﬂ Tii(x, k) Z(t/p~, kL —k'|) + power corrections

Skt k) = / 42K, / AT AR S T ) KT D)L R — K

SCET Il « SCET+ + power corrections

This holds for common scales: = up = = us and v =vg = vy = vg

This follows from:

- Switching off resummation, SCET | and SCET Il produce fixed order cross
section up to power corrections

« SCET+ regime can be obtained by a further expansion of SCET | or SCET I

. . L da’ - , A%QCD
Bq(ﬂ?,kJ_,,LL,V):Z 7IQj(?7kLaﬂal/)fj(xmu) 1+O( EQ )
j o},
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Matching of the effective theories
At NNLL one can show:
It w, k) = 6 I (w, k1) + 6(1 — ) D (t/p~, k1)
It k1) = 6(t) ) (2, k1) |
SOEY k) = % 5(E2)SW (kH) + 27U (K k)

Patch together the NNLL cross section

d*o B
dQ2dY dp2dT

> 6V H(Q?) / dt; dts / A%ky | %Ko, dA2ESS A2kSS A%k / dk; dkS dk™
q

X _BCI(tla X1, ]glJ_) o y(l) (tle_Y/Q7 ElJ—)] y(kf_’ Eii—)
X _B(j(t27 X2, ]Z2J_) o y(l) (tZBY/Q7 E2J—)i| y(k;’ Egi—)

6_Yt1—|—€Yt2
Q
X 0(p7 — k1L + koo + KT+ RS +EL) + (g < )

X

Skt L) — 27D (kT El)} 5(7— —kf—kj—k*)
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Non-global logarithms

To what extend can our framework be used to calculate non-global

logarithms, arising when different restrictions are applied in different
regions of phase space?

Consider: Instead of measuring pr of Z boson, measure pr of ISR it
recoils against (ISR in one hemisphere)

Factorization theorem:
— 50 H(O? dto [ A%k, d2KkS° /dk+dk+5k+
T 7~ 2 O M@ [t [ PR [at @it

X Bq(xla ElJ_mUJa V) B(j(t27x27,u) y(kTa _)53_7/’117 V)

Y
t = S
X(S(T_kfr—eQZ _k+)5(p:%,ISR_|k1L+ Tl 2)+(CIH€7)

This does not address the problem arising when the soft function

contains multiple scales (e.g. when beam thus measurement would be
restricted to one hemisphere)
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