PRECISION MEASUREMENT OF $\sin^2 \theta_w$ AT MESA

Loops & Legs 2016

H. Spiesberger

PRISMA Cluster of Excellence, Institut für Physik,

Johannes Gutenberg-Universität Mainz

Motivation

Electron proton / ion scattering at low and high Q^2

Goals:

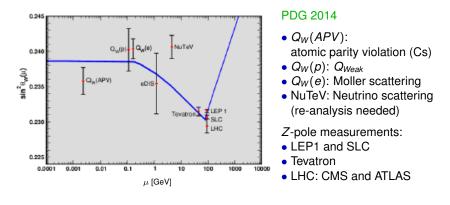
- → High-precision measurements of the nucleon structure
- → Search for new physics
- ➔ Electroweak physics:

Test of the standard model, and after LHC discoveries Test of the standard model extended with new physics

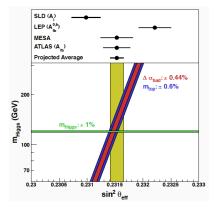
→ Key parameter of the standard model: $\sin^2 \theta_w$

This talk:

- ➔ The MESA project at Mainz University
- Theory for precision measurements of sin² θ_W in low-energy elastic *ep* scattering



Most precise single measurements disagree (3σ)
 → very different implications for new physics



Combination of precision measurements at the *Z*-pole $\rightarrow M_{Higgs} - \sin^2 \hat{\theta}_W(\mu)$ SM relation (red-blue band)

Precision measurement of $\sin^2 \hat{\theta}_W(\mu)$ has provided indirect evidence for the allowed range of M_{Higgs}

Combination of measurements provide strong tests of the SM,

... and maybe evidence for new physics

MESA

• MESA =

Mainz Energy-recovering Superconducting Accelerator

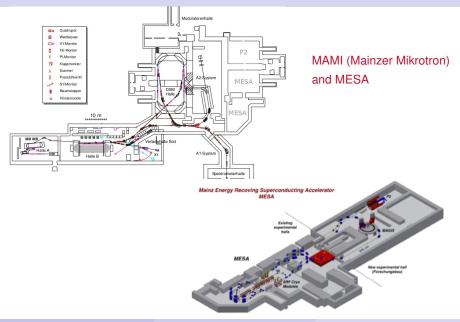
A small superconducting accelerator for particle and nuclear physics

• Funded by PRISMA - Cluster of Excellence and Collaborative Research Center 1044

German Science Foundation (DFG)

- P2 (Project Precision 2): Parity-violating electron proton scattering
- Other Projects: Search for a dark photon, Nuclear physics program, proton radius
- Commissioning planned for 2019
- Main competition from Qweak at JLAB

MESA Layout

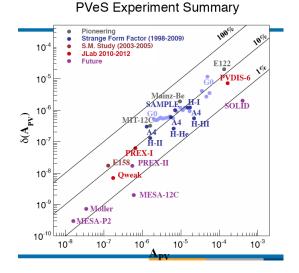


MESA Parameters

Parameter	P2 (Mainz)
Beam energy	155 MeV
Central scattering angle θ_e	35°
Detector acceptance for θ_e	25° to 45°
Azimuthal detector acceptance ϕ_e	2π
Central Q^2	$\simeq 0.0071 \; (\text{GeV}/c)^2$
Averaged Q^2	$\simeq 0.0045 \; (\text{GeV}/c)^2$
Polarization	(85 ± 0.5) %
Beam current	$150 \mu A$
ℓ H ₂ Target length	60 cm
A_{exp}	-28.35 ppb
$\Delta A(G_A)$ (0.4 %)	± 0.11 ppb
$\Delta A(\gamma Z \text{ box})$ (0.3 %)	$\pm 0.09~{\sf ppb}$
∆A _{stat} (1.3 %)	± 0.38 ppb
ΔA_{sys} (0.6 %)	$\pm 0.17~{\sf ppb}$
ΔA_{tot} (1.5 %)	± 0.44 ppb
$\sin^2 \theta_W$	0.238
$\Delta \sin^2 \theta_W$	$3.1 \cdot 10^{-4}$
$\Delta \sin^2 \theta_W / \sin^2 \theta_W$	0.13 %
I. Spiesberger (Mainz)	28. 4. 2016

28. 4. 2016 7 / 35

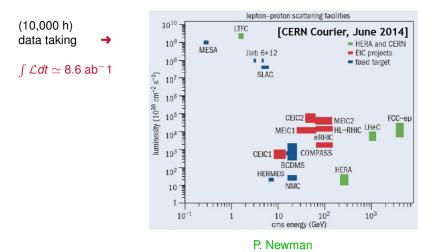
Parity-Violating Electron Scattering



H. Spiesberger (Mainz)

28. 4. 2016 8 / 35

LHeC / FCC-he Context



Measure the (tiny) difference between cross sections for electrons with positive and negative helicity to filter out the weak interaction

$$A_{LR} = \frac{\sigma(e_{\downarrow}) - \sigma(e_{\uparrow})}{\sigma(e_{\downarrow}) + \sigma(e_{\uparrow})} = -\frac{G_{F}Q^{2}}{4\sqrt{2}\pi\alpha} \Big(Q_{W}(\mathcal{N}) - F(Q^{2}) \Big)$$

Weak charge of the proton (SM at LO):

 $Q_W(p) = 1 - 4\sin^2\theta_W$

$\Delta \sin^2 \theta_W$	$1-4\sin^2\theta_W$	$\Delta Q_W(p)$
$\sin^2 \theta_W$	$4\sin^2\theta_W$	$Q_W(p)$

1.5% precision for $Q_W(p)$ corresponds to 0.13% precision for $\sin^2 \theta_W$

Measurement errors from: statistics, polarization ($A_{exp} = P_e A_{LR}$), systematic effects and required hadronic physics: form factors

Higher-order corrections

$$F(Q^2) = F_{\text{EMFF}}(Q^2) + F_{\text{Axial}}(Q^2) + F_{\text{Strangeness}}(Q^2)$$

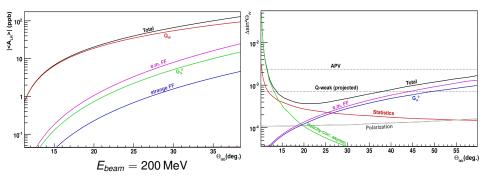
 $\textbf{\textit{A}}_{LR} = \textbf{\textit{A}}_{Q_{weak}} + \textbf{\textit{A}}_{EMFF} + \textbf{\textit{A}}_{Axial} + \textbf{\textit{A}}_{Strangeness}$

$$\begin{split} F_{\text{EMFF}}(Q^2) &= -\frac{\epsilon G_E^p G_E^n + \tau G_M^p G_M^n}{\epsilon (G_E^p)^2 + \tau (G_M^p)^2} \,, \\ F_{\text{Axial}}(Q^2) &= -\frac{(1-4\sin^2\theta_W)\sqrt{1-\epsilon^2}\sqrt{\tau(1+\tau)}G_M^p G_A^p}{\epsilon (G_E^p)^2 + \tau (G_M^p)^2} \,, \\ F_{\text{Strangeness}}(Q^2) &= -\frac{\epsilon G_E^p G_E^s + \tau G_M^p G_M^s}{\epsilon (G_E^p)^2 + \tau (G_M^p)^2} - \frac{\epsilon G_E^p G_E^{ud} + \tau G_M^p G_M^{ud}}{\epsilon (G_E^p)^2 + \tau (G_M^p)^2} \,, \\ \epsilon &= [1+2(1+\tau)\tan^2(\theta/2)]^{-1} \,, \qquad \tau = Q^2/4m_\rho^2 \end{split}$$

H. Spiesberger (Mainz)

28. 4. 2016 11 / 35

Contributions to the PV Asymmetry and Expected Error



→ Optimal measurement for E = 155 MeV, $\theta_e = 35^\circ \pm 10^\circ$ $\langle Q \rangle = 0.067$ GeV SM prediction: $A_{LR} = -2.8 \times 10^{-8}$, precision goal: 1.5% $\Delta \sin^2 \theta_w = \pm 0.00031$, i.e. 0.13 % Polarization asymmetry including higher-order corrections:

$$A_{LR} = -\frac{G_F Q^2}{4\sqrt{2}\pi\alpha} \left(Q_W(\mathcal{N})(1+\delta_1) - \widetilde{F}(Q^2) \right)$$

 $Q_{W}(\mathcal{N})(1+\delta_{1}) = (\rho_{\mathrm{NC}} + \Delta_{e}) \left(1 - 4 \kappa \sin^{2} \theta_{W} + \Delta_{e}'\right) + \delta_{\mathrm{Box}}$

Universal corrections: $\rho_{\rm NC}$ and κ from loop diagrams: scale-dependence ($\mu \rightarrow Q$) \rightarrow

$$\sin^2\theta_{\rm eff}(\mu^2) = \kappa(\mu^2)\sin^2\theta_W$$

and scheme-dependent

 δ_{Box} from box graphs for *WW*, *ZZ*, *Z* γ exchange, non-universal vertex correction Δ_e , Δ'_e , QED corrections Match complete 1-loop corrections to the definition of $\sin^2 \theta_W$

One-loop Corrections: Scale-Dependent $\sin^2 \theta_W$

• Photon-Z mixing
$$\gamma \xrightarrow{f}_{f} \gamma \xrightarrow{g}_{\gamma} \gamma \xrightarrow{weak}_{z} \rightarrow \Pi_{\gamma Z}(Q^2)$$

can be absorbed into effective, running, scale-dependent weak mixing angle

Definitions of the weak mixing angle, $\kappa(Q^2) \sin^2 \theta_W$:

- On-shell definition: $\cos \theta_W = \frac{m_W}{m_Z}$ (fixed)
- sin² θ_{eff}(Q²) absorbs Π_{γZ}(Q²), usually together with parts of vertex corrections (e.g. Czarnecki, Marciano for Moller scattering)
- $\overline{\text{MS}}$ scheme: $\sin \hat{\theta}_W(\mu)$ (via $\tan \hat{\theta}_W(\mu) = g_1/g_2$ and RGE) less sensitive to m_{top} , suited for comparisons with extensions of the SM
- Relation

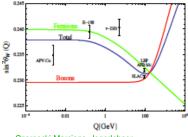
$$\sin^2 \hat{\theta}_W(\mu = M_Z) = \left(1 + \frac{\rho_t}{\tan^2 \theta_W} + \ldots\right) \sin^2 \theta_W$$

with $\rho_t = 3G_\mu m_{top}^2 / 8\sqrt{2}\pi^2 = 0.00939 \, (m_{top} / 173 \, {\rm GeV})^2$

→ Additional uncertainty: $\Delta \sin^2 \hat{\theta}_W \simeq \pm 0.0006$ for a 1 % error on m_{top}

$\sin^2 \hat{\theta}_W(Q)$: Uncertainties

- Use running $\sin^2 \hat{\theta}_W(Q)$ to compare different measurements
- Match definition of $\sin^2 \hat{\theta}_W(Q)$ with the complete 1-loop corrections



Czarnecki-Marciano, Jegerlehner

- Scheme dependence, partly compensated by δ_{non-universal}
- Include higher orders
 2-loop corrections
- Parameter dependence? m_t, m_H, \ldots
- Hadronic contribution! need data and models (e.g. ChPT)

Prescriptions are known, with small uncertainties

Higher-Order Corrections: Hadronic Contributions

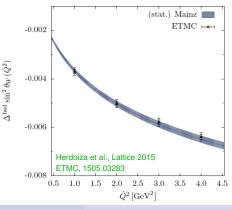
 $\Pi^{\gamma\gamma}$ and $\Pi^{\gamma Z}$ are sensitive to low-scale hadronic physics

→ Use dispersion relation, e.g.

$$\Delta\alpha(q^2) = \frac{q^2}{12\pi^2} \int_{4m_\pi^2}^{\infty} \frac{ds}{s} \frac{R^{\gamma\gamma}(s)}{s - q^2} \quad \text{with} \quad R^{\gamma\gamma}(s) = \frac{\sigma_{tot}(e^+e^- \to \gamma^* \to hadrons)}{4\pi\alpha^2/3s}$$

- → Similar approach for Π^{γZ} requires data for σ_{tot}(νν̄ → hadrons) or use flavor-separated e⁺e⁻ data, isospin symmetry and OZI-rule
- → Use lattice techniques

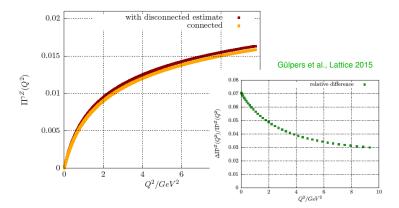
First results available, errors start to be competitive

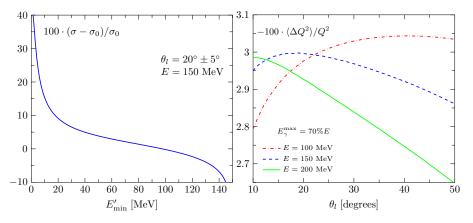


28. 4. 2016 16 / 35

Higher-Order Corrections: Hadronic Contributions

→ OZI-rule violating contributions? Lattice QCD still with large statistical errors but obtain an upper limit





- QED does not violate parity symmetry, but real photon emission leads to a shift of Q²
- Straightforward to calculate, but need flexible MC simulation

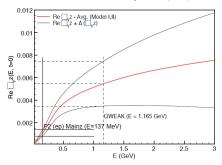
Higher-Order Corrections: Box Graphs

Sensitivity to hadronic physics at low $Q^2 \rightarrow$ an important source of error

Status \sim 3 years ago: 3 groups with independent analyses agree in size, but disagree on errors

Hall et al.; Carlson and Rislow; Gorchtein et al.

Gorchtein, Horowitz, Ramsey-Musolf (2011)



For Qweak at JLAB, E = 1.165 GeV: 7σ (theory) effect

Advantage at P2@MESA: low energy E = 0.155 GeV

 $\Delta A_{LR}^{box}/A_{LR} = \pm 0.4\%$

More work needed to reduce the error ...

H. Spiesberger (Mainz)

Box Graphs: Dispersion Relations

Optical theorem and dispersion relations:

$$\begin{split} \mathrm{Im}_{\gamma Z}(E) &= \frac{\alpha}{(s - M_Z^2)^2} \int_{W_\pi^2}^s dW^2 \int_0^{Q_{max}^2} dQ^2 \frac{M_Z^2}{Q^2 + M_Z^2} \\ &\times \left\{ F_1^{\gamma Z}(x,Q^2) + AF_2^{\gamma Z}(x,Q^2) + \frac{g_V^e}{g_A^e} BF_3^{\gamma Z} \right\} \end{split}$$

Separated into vector and axial-vector parts of the proton current:

$$\operatorname{Re}_{\gamma Z}^{V}(E) = \frac{2E}{\pi} \int_{\nu_{\pi}}^{\infty} \frac{dE'}{E'^{2} - E^{2}} \operatorname{Im}_{\gamma Z}^{V}(E'), \qquad \operatorname{Re}_{\gamma Z}^{V}(E = 0) = 0$$

$$\operatorname{Re}_{\gamma Z}^{A}(E) = \frac{2}{\pi} \int_{\nu_{\pi}}^{\infty} \frac{E' dE'}{E'^{2} - E^{2}} \operatorname{Im}_{\gamma Z}^{A}(E'), \qquad \operatorname{Re}_{\gamma Z}^{A}(E = 0) \neq 0$$

Different calculations due to different assumptions about the structure function input (regions, parametrizations)

W _{max} Q ² max	2 GeV	4 GeV	œ
œ	1%	1%	3%
2 GeV ²	3%	2%	1%
1 GeV ²	76%	10%	2%

W _{max} Q ² max	2 GeV	4 GeV	œ
œ	0.5%	0.5%	4.6%
2 GeV ²	6.7%	6.7%	0.5%
1 GeV ²	60%	20%	0.5%

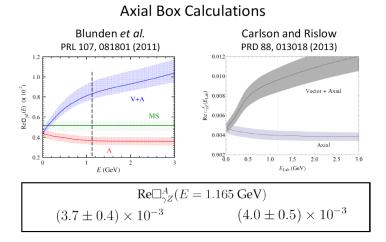
Contributions to $\operatorname{Re} \Box_{\gamma Z}^{V}$ $\operatorname{Re} \Box_{\gamma Z}^{V} = 0.00107$

from recent 2015 update: M. Gorchtein, HS, X. Zhang

Contributions to the uncertainty of $\operatorname{Re} \Box_{\gamma Z}^{V}$ $\Delta \operatorname{Re} \Box_{\gamma Z}^{V} = 0.00018$

 $(Q_W(p) = 0.0712 \pm 0.0007, E = 150 \text{ MeV}, \theta_e = 0)$

Higher-Order Corrections: Box Graphs



And more: $\gamma\gamma$ -box graph corrections with parity violation in the proton: Anapole moment, vanishes at E = 0, $\Box_{\gamma\gamma}^{PV} \sim \frac{\alpha}{\pi} EQ^2$ (M. Gorchtein, HS, to appear)

H. Spiesberger (Mainz)

28. 4. 2016 22 / 35

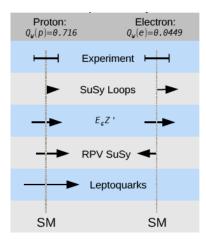
Box graphs are energy dependent → Formal definition of the nucleon's weak charge

Conventional (old) formulation (assuming $F(Q^2) = -Q^2 B(Q^2)$:

$$A_{exp} = A_0 \left(Q_W(\mathcal{N}) + Q^2 B(Q^2) \right) \quad \Rightarrow \quad Q_W(\mathcal{N}) = \lim_{Q^2 \to 0} \frac{A_{exp}}{A_0}$$

New: including *E*-dependent box-graph corrections:

$$A_{exp} = A_0 \left(Q_W(\mathcal{N}) + Q^2 B(Q^2) + \Box(E) \right) \quad \Rightarrow \quad Q_W(\mathcal{N}) = \lim_{Q^2, E \to 0} \frac{A_{exp}}{A_0}$$



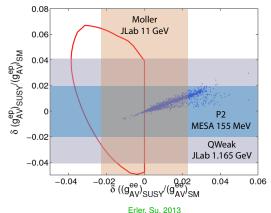
Searches based on

- model-dependent analyses
- effective quark couplings
- contact interactions

Characteristic shifts of Q_W predicted by extensions of the Standard Model

Complementarity between elastic $ep(Q_W(p))$ and Moller $(Q_W(e))$ scattering

Supersymmetric Models and the Weak Charge



Example: supersymmetric models with and without *R*-parity violation

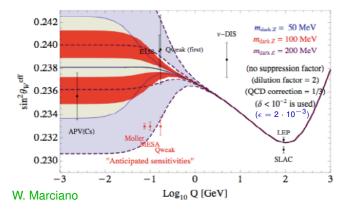
Also precision measurements at low-energy are sensitive to TeV-scale physics

Perspective will shift after LHeC discoveries

Dark Photon and $\sin^2 \hat{\theta}_W(Q)$

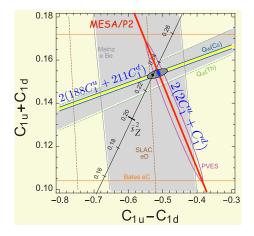
Dark matter and extra U(1) symmetry with kinetic mixing (B. Holdom)

- → Dark photon with very small mass: $m_D = O(50)$ MeV
- Free mixing parameter $\epsilon = O(10^{-3})$, possibly generated by loop effects
- Model with parity violation, like ordinary Z, but suppressed by ε_Z
- Combine kinetic and mass mixing \rightarrow shift $\Delta \sin^2 \theta_w(Q^2) \simeq 0.42\epsilon \frac{\delta m_Z^2}{Q^2 + m_D^2}$



H. Spiesberger (Mainz)

Effective Low-Energy Couplings



Conventionally used at low-energy: Effective 4-fermion interaction

 C_{1q} : $2a_e \otimes v_q$, C_{2q} : $2v_e \otimes a_q$

Low-energy experiments probe $C_{1q} = -I_q^{(3)} + 2Q_q \sin^2 \theta_W$ i.e., quark vector couplings

Parity-violating electron scattering: PVES at JLAB and MAMI and at MESA (red)

Atomic PV (Cs, yellow)

SM prediction (black square)

The Scale of New Physics: Contact Interactions

$$\mathcal{L}_{eq} = \left(\frac{G_{F}}{\sqrt{s}}g_{VA}^{eq}(SM) + \frac{g^{2}}{\Lambda^{2}}\right) \bar{e}\gamma_{\mu}e\bar{q}\gamma^{\mu}\gamma_{5}q$$

Convention: $g^2 = 4\pi$

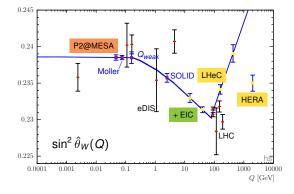
P2@MESA probes Λ up to $\simeq 50$ TeV

comparable with LHC (300 fb^-1)

	precision	$\Delta \sin^2 \overline{\theta}_W(0)$	Λ_{new} (expected)
APV Cs	0.58 %	0.0019	32.3 TeV
E158	14 %	0.0013	17.0 TeV
Qweak I	19 %	0.0030	17.0 TeV
Qweak final	4.5 %	0.0008	33 TeV
PVDIS	4.5 %	0.0050	7.6 TeV
SoLID	0.6 %	0.00057	22 TeV
MOLLER	2.3 %	0.00026	39 TeV
P2	2.0 %	0.00036	49 TeV
PVES ¹² C	0.3 %	0.0007	49 TeV

J. Erler

Scale Dependence of $\sin^2 \hat{\theta}_W(Q)$: Present and Future



Future additions to the PDG

Expected from low-energy:

- Mainz: P2@MESA
- Moller at JLAB
- Q_{weak} at JLAB
- SOLID at JLAB

HERA estimate (see DIS2016)

LHeC: from A_{LR} and σ_{NC}/σ_{CC} , energy range 10 - 1000 GeV

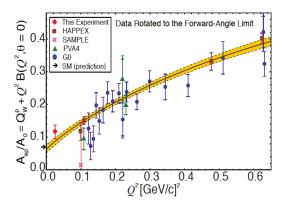
future **EIC**

Summary

- Present measurements of the weak mixing angle need improvement
- MESA, a new high-precision measurement of sin² θ_w from parity-violating electron scattering
- Combined with possible future measurements at low energies, EIC, LHeC:
- Precision measurements will cover a wide range of energy scales
 - Uncertainties for PVES
 - short-range, perturbative contributions, 1-loop under control
 - long-range effects in □^A_{γZ} suppressed by Q_W(e) (main limitation at P2@MESA)
 - long-range effects in $\Box_{\gamma Z}^{V}$ suppressed by low *E* at P2@MESA
 - form factor corrections $F(Q^2)$ suppressed by low Q^2
- Still interesting theory work to be completed ...

H. Spiesberger (Mainz)

Extra Slides

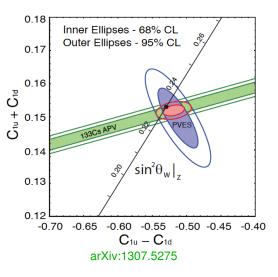


arXiv:1307.5275 - PRL111(2013)

First results from Qweak at JLAB

- E = 1.165 GeV, $Q^2 = 0.025 \text{ GeV}^2$
- Analyzed 4% of data (expect factor 5 improved errors with full data taken)
- Used previous data to extrapolate to Q² = 0
- $Q_W^p = 0.064 \pm 0.012$ $(Q_W^p(SM) = 0.0710 \pm 0.0007)$

Q_{Weak}



First results from Qweak

- 2-dim fit to quark couplings
- Best fit at $\sin^2 \theta_w = 0.23116$

Dark matter and U(1) symmetry \rightarrow

- Kinetic mixing $B_{\mu\nu}D^{\mu\nu}$ (parameter ϵ) (B. Holdom)
- \rightarrow Dark photon, interacts via $\epsilon e D^{\mu} J_{\mu}^{em}$, like $e A^{\mu} J_{\mu}^{em}$
- Very small mass: $m_D = O(50)$ MeV
- $\epsilon = O(10^{-3})$, possibly generated by loop effects
- Negligible effect at the Z pole
- May provide solution to the g 2 discrepancy
- Model with parity violation, like ordinary Z, but suppressed by ε_Z
 W. Marciano