Jet cross sections with the CoLoRFulNNLO method

Adam Kardos

University of Debrecen, MTA-DE Particle Physics Research Group

in collaboration with Claude Duhr, Vittorio Del Duca, Gábor Somogyi, Zoltán Szőr, Zoltán Trócsányi and Zoltán Tulipánt

Why leptoproduction?

- Strong coupling: fundamental in SM and QCD. Can be extracted from event shapes in e^+e^- annihilation.
 - For α_S determination high quality predictions are needed (fitting).
 - Event shape with modest hadronization corrections.
- Ideal test bed for new methods: only FSR, in NNLO only FF, no IF nor II subtraction is needed.
- Up to 3 jets NNLO corrections are known for several event shape observables (comparison and validation).

Why NNLO?

- High precision experiments demand high precision predictions.
- Relatively large coupling \Rightarrow final state is QCD dominated.
- Key processes have irreducible QCD background and/or QCD corrections.

Aim: Jet cross section for an m-jet observable (J_m): $\sigma_{\text{NNLO}} = \sigma^{\text{LO}} + \sigma^{\text{NLO}} + \sigma^{\text{NNLO}}$

The NLO correction is: $\int_{m+1} \mathrm{d}\sigma_{m+1}^{\mathrm{R}} J_{m+1} + \int_{m} \mathrm{d}\sigma_{m}^{\mathrm{V}} J_{m}$

Adding zero in a clever way: $\sigma^{\text{NLO}} = \int_{m+1} \left[\mathrm{d}\sigma_{m+1}^{\text{R}} J_{m+1} - \mathrm{d}\sigma_{m+1}^{\text{R},\text{A}_{1}} J_{m} \right]_{\varepsilon=0} + \int_{m} \left[\mathrm{d}\sigma_{m}^{\text{V}} + \int_{1} \mathrm{d}\sigma_{m+1}^{\text{R},\text{A}_{1}} \right]_{\varepsilon=0} J_{m}$

The NNLO correction is:

$$\sigma_m^{\text{NNLO}} + \sigma_{m+1}^{\text{NNLO}} + \sigma_{m+2}^{\text{NNLO}} = \int_{m+2} \mathrm{d}\sigma_{m+2}^{\text{RR}} J_{m+2} + \int_{m+1} \mathrm{d}\sigma_{m+1}^{\text{RV}} J_{m+1} + \int_m \mathrm{d}\sigma_m^{\text{VV}} J_m$$

Have to add zero in a clever way:

The m+2 partonic contribution: $\sigma_{m+2}^{\text{NNLO}} = \int_{m+2} \left\{ \mathrm{d}\sigma_{m+2}^{\text{RR}} J_{m+2} - \mathrm{d}\sigma_{m+2}^{\text{RR},\text{A}_2} J_m - \left[\mathrm{d}\sigma_{m+2}^{\text{RR},\text{A}_1} J_{m+1} - \mathrm{d}\sigma_{m+2}^{\text{RR},\text{A}_{12}} J_m \right] \right\}_{\varepsilon=0}$

The m+1 partonic contribution: $\sigma_{m+1}^{\text{NNLO}} = \int_{m+1} \left\{ \left(\mathrm{d}\sigma_{m+1}^{\text{RV}} + \int_{1} \mathrm{d}\sigma_{m+2}^{\text{RR},A_{1}} \right) J_{m+1} - \left[\mathrm{d}\sigma_{m+1}^{\text{RV},A_{1}} + \left(\int_{1} \mathrm{d}\sigma_{m+2}^{\text{RR},A_{1}} \right)^{A_{1}} \right] J_{m} \right\}_{\varepsilon=0}$

$\begin{aligned} & \text{The m partonic contribution:} \\ \sigma_m^{\text{NNLO}} = \int_m \left\{ \mathrm{d}\sigma_m^{\text{VV}} + \int_2 \left[\mathrm{d}\sigma_{m+2}^{\text{RR},\text{A}_2} - \mathrm{d}\sigma_{m+2}^{\text{RR},\text{A}_{12}} \right] + \int_1 \left[\mathrm{d}\sigma_{m+1}^{\text{RV},\text{A}_1} + \left(\int_1 \mathrm{d}\sigma_{m+2}^{\text{RR},\text{A}_1} \right)^{\text{A}_1} \right] \right\}_{\varepsilon=0} J_m \end{aligned}$

The NNLO correction is:

$$\sigma_m^{\text{NNLO}} + \sigma_{m+1}^{\text{NNLO}} + \sigma_{m+2}^{\text{NNLO}} = \int_{m+2} \mathrm{d}\sigma_{m+2}^{\text{RR}} J_{m+2} + \int_{m+1} \mathrm{d}\sigma_{m+1}^{\text{RV}} J_{m+1} + \int_m \mathrm{d}\sigma_m^{\text{VV}} J_m$$

Have to add zero in a clever way:

The m+2 partonic contribution: $\sigma_{m+2}^{\text{NNLO}} = \int_{m+2} \left\{ \mathrm{d}\sigma_{m+2}^{\text{RR}} J_{m+2} - \mathrm{d}\sigma_{m+2}^{\text{RR},A_2} J_m - \left[\mathrm{d}\sigma_{m+2}^{\text{RR},A_1} J_{m+1} - \mathrm{d}\sigma_{m+2}^{\text{RR},A_{12}} J_m \right] \right\}_{\varepsilon=0}$

The m+1 partonic contribution: $\sigma_{m+1}^{\text{NNLO}} = \int_{m+1} \left\{ \left(\mathrm{d}\sigma_{m+1}^{\text{RV}} + \int_{1} \mathrm{d}\sigma_{m+2}^{\text{RR},A_{1}} \right) J_{m+1} - \left[\mathrm{d}\sigma_{m+1}^{\text{RV},A_{1}} + \left(\int_{1} \mathrm{d}\sigma_{m+2}^{\text{RR},A_{1}} \right)^{A_{1}} \right] J_{m} \right\}_{\varepsilon=0}$

$$\sigma_m^{\text{NNLO}} = \int_m \left\{ \mathrm{d}\sigma_m^{\text{VV}} + \int_2 \left[\mathrm{d}\sigma_{m+2}^{\text{RR},\text{A}_2} - \mathrm{d}\sigma_{m+2}^{\text{RR},\text{A}_{12}} \right] + \int_1 \left[\mathrm{d}\sigma_{m+1}^{\text{RV},\text{A}_1} + \left(\int_1 \mathrm{d}\sigma_{m+2}^{\text{RR},\text{A}_1} \right)^{\text{A}_1} \right] \right\}_{\varepsilon=0} J_m$$

The NNLO correction is:

$$\sigma_m^{\text{NNLO}} + \sigma_{m+1}^{\text{NNLO}} + \sigma_{m+2}^{\text{NNLO}} = \int_{m+2} \mathrm{d}\sigma_{m+2}^{\text{RR}} J_{m+2} + \int_{m+1} \mathrm{d}\sigma_{m+1}^{\text{RV}} J_{m+1} + \int_m \mathrm{d}\sigma_m^{\text{VV}} J_m$$

Have to add zero in a clever way:

The m+2 partonic contribution: $\sigma_{m+2}^{\text{NNLO}} = \int_{m+2} \left\{ \mathrm{d}\sigma_{m+2}^{\text{RR}} J_{m+2} - \mathrm{d}\sigma_{m+2}^{\text{RR},A_2} J_m - \left[\mathrm{d}\sigma_{m+2}^{\text{RR},A_1} J_{m+1} - \mathrm{d}\sigma_{m+2}^{\text{RR},A_{12}} J_m \right] \right\}_{\varepsilon=0}$

The m+1 partonic contribution:

$$\sigma_{m+1}^{\text{NNLO}} = \int_{m+1} \left\{ \left(\mathrm{d}\sigma_{m+1}^{\text{RV}} + \int_{1}^{} \mathrm{d}\sigma_{m+2}^{\text{RR},A_1} \right) J_{m+1} - \left[\mathrm{d}\sigma_{m+1}^{\text{RV},A_1} + \left(\int_{1}^{} \mathrm{d}\sigma_{m+2}^{\text{RR},A_1} \right)^{A_1} \right] J_m \right\}_{\varepsilon = 0}^{-1} \left[\mathrm{d}\sigma_{m+1}^{\text{RV},A_1} + \left(\int_{1}^{} \mathrm{d}\sigma_{m+2}^{\text{RR},A_1} \right)^{A_1} \right] J_m \right\}_{\varepsilon = 0}^{-1} \left[\mathrm{d}\sigma_{m+1}^{\text{RV},A_1} + \left(\int_{1}^{} \mathrm{d}\sigma_{m+2}^{\text{RR},A_1} \right)^{A_1} \right] J_m \right\}_{\varepsilon = 0}^{-1} \left[\mathrm{d}\sigma_{m+1}^{\text{RV},A_1} + \left(\int_{1}^{} \mathrm{d}\sigma_{m+2}^{\text{RV},A_1} \right)^{A_1} \right] J_m \right]$$

$$\sigma_m^{\text{NNLO}} = \int_m \left\{ \mathrm{d}\sigma_m^{\text{VV}} + \int_2 \left[\mathrm{d}\sigma_{m+2}^{\text{RR},\text{A}_2} - \mathrm{d}\sigma_{m+2}^{\text{RR},\text{A}_{12}} \right] + \int_1 \left[\mathrm{d}\sigma_{m+1}^{\text{RV},\text{A}_1} + \left(\int_1 \mathrm{d}\sigma_{m+2}^{\text{RR},\text{A}_1} \right)^{\text{A}_1} \right] \right\}_{\varepsilon=0} J_m$$

The NNLO correction is:

$$\sigma_m^{\text{NNLO}} + \sigma_{m+1}^{\text{NNLO}} + \sigma_{m+2}^{\text{NNLO}} = \int_{m+2} \mathrm{d}\sigma_{m+2}^{\text{RR}} J_{m+2} + \int_{m+1} \mathrm{d}\sigma_{m+1}^{\text{RV}} J_{m+1} + \int_m \mathrm{d}\sigma_m^{\text{VV}} J_m$$

Have to add zero in a clever way:

The m+2 partonic contribution: $\sigma_{m+2}^{\text{NNLO}} = \int_{m+2} \left\{ \mathrm{d}\sigma_{m+2}^{\text{RR}} J_{m+2} - \mathrm{d}\sigma_{m+2}^{\text{RR},A_2} J_m - \left[\mathrm{d}\sigma_{m+2}^{\text{RR},A_1} J_{m+1} - \mathrm{d}\sigma_{m+2}^{\text{RR},A_{12}} J_m \right] \right\}_{\varepsilon=0}$

The m+1 partonic contribution:

$$\sigma_{m+1}^{\text{NNLO}} = \int_{m+1} \left\{ \left(\mathrm{d}\sigma_{m+1}^{\text{RV}} + \int_{1}^{} \mathrm{d}\sigma_{m+2}^{\text{RR},A_1} \right) J_{m+1} - \left[\mathrm{d}\sigma_{m+1}^{\text{RV},A_1} + \left(\int_{1}^{} \mathrm{d}\sigma_{m+2}^{\text{RR},A_1} \right)^{A_1} \right] J_m \right\}_{\varepsilon = 0}^{-1} d\sigma_{m+1}^{\mathrm{RV},A_1} = \int_{m+1}^{m+1} \left\{ \left(\mathrm{d}\sigma_{m+1}^{\mathrm{RV}} + \int_{1}^{} \mathrm{d}\sigma_{m+2}^{\mathrm{RR},A_1} \right)^{A_1} \right] J_m \right\}_{\varepsilon = 0}^{-1} d\sigma_{m+1}^{\mathrm{RV},A_1} = \int_{m+1}^{m+1} \left\{ \left(\mathrm{d}\sigma_{m+1}^{\mathrm{RV}} + \int_{1}^{} \mathrm{d}\sigma_{m+2}^{\mathrm{RR},A_1} \right)^{A_1} \right\}_{\varepsilon = 0}^{-1} d\sigma_{m+1}^{\mathrm{RV},A_1} = \int_{m+1}^{m+1} \left\{ \left(\mathrm{d}\sigma_{m+1}^{\mathrm{RV}} + \int_{1}^{} \mathrm{d}\sigma_{m+2}^{\mathrm{RV},A_1} \right)^{A_1} \right\}_{\varepsilon = 0}^{-1} d\sigma_{m+1}^{\mathrm{RV},A_1} = \int_{m+1}^{m+1} \left\{ \left(\mathrm{d}\sigma_{m+1}^{\mathrm{RV}} + \int_{1}^{} \mathrm{d}\sigma_{m+2}^{\mathrm{RV},A_1} \right)^{A_1} \right\}_{\varepsilon = 0}^{-1} d\sigma_{m+1}^{\mathrm{RV},A_1} = \int_{m+1}^{m+1} \left\{ \left(\mathrm{d}\sigma_{m+1}^{\mathrm{RV}} + \int_{1}^{} \mathrm{d}\sigma_{m+2}^{\mathrm{RV},A_1} \right)^{A_1} \right\}_{\varepsilon = 0}^{-1} d\sigma_{m+1}^{\mathrm{RV},A_1} = \int_{m+1}^{m+1} \left\{ \left(\mathrm{d}\sigma_{m+1}^{\mathrm{RV}} + \int_{1}^{} \mathrm{d}\sigma_{m+2}^{\mathrm{RV},A_1} \right)^{A_1} \right\}_{\varepsilon = 0}^{-1} d\sigma_{m+1}^{\mathrm{RV},A_1} = \int_{m+1}^{m+1} \left\{ \left(\mathrm{d}\sigma_{m+1}^{\mathrm{RV}} + \int_{1}^{} \mathrm{d}\sigma_{m+2}^{\mathrm{RV},A_1} \right)^{A_1} \right\}_{\varepsilon = 0}^{-1} d\sigma_{m+1}^{\mathrm{RV},A_1} = \int_{m+1}^{m+1} \left\{ \left(\mathrm{d}\sigma_{m+1}^{\mathrm{RV},A_1} + \int_{1}^{} \mathrm{d}\sigma_{m+2}^{\mathrm{RV},A_1} \right)^{A_1} \right\}_{\varepsilon = 0}^{-1} d\sigma_{m+1}^{\mathrm{RV},A_1} = \int_{m+1}^{m+1} \left\{ \left(\mathrm{d}\sigma_{m+1}^{\mathrm{RV},A_1} + \int_{1}^{} \mathrm{d}\sigma_{m+2}^{\mathrm{RV},A_1} \right)^{A_1} \right\}_{\varepsilon = 0}^{-1} d\sigma_{m+1}^{\mathrm{RV},A_1} = \int_{m+1}^{m+1} \left\{ \left(\mathrm{d}\sigma_{m+1}^{\mathrm{RV},A_1} + \int_{1}^{} \mathrm{d}\sigma_{m+2}^{\mathrm{RV},A_1} \right)^{A_1} \right\}_{\varepsilon = 0}^{-1} d\sigma_{m+1}^{\mathrm{RV},A_1} = \int_{m+1}^{m+1} \left\{ \left(\mathrm{d}\sigma_{m+1}^{\mathrm{RV},A_1} + \int_{1}^{} \mathrm{d}\sigma_{m+2}^{\mathrm{RV},A_1} \right)^{A_1} \right\}_{\varepsilon = 0}^{-1} d\sigma_{m+1}^{\mathrm{RV},A_1} = \int_{m+1}^{} \mathrm{d}\sigma_{m+1}^{\mathrm{RV},A_1} = \int_$$

$$\sigma_m^{\text{NNLO}} = \int_m \left\{ \mathrm{d}\sigma_m^{\text{VV}} + \int_2 \left[\mathrm{d}\sigma_{m+2}^{\text{RR},\text{A}_2} - \mathrm{d}\sigma_{m+2}^{\text{RR},\text{A}_{12}} \right] + \int_1 \left[\mathrm{d}\sigma_{m+1}^{\text{RV},\text{A}_1} + \left(\int_1 \mathrm{d}\sigma_{m+2}^{\text{RR},\text{A}_1} \right)^{\text{A}_1} \right] \right\}_{\varepsilon=0} J_m$$

The NNLO correction is:

$$\sigma_m^{\text{NNLO}} + \sigma_{m+1}^{\text{NNLO}} + \sigma_{m+2}^{\text{NNLO}} = \int_{m+2} \mathrm{d}\sigma_{m+2}^{\text{RR}} J_{m+2} + \int_{m+1} \mathrm{d}\sigma_{m+1}^{\text{RV}} J_{m+1} + \int_m \mathrm{d}\sigma_m^{\text{VV}} J_m$$

Have to add zero in a clever way:

The m+2 partonic contribution: $\sigma_{m+2}^{\text{NNLO}} = \int_{m+2} \left\{ \mathrm{d}\sigma_{m+2}^{\text{RR}} J_{m+2} - \mathrm{d}\sigma_{m+2}^{\text{RR},A_2} J_m - \left[\mathrm{d}\sigma_{m+2}^{\text{RR},A_1} J_{m+1} - \mathrm{d}\sigma_{m+2}^{\text{RR},A_{12}} J_m \right] \right\}_{\varepsilon=0}$

The m+1 partonic contribution:

$$\sigma_{m+1}^{\text{NNLO}} = \int_{m+1} \left\{ \left(\mathrm{d}\sigma_{m+1}^{\text{RV}} + \int_{1} \mathrm{d}\sigma_{m+2}^{\text{RR},A_1} \right) J_{m+1} - \left[\mathrm{d}\sigma_{m+1}^{\text{RV},A_1} + \left(\int_{1} \mathrm{d}\sigma_{m+2}^{\text{RR},A_1} \right)^{A_1} \right] J_m \right\}_{\varepsilon = 0}$$

$$\sigma_m^{\text{NNLO}} = \int_m \left\{ \mathrm{d}\sigma_m^{\text{VV}} + \int_2 \left[\mathrm{d}\sigma_{m+2}^{\text{RR},\text{A}_2} - \mathrm{d}\sigma_{m+2}^{\text{RR},\text{A}_{12}} \right] + \int_1 \left[\mathrm{d}\sigma_{m+1}^{\text{RV},\text{A}_1} + \left(\int_1 \mathrm{d}\sigma_{m+2}^{\text{RR},\text{A}_1} \right)^{\text{A}_1} \right] \right\}_{\varepsilon=0} J_m$$

The NNLO correction is:

$$\sigma_m^{\text{NNLO}} + \sigma_{m+1}^{\text{NNLO}} + \sigma_{m+2}^{\text{NNLO}} = \int_{m+2} \mathrm{d}\sigma_{m+2}^{\text{RR}} J_{m+2} + \int_{m+1} \mathrm{d}\sigma_{m+1}^{\text{RV}} J_{m+1} + \int_m \mathrm{d}\sigma_m^{\text{VV}} J_m$$

Have to add zero in a clever way:

The m+2 partonic contribution: $\sigma_{m+2}^{\text{NNLO}} = \int_{m+2} \left\{ \mathrm{d}\sigma_{m+2}^{\text{RR}} J_{m+2} - \mathrm{d}\sigma_{m+2}^{\text{RR},A_2} J_m - \left[\mathrm{d}\sigma_{m+2}^{\text{RR},A_1} J_{m+1} - \mathrm{d}\sigma_{m+2}^{\text{RR},A_{12}} J_m \right] \right\}_{\varepsilon=0}$

The m+1 partonic contribution:

$$\sigma_{m+1}^{\text{NNLO}} = \int_{m+1} \left\{ \left(\mathrm{d}\sigma_{m+1}^{\text{RV}} + \int_{1}^{} \mathrm{d}\sigma_{m+2}^{\text{RR},A_1} \right) J_{m+1} - \left[\mathrm{d}\sigma_{m+1}^{\text{RV},A_1} + \left(\int_{1}^{} \mathrm{d}\sigma_{m+2}^{\text{RR},A_1} \right)^{A_1} \right] J_m \right\}_{\varepsilon = 0}^{-1} \left\{ \left(\mathrm{d}\sigma_{m+1}^{\text{RV}} + \int_{1}^{} \mathrm{d}\sigma_{m+2}^{\text{RR},A_1} \right) J_m \right\}_{\varepsilon = 0}^{-1} \left\{ \left(\mathrm{d}\sigma_{m+1}^{\text{RV}} + \int_{1}^{} \mathrm{d}\sigma_{m+2}^{\text{RR},A_1} \right) J_m \right\}_{\varepsilon = 0}^{-1} \left\{ \left(\mathrm{d}\sigma_{m+1}^{\text{RV}} + \int_{1}^{} \mathrm{d}\sigma_{m+2}^{\text{RR},A_1} \right) J_m \right\}_{\varepsilon = 0}^{-1} \left\{ \left(\mathrm{d}\sigma_{m+1}^{\text{RV}} + \int_{1}^{} \mathrm{d}\sigma_{m+2}^{\text{RR},A_1} \right) J_m \right\}_{\varepsilon = 0}^{-1} \left\{ \left(\mathrm{d}\sigma_{m+1}^{\text{RV}} + \int_{1}^{} \mathrm{d}\sigma_{m+2}^{\text{RV},A_1} \right) J_m \right\}_{\varepsilon = 0}^{-1} \left\{ \left(\mathrm{d}\sigma_{m+1}^{\text{RV}} + \int_{1}^{} \mathrm{d}\sigma_{m+2}^{\text{RV},A_1} \right) J_m \right\}_{\varepsilon = 0}^{-1} \left\{ \left(\mathrm{d}\sigma_{m+1}^{\text{RV}} + \int_{1}^{} \mathrm{d}\sigma_{m+2}^{\text{RV},A_1} \right) J_m \right\}_{\varepsilon = 0}^{-1} \left\{ \left(\mathrm{d}\sigma_{m+1}^{\text{RV}} + \int_{1}^{} \mathrm{d}\sigma_{m+2}^{\text{RV},A_1} \right) J_m \right\}_{\varepsilon = 0}^{-1} \left\{ \left(\mathrm{d}\sigma_{m+1}^{\text{RV}} + \int_{1}^{} \mathrm{d}\sigma_{m+2}^{\text{RV},A_1} \right) J_m \right\}_{\varepsilon = 0}^{-1} \left\{ \left(\mathrm{d}\sigma_{m+1}^{\text{RV}} + \int_{1}^{} \mathrm{d}\sigma_{m+2}^{\text{RV},A_1} \right) J_m \right\}_{\varepsilon = 0}^{-1} \left\{ \left(\mathrm{d}\sigma_{m+1}^{\text{RV}} + \int_{1}^{} \mathrm{d}\sigma_{m+2}^{\text{RV},A_1} \right) J_m \right\}_{\varepsilon = 0}^{-1} \left\{ \left(\mathrm{d}\sigma_{m+1}^{\text{RV}} + \int_{1}^{} \mathrm{d}\sigma_{m+2}^{\text{RV},A_1} \right) J_m \right\}_{\varepsilon = 0}^{-1} \left\{ \left(\mathrm{d}\sigma_{m+1}^{\text{RV}} + \int_{1}^{} \mathrm{d}\sigma_{m+2}^{\text{RV},A_1} \right) J_m \right\}_{\varepsilon = 0}^{-1} \left\{ \left(\mathrm{d}\sigma_{m+1}^{\text{RV}} + \int_{1}^{} \mathrm{d}\sigma_{m+2}^{\text{RV},A_1} \right) J_m \right\}_{\varepsilon = 0}^{-1} \left\{ \left(\mathrm{d}\sigma_{m+1}^{\text{RV}} + \int_{1}^{} \mathrm{d}\sigma_{m+2}^{\text{RV},A_1} \right) J_m \right\}_{\varepsilon = 0}^{-1} \left\{ \left(\mathrm{d}\sigma_{m+1}^{\text{RV},A_1} + \int_{1}^{} \mathrm{d}\sigma_{m+2}^{\text{RV},A_1} \right) J_m \right\}_{\varepsilon = 0}^{-1} \left\{ \left(\mathrm{d}\sigma_{m+1}^{\text{RV},A_1} + \int_{1}^{} \mathrm{d}\sigma_{m+2}^{\text{RV},A_1} \right) J_m \right\}_{\varepsilon = 0}^{-1} \left\{ \left(\mathrm{d}\sigma_{m+1}^{\text{RV},A_1} + \int_{1}^{} \mathrm{d}\sigma_{m+2}^{\text{RV},A_1} + \int_{1}^{} \mathrm{d}\sigma_{m+2}^{\text{RV},A_1} \right\}_{\varepsilon = 0}^{-1} \left\{ \left(\mathrm{d}\sigma_{m+1}^{\text{RV},A_1} + \int_{1}^{} \mathrm{d}\sigma_{m+2}^{\text{RV},A_1} + \int_{1}^{} \mathrm{d}\sigma_{$$

$$\sigma_m^{\text{NNLO}} = \int_m \left\{ \mathrm{d}\sigma_m^{\text{VV}} + \int_2 \left[\mathrm{d}\sigma_{m+2}^{\text{RR},\text{A}_2} - \mathrm{d}\sigma_{m+2}^{\text{RR},\text{A}_{12}} \right] + \int_1 \left[\mathrm{d}\sigma_{m+1}^{\text{RV},\text{A}_1} + \left(\int_1 \mathrm{d}\sigma_{m+2}^{\text{RR},\text{A}_1} \right)^{\text{A}_1} \right] \right\}_{\varepsilon=0} J_m$$

The ColoRFulNNLO method

MCCS

- For details see Gabor's talk...
- Completely local subtractions regularize kinematic singularities.
- •Large number of subtraction terms: ~100 for $e^+ e^- \rightarrow 3jets$.
 - Manual implementation is impractical.
 - Automation is needed.
- Method needs the standard SMEs.
 - Automation is possible.

The MCCSM code

- It is a Monte Carlo implementing the CoLoRFulNNLO Subtraction Method \rightarrow MCCSM (AK)
- Written in standard Fortran90
- Exploits new features of F90: user types, operator overloading, screening through modules
- Fully automatic
- Highly flexible and tuneable
- MC integration done by MINT
- phase space is by PHASER (in-house multichannel PS generator)
- Histogram output in YODA format through an interface to YODA

Numbe	er of	sub	proce	esse	es at	the	NNLO-
-11	11	5	-5	5	-5	0	
-11	11	5	-5	4	-4	0	
-11	11	3	-3	5	-5	0	
-11	11	5	-5	2	-2	0	
-11	11	1	-1	5	-5	0	
-11	11	5	-5	0	0	0	
-11	11	4	-4	4	-4	0	
-11	11	3	-3	4	-4	0	
-11	11	2	-2	4	-4	0	
-11	11	1	-1	4	-4	0	
-11	11	4	-4	0	0	0	
-11	11	3	-3	3	-3	0	
-11	11	3	-3	2	-2	0	
-11	11	1	-1	3	-3	0	
-11	11	3	-3	0	0	0	


~~~~ Cirs	~~~~
iterm:	1, b (3) $\rightarrow$ b (3) $  $ g (5)
UBorn: e+	e> b b~ g
	\-> b g g
iterm:	2 , b (3) -> b (3)    g (5)
UBorn: e+	e> b b~ g
	\-> b g g
iterm:	3 , b (3) -> b (3)    g (6)
UBorn: e+	e> b b~ g
	\-> b g g
iterm:	4 , $b^{(4)} \rightarrow b^{(4)}    g (5)$
JBorn: e+	e> b b~ g
	\-> b~ g g
iterm:	5 , $b^{(4)} \rightarrow b^{(4)}    g (5)$
UBorn: e+	e> b b~ g
	\-> b~ g g
iterm:	6 , $b^{(4)} \rightarrow b^{(4)}    g (6)$
UBorn: e+	e> b b~ q



CSirs:	g (6	) -> g	(6)		g	(7	)	,	g	(	5)		->	• (	)	٦	VΑ	LJ	D
iter no	. 1	scale	no.	1	1.	06	26	560	534	49	48	17	44	06	51	3	10	36	593
iter no	. 2	scale	no.	1	. 9	999	33	333	39:	11	87	5	66	64	11	3	13	17	12:
iter no	. 3	scale	no.	1	. 9	999	93	86(	05(	57	16	2	06	67	19	3(	01	96	51:
iter no	. 4	scale	no.	1	. 9	999	99	32	21	71	58	8	57	35	53	01	81	66	59(
iter no	. 5	scale	no.	1	. 9	999	99	992	289	95	27	3	34	56	52	3(	57	47	12:
iter no	. 6	scale	no.	1	. 9	999	99	999	92	79	55	5	57	48	30	4(	54	15	597
iter no	. 7	scale	no.	1	. 9	999	99	999	992	27	64	2	31	33	32	74	48	30	)6:
iter no	. 8	scale	no.	1	. 9	999	99	999	999	92	75	4	34	67	12	41	84	58	39:
iter no	. 9	scale	no.	1	. 9	999	99	999	999	99	27	5	12	22	29	3	18	5(	)44
iter no	. 10	scale	no.	1	. 9	999	99	999	999	99	92	7	50	23	35	32	27	99	6
iter no	. 11	scale	no.	1	. 9	999	99	999	99	99	99	2	74	99	2	3(	04	31	11:
iter no	. 12	scale	no.	1	. 9	999	99	999	999	99	99	9	27	49	8	24	42	89	941
iter no	. 13	scale	no.	1	. 9	999	99	999	999	99	99	9	92	74	19	7	94	47	141
iter no	. 14	scale	no.	1	. 9	999	99	999	999	99	99	9	99	27	15	0	03	84	13
iter no	. 15	scale	no.	1	. 9	999	99	999	999	99	99	9	99	92	27	6	75	41	4



#### Available processes:

•e⁺ e⁻→2jets (Albers, AK, Somogyi)
•e⁺ e⁻→3jets (AK, Somogyi, Szőr, Tulipánt)
…

(In parentheses the people who did the implementation.)

# Phenomenology

PRELIMINARY

# e⁺ e⁻→3jets

- Previously done @ NNLO QCD:
  - -Gehrmann-De Ridder et al. (GGGH) JHEP 0712 (2007) 094
  - -Weinzierl (SW) JHEP 0906 (2009) 041
- Comparisons were done for the six fundamental event shape variables
- Completely new NNLO QCD predictions are made for three further event shapes: oblateness, EEC and JCEF
- Comparison:
  - -Weinzierl: w/ data presented in JHEP 0906 (2009) 041
  - -GGGH: using data also used in the comparison in JHEP 0906 (2009) 041

e⁺ e⁻→3 jets

#### New observables:

• Oblateness:  $O = T_M - T_m$ • Energy-energy correlation:  $EEC(\chi) = \frac{1}{\sigma_{had}} \sum_{i,j} \int d\sigma_{e^+ e^- \rightarrow i j + X} \frac{E_i E_j}{Q^2} \delta(\cos \chi + \cos \theta_{ij})$ 

Jet cone energy fraction:

$$\text{JCEF}(\chi) = \frac{1}{\sigma_{\text{had}}} \sum_{i} \int d\sigma_{e^+ e^- \to i+X} \frac{E_i}{\sqrt{Q^2}} \delta\left(\cos\chi - \frac{\boldsymbol{p}_i \cdot \boldsymbol{n}_T}{|\boldsymbol{p}_i|}\right)$$





e⁺ e⁻→3jets



e⁺ e⁻→3jets







e⁺ e⁻→3jets

To better quantify the size of NNLO corrections, they are plotted separately:

$$\frac{1}{\sigma_0} \frac{\mathrm{d}\sigma}{\mathrm{d}O} = \frac{\alpha_S}{2\pi} A(O) + \left(\frac{\alpha_S}{2\pi}\right)^2 B(O) + \left(\frac{\alpha_S}{2\pi}\right)^3 C(O) + \mathcal{O}(\alpha_S^4)$$

e⁺ e⁻→3jets



C coefficient for 1-T and C parameter distributions

e⁺ e⁻→3jets



C coefficient distribution for wide and total jet broadening

e⁺ e⁻→3jets



C coefficient distribution for heavy jet mass and y23

# New predictions

e⁺ e⁻→3jets



Oblateness



Energy-energy correlation

e⁺ e⁻→3jets



Jet cone energy fraction



C coefficients for Oblateness (TL), EEC (BL) and JCEF (CR)

# Conclusions

- The MCCSM code is used to obtain NNLO predictions for  $e^+ e^- \rightarrow 3jets$
- Comparisons are made with existing predictions
- New NNLO predictions are made for 3 event shape variables
- The code fully automatic, highly tuneable and completely general (for colorless initial states)
- Incorporating partons in the initial state is already started

# Thank you for your attention!

# Back-up slides

#### The generation of all subprocesses is automatic:

We define the process at th	e Bor	n leve	el:							
proc_LO(1) = ' <b>e+</b> '	Maria						+ h =	NUT O DD	1 1	2.0
proc_LO(2) = <b>'e-'</b>	NUMD	er or	su.	opro	cesse	es at	tne	NNLO-RR	level:	20
proc_LO(3) = 'j '	-11	11	5	-5	5	-5	0			
$proc_{LO(4)} = 'j '$	-11	11	5	-5	4	-4	0			
$proc_LO(5) = 'j '$	-11	11	3	-3	5	-5	0			
	-11	11	5	-5	2	-2	0			
	-11	11	1	-1	5	-5	0			
	-11	11	5	-5	0	0	0			
	-11	11	4	-4	4	-4	0			
	-11	11	3	-3	4	-4	0			
	-11	11	2	-2	4	_4	0			
	-11	11	1	-1	4	_4	0			
	_11	11	Ā	_4	0	0	ň			
	_11	11	2		2	3	ň			
	-11	11	2	-5	2	-5	0			
	-11	11	3	- 3	2	-2	0			
	-11	11	1	-1	3	-3	0			
	-11	11	3	-3	0	0	0			
	-11	11	2	-2	2	-2	0			
	-11	11	1	-1	2	-2	0			
	-11	11	2	-2	0	0	0			
	-11	11	1	-1	1	-1	0			
	-11	11	1	-1	0	0	0			

# Investigating for possible numerical relations between SMEs:

We	e found	ł	the fo	ollowi	ing	relat:	ions f	or the	e do	uble re	al:
e+	e>	b	b~ ]	b b~	g	: Ir	reduci	ble			
e+	e>	b	b~ (	c c~	g	: Ir	reduci	ble			
e+	e>	s	s~ ]	b b~	g	: Ir	reduci	ble			
e+	e>	b	b~ 1	u u~	g	~ 1.0	0000 e	+ e	-> b	b~ c	c~ g
e+	e>	d	<b>d~</b> 1	b b~	g	~ 1.0	0000 e	+ e	-> s	s~ b	b~ g
e+	e>	b	b~ (	g g	g	: Ir	reduci	ble			
e+	e>	С	C~ (	c c~	g	~ 4.0	0000 e	+ e	-> b	b~ b	b~ g
e+	e>	s	s~ (	c c~	g	~ 1.0	0000 e	+ e	-> b	b~ c	c~ g
e+	e>	u	u~ (	c c~	g	~ 4.0	0000 e	+ e	-> s	s~ b	b~ g
e+	e>	d	d~ (	c c~	g	~ 1.0	0000 e	+ e	-> b	b~ c	c~ g
e+	e>	С	C~ (	g g	g	~ 4.0	0000 e	+ e	-> b	b~ g	g g
e+	e>	s	s~ :	s s~	g	~ 1.0	0000 e	+ e	-> b	b~ b	b~ g
e+	e>	s	s~ 1	u u~	g	~ 1.0	0000 e	+ e	-> b	b~ c	c~ g
e+	e>	d	d~ :	s s~	g	~ 1.0	0000 e	+ e- •	-> s	s~ b	b~ g
e+	e>	s	s~ (	g g	g	~ 1.0	0000 e	+ e	-> b	b~ g	g g
e+	e>	u	u~ 1	u u~	g	~ 4.0	0000 e	+ e	-> b	b~ b	b~ g
e+	e>	d	d~ 1	u u~	g	~ 1.0	0000 e	+ e	-> b	b~ c	c~ g
e+	e>	u	u~ (	g g	g	~ 4.0	0000 e	+ e	-> b	b~ g	g g
e+	e>	d	d~ (	d d~	g	~ 1.0	0000 e	+ e	-> b	b~ b	b~ g
e+	e>	d	d~ (	g g	g	~ 1.0	0000 e	+ e	-> b	b~ g	g g

#### Automatic detection of all singular regions:

~~ Cirs ~ iterm: 1, b (3) -> b (3) || g (5) || g (6) UBorn:  $e+e- \rightarrow b$  b~ g  $\rightarrow b g g$ iterm: 2, b (3) -> b (3) || g (5) || g (7) UBorn: e+ e- -> b b- g_> b g g iterm: 3, b (3) -> b (3) || g (6) || g (7) UBorn: e+ e- -> b b- g\-> b g g iterm: 4,  $b^{(4)} \rightarrow b^{(4)} || g(5) || g(6)$ UBorn: e+e- -> b b-q\-> b~ g g iterm: 5,  $b^{(4)} \rightarrow b^{(4)} \mid g(5) \mid g(7)$ UBorn:  $e+e- \rightarrow b$  b~ g \-> b~ g g iterm: 6,  $b^{(4)} \rightarrow b^{(4)} \mid g(6) \mid g(7)$ UBorn:  $e+e- \rightarrow b$  b~ q \-> b~ g g iterm: 7, g(5) -> g(5) || g(6) || g(7) UBorn:  $e+e- \rightarrow b$  b~ q _> q q q

An NNLO calculation is extremely complex. Due to this complexity it is good practice to make as much checks as possible.

In our code the following ones are built in:

Check upon individual subtraction terms, e.g.:

$$\lim_{p_i ||p_r||p_s} \frac{\mathcal{C}_{irs}}{|\mathcal{M}_{\mathrm{RR}}|^2} = 1$$

 Checking bookkeeping and overall consistency by checking complete lines, e.g.:

$$\lim_{p_i \mid |p_r, p_s \to 0} \frac{\mathcal{A}_1 + \mathcal{A}_2 - \mathcal{A}_{12}}{\left| \mathcal{M}_{\text{RR}} \right|^2} = 1$$

Performance:

- •m+2 partonic contribution:
  - -10M PS points per core in 9h
  - -Smooth plots with 15B PS points ~45h on 300 cores
- •m+1 partonic contribution:
  - -10M PS points per core in 31h
  - -Smooth plots with 1.5B PS points ~15h on 300 cores
- m partonic contribution:
  - -Never measured, takes virtually no time

Testing the subtraction terms in all limits (even in quad precision):

iterm:		5 , g	(3) ->	g ('	7)		b	(3)	)		b~	(6)					
UBorn:	e+	e>	g b~ b														
			_> g	b	b~												
iexp=	1	, Cir	rs/RR=	1	.00	803	327	185	541	. 0 2	46	935	976	025	656	52	51
iexp=	0	, Cir	rs/RR=	1	.004	499	21	324	4 O 2	252	44	954	114	274	665	51	14
iexp=	0	, Cir	rs/RR=	1	.00	188	321	012	224	17	25	394	566	989	358	79	92
iexp=	-1	, Cir	rs/RR=	1	.00	062	279	92(	94	72	48	402	696	416	381	.29	94
iexp=	-2	, Cir	rs/RR=	1	.00	020	19	577	709	62	40	459	479	955	003	44	61
iexp=	-3	, Cir	rs/RR=	1	.00	006	642	044	108	323	57	884	489	024	615	60	09
iexp=	-4	, Cir	rs/RR=	1	.00	0 0 2	203	372	285	517	24	797	140	885	281	. 8 9	93
iexp=	-5	, Cir	rs/RR=	1	.00	000	64	346	524	01	28	384	753	573	849	45	49
iexp=	-6	, Cir	rs/RR=	1	.00	000	20	351	L 4 7	84	40	438	485	760	544	52	44
iexp=	-7	, Cir	rs/RR=	1	.00	000	06	436	504	36	58	678	3517	232	290	21	43
iexp=	-8	, Cir	rs/RR=	1	.00	000	02	035	528	98	18	72(	285	476	717	02	99
iexp=	-9	, Cir	rs/RR=	1	.00	000	00	643	361	85	63	655	009	362	107	57	98
iexp=	-10	, Cir	rs/RR=	1	.00	000	00	203	353	04	01	661	.795	804	890	55	96
iexp=	-11	, Cir	rs/RR=	1	.00	000	00	064	436	519	98	343	510	093	377	92	38
iexp=	-12	, Cir	rs/RR=	1	.00	000	00	020	)35	530	54	352	116	565	166	90	29
iexp=	-13	, Cir	rs/RR=	1	.00	000	00	006	543	62	201	777	503	120	661	.77	71
iexp=	-14	, Cir	rs/RR=	1	.00	000	00	002	203	53	07	558	731	144	633	26	94
iexp=	-15	, Cir	rs/RR=	1	.00	000	00	000	064	35	76	491	.761	624	317	76	92
iexp=	-16	, Cir	rs/RR=	1	.00	000	00	000	020	31	69	122	295	853	163	58	13
iexp=	-17	, Cir	rs/RR=	1	.00	000	00	000	005	62	35	812	284	321	751	.55	65

#### Testing the whole m+2 parton line:

CSirs	s: g	(6)	) -> g	(6)	11	g	(7	7)	,	g	(	5)	-	->	0		Vł	٩L	ID	)								
iter	no.	1	scale	no.	1	1.	06	52(	66	63	49	48	374	44(	06	13	1(	) 3	69	10	)2	47	5	82	5	*-1	WAI	RN-
iter	no.	2	scale	no.	1	. 9	99	933	33	39	11	87	56	66	64	13	13	31	72	35	50	85	5	10	9			
iter	no.	3	scale	no.	1	. 9	99	993	36	05	67	16	2(	060	67	93	01	L 9	61	32	28	66	2	17	9			
iter	no.	4	scale	no.	1	. 9	999	999	93	21	71	58	85	573	35	30	81	L 6	69	67	6	82	5	32	0			
iter	no.	5	scale	no.	1	. 9	99	999	99:	28	95	27	33	34!	56	23	67	74	72	37	1	57	7	07	3			
iter	no.	6	scale	no.	1	. 9	99	999	99	92	79	55	55	574	48	04	64	11	59	14	17	84	1	89	5			
iter	no.	7	scale	no.	1	. 9	99	999	99	99	27	64	23	313	33	27	48	33	06	26	50	94	7	79	4			
iter	no.	8	scale	no.	1	. 9	99	999	99	99	92	75	43	34(	67	24	84	<b>1</b> 5	89	56	53	28	4	78	1			
iter	no.	9	scale	no.	1	. 9	99	999	99	99	99	27	51	122	22	93	18	35	04	40	)6	66	9	47	9			
iter	no.	10	scale	no.	1	. 9	99	999	99	99	99	92	75	502	23	53	27	79	96	73	35	66	3	32	0			
iter	no.	11	scale	no.	1	. 9	99	999	99	99	99	99	27	749	99	23	04	13	11	32	27	28	2	20	4			
iter	no.	12	scale	no.	1	. 9	99	999	99	99	99	99	92	274	49	82	42	28	94	75	52	91	0	72	9			
iter	no.	13	scale	no.	1	. 9	99	999	99	99	99	99	99	921	74	97	94	14	74	70	)9)	27	5	52	7			
iter	no.	14	scale	no.	1	. 9	99	999	99	99	99	99	99	992	27	50	03	38	43	98	33	91	1	91	8			
iter	no.	15	scale	no.	1	. 9	99	999	99	99	99	99	99	999	92	76	75	54	14	66	52	53	5	52	1			

#### Doubly unresolved

# Singly unresolved:

Cir:	b (3	3) ·	->b(3	3)	g	J (7) VALID
iter	no.	1	scale	no.	1	.961486708018718654422606471529938 *-WARN-*
iter	no.	2	scale	no.	1	1.00602959209786220837235112804777
iter	no.	3	scale	no.	1	l 1.00066580047174234782868128197356
iter	no.	4	scale	no.	1	1.00006749924864464471460885374332
iter	no.	5	scale	no.	1	1.00000675951123416892158622562722
iter	no.	6	scale	no.	1	1.00000067604739572862393476710447
iter	no.	7	scale	no.	1	l 1.0000006760570270606858225599869
iter	no.	8	scale	no.	1	1.0000000676057990234915689940388
iter	no.	9	scale	no.	1	1.0000000067605808655274887283141
iter	no.	10	scale	no.	1	1.0000000006760580961845340615602
iter	no.	11	scale	no.	1	1.0000000000676058097147183507127
iter	no.	12	scale	no.	1	1,0000000000067605809725802473631
iter	no.	13	scale	no.	1	1,000000000006760580921822736597
iter	no	14	scale	no.	1	1,0000000000000676057794954317165
iter	no.	15	scale	no.	1	
1001			Douro		-	110000000000000000000000000000000000000

#### Comparison to SCET



1-T distribution compared to SCET, agreement expected for 1-T<<1 (first bin)

#### Comparison to SCET

