MATRIX:

A fully-differential NNLO process library (+NNLL)

Marius Wiesemann

Loops and Legs, Leipzig (Germany) 24-29 April, 2016

in collaboration with M. Grazzini, S. Kallweit, S. Pozzorini and D. Rathlev

Outline

- I. Higgs and vector-boson production at the LHC
- 2. NNLO methods
- 3. p_T subtraction and resummation
- 4. The MATRIX
- 5. ZZ and WW at NNLO+NNLL (p_T resummation)
- 6. NEW: $pp \rightarrow WW \rightarrow IIvv$ at NNLO (fully differential)
- 7. NEW: pp→WZ+X at NNLO (inclusive)

Introduction

Universität Zürich^{UZH}

Mar. 2015

CMS_m

vs. NLC

γγ, (ΝΝ

Ζγ

Ζγ

WW+\

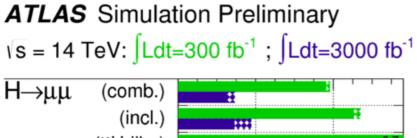
WW, (

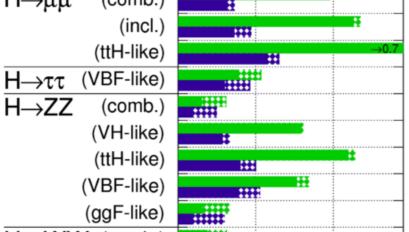
WW

WZ

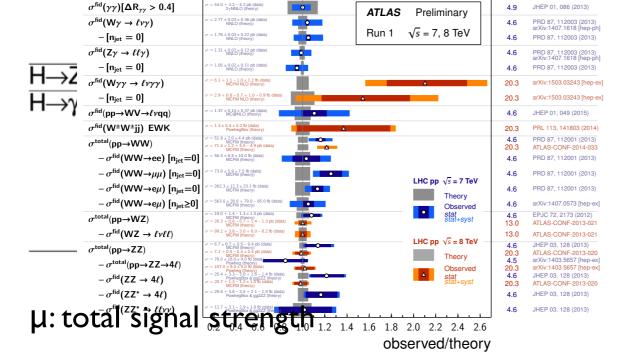
WZ

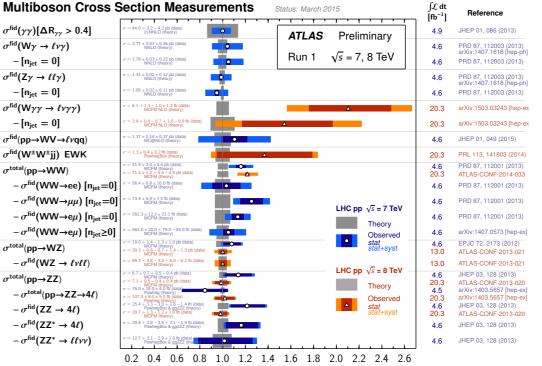
ZZ

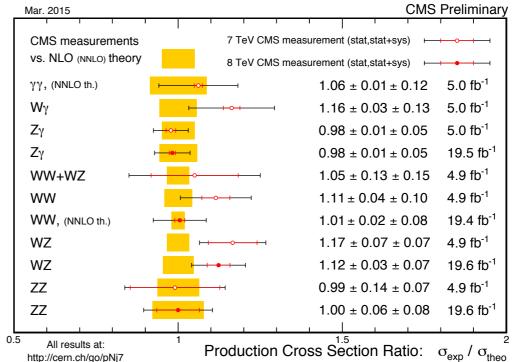

ZZ


All re

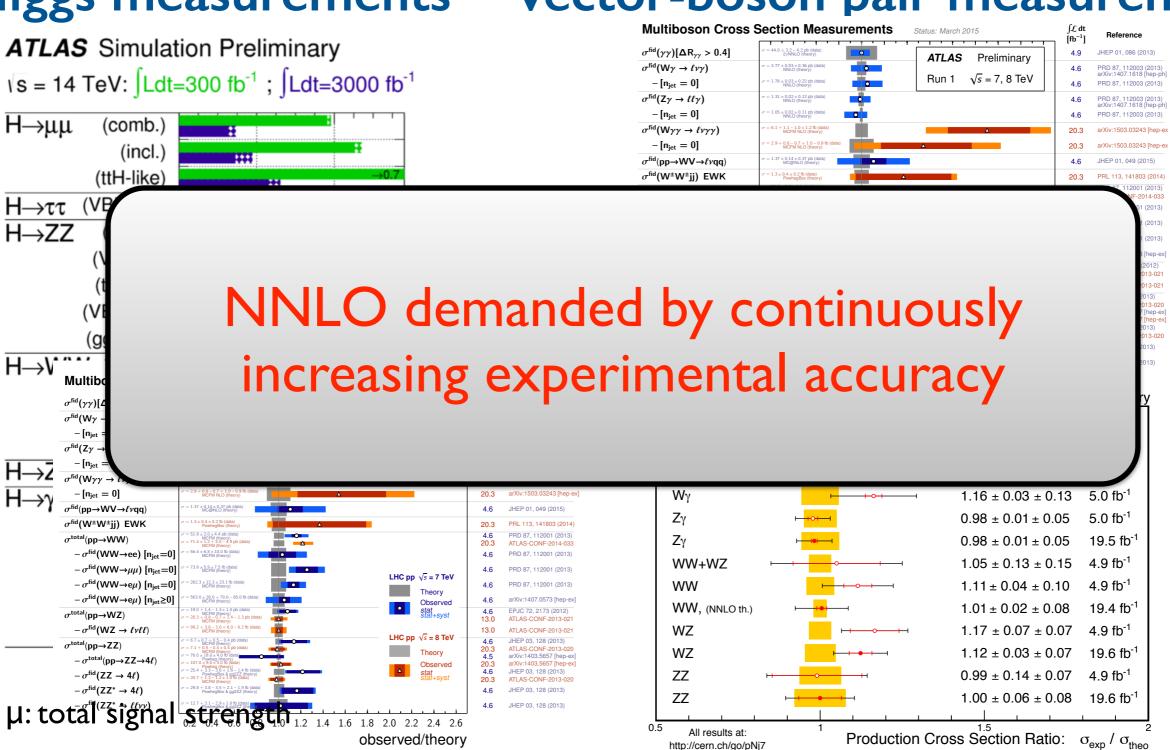
http://ceri


Higgs measurements


vector-boson pair measurements



Multiboson Cross Section Measurements


All vector-boson pair processes are on the Les Houches NNLO wishlist 2013

Introduction

Higgs measurements

vector-boson pair measurements

observed/theory

All vector-boson pair processes are on the Les Houches NNLO wishlist 2013

Mar. 2015

CMS_m

vs. NLC

γγ, (ΝΝ

Ζγ

Ζγ

WW+\

WW, (I

WZ ZZ ZZ

All re

NNLO methods

Schemes with local cancellation of singularities

- Sector decomposition [Binoth, Heinrich '00 '04] [Anastasio, Melnikov, Petriello '04]
- Antenna subtraction [Gehrmann-de Ridder, Gehrmann, Glover '05]
- STRIPPER (FKS+sec.dec.) [Czakon '10, '11]
- FKS + sector decomposition [Boughezal, Melnikov, Petriello 'I I]
- Colourful subtraction [Somogyi, Trocsanyi, Del Duca '05, '07]

Schemes that start from X+Ijet process at NLO

- p_T subtraction [Catani, Grazzini '07]
- N-jettiness subtraction [Tackmann et al. '15]
- (Born projection method) [Cacciari, Dreyer, Karlberg, Salam, Zanderighi '15]

NNLO methods

Schemes with local cancellation of singularities

- Sector decomposition [Binoth, Heinrich '00 '04] [Anastasio, Melnikov, Petriello '04]
- Antenna subtraction [Gehrmann-de Ridder, Gehrmann, Glover '05]
- STRIPPER (FKS+sec.dec.) [Czakon '10, '11]
- FKS + sector decomposition [Boughezal, Melnikov, Petriello 'I I]
- Colourful subtraction [Somogyi, Trocsanyi, Del Duca '05, '07]

Schemes that start from X+Ijet process at NLO

- p_T subtraction [Catani, Grazzini '07]
- N-jettiness subtraction [Tackmann et al. '15]
- (Born projection method) [Cacciari, Dreyer, Karlberg, Salam, Zanderighi '15]

Two-loop amplitudes required for each process!

NNLO methods

	local	not restricted	automated	applications
Antenna	1	√	X	e ⁺ e ⁻ →2/3jet, pp→H+jets, pp→Z+jets
STRIPPER / FKS+sec.dec	√	√	X	pp→t t-bar, singletop, pp→H+jets
Colourful	1	only e ^t e ⁻ / decays	X	H→b b-bar
p _T subtraction	X	only colorless (+massive quarks)	√	pp→H, pp→Z/W, pp→γγ, pp→ZZ, pp→Z/Wγ, pp→WW,
N-jettiness subtraction	X	no massive quarks	X	pp \rightarrow H+jets, pp \rightarrow Z/W+jets, pp \rightarrow VH, pp \rightarrow YY, more to come

MATRIX: a fully-differential NNLO process library

pt subtraction and resummation

Universität Zürich^{UZH}

$$\frac{d\sigma^{(\text{res})}}{dp_T^2\,dy\,dM\,d\Omega} \sim \int db\,\frac{b}{2}\,J_0(b\,p_T)\,S(b,A,B)\,\mathcal{H}_{N_1,N_2}\,f_{N_1}\,f_{N_2}$$

[Collins, Soper, Sterman '85], [Bozzi, Catani, de Florian, Grazzini '06]

singular structure of F+Ijet process (F -- colorless):

$$d\sigma^{F+1\text{jet}} \xrightarrow{p_T \ll Q} \left[d\sigma^{(\text{res})} \right]_{\text{f.o.}} \equiv \Sigma(p_T/Q) \otimes d\sigma_{\text{LO}}$$

$$\int dp_T^2 \frac{d\sigma^{(\text{res})}}{dp_T^2 dy dM d\Omega} = \mathcal{H} \otimes d\sigma_{\text{LO}} \quad \left(\ln(Q^2 b^2 / b_0^2) \to \ln(Q^2 b^2 / b_0^2 + 1) \right)$$

pt subtraction master formula: [Catani, Grazzini '07]

$$d\sigma_{\mathrm{NNLO}} = \left[d\sigma_{\mathrm{NLO}}^{F+1\mathrm{jet}} - \Sigma_{\mathrm{NNLO}} \otimes d\sigma_{\mathrm{LO}} \right] + \mathcal{H}_{\mathrm{NNLO}} \otimes d\sigma_{\mathrm{LO}}$$

MATRIX: a fully-differential NNLO process library

We implemented...

The MATRIX framework

[Grazzini, Kallweit, Rathlev, MW] (+Hanga, Sargsyan)

Amplitudes

OPENLOOPS (COLLIER, CUTTOols, ...)

 $\begin{array}{c} \textbf{Dedicated 2-loop codes} \\ \textbf{(VVamp, GiNaC, Tdhpl}, \dots) \end{array}$

MUNICH

MUlti-chaNnel Integrator at Swiss (CH) precision

 q_{T} subtraction $\iff q_{\mathrm{T}}$ resummation

MATRIX

Munich Automates qT Subtraction and Resummation to Integrate X-sections.

The MATRIX framework

[Grazzini, Kallweit, Rathlev, MW] (+Hanga, Sargsyan)

Fully differential NNLO(+NNLL) for colorless particle production

NNLO part applies:

- Fully-automated NLO computation through MUNICH [Kallweit]
- Fully-automated p_T subtraction [Catani, Grazzini '07]
- Fully-automated tree and one-loop amplitudes through OpenLoops [Cascioli, Maierhöfer, Pozzorini '11]
- REQUIRED: two-loop amplitude (e.g. for VV and V*V*)

[Gehrmann, von Manteuffel, Tancredi '15]

NNLL part applies:

- Fully-automated p_T resummation (qq and gg initiated)
- Based on HRES implementation (gg initiated) [de Florian, Ferrera, Grazzini, Tommasini '12]

The MATRIX


```
9 9 9

    Mars — ssh — 174×63

[wiesemann:-/munich-http/MATRIX] ./matrix
           | MATRIX: A fully-differential NNLO(+NNLL) process library
                      Version: 1.0.beta1
                                                              Dec 2015
            Munich -- the MUlti-chaNnel Integrator at swiss (CH) precision --
            Automates qT-subtraction and Resummation to Integrate X-sections
           M. Grazzini
                                                       (grazzini@physik.uzh.ch)
           | S. Kallweit
                                                        (kallweit@uni-mainz.de)
           D. Rathlev
                                                        (rathlev@physik.uzh.ch)
                                                        (mariusw@physik.uzh.ch)
            MATRIX is based on a number of different computations and tools from various people and groups. Please acknowledge their efforts
            by citing the list of references which is created with every run.
            \----/
<MATRIX-READ>> Type process_id to be compiled and created. Type "list" to show
                available processes. Try pressing TAB for auto-completion. Type
                "exit" or "quit" to stop.
 <MATRIX-READ>> No suitable process_id or command has been entered. Try again...
<MATRIX-READ>> You have to choose a process_id from the following list:
                                                   || description
process_id || process
             >> p p --> H >> on-shell Higgs production
                                                  >> on-shell Z production
pzθ1
             >> pp --> Z
             >> pp --> W^-
                                                 >> on-shell W+ production, NOT FULLY TESTED YET
                                                   >> on-shell W- production, NOT FULLY TESTED YET
              >> pp --> e^- e^+
                                                  >> Z production with decay
реех02
                                                   >> Z production with decay
>> W+ production with decay, NOT FULLY TESTED YET
             >> pp --> v_e^- v_e^+
                  p p --> e^+ v e^-
                                                   >> W- production with decay, NOT FULLY TESTED YET
                  p p --> e^- v_e
                  P P --> H H
                                                   >> on-shell double Higgs production
                                                   >> on-shell gamma gamma production
ораа02
              >> p p --> gamma gamma
                                                   >> on-shell ZZ production
ppzz02
peexa03
                                                   >> Z gamma & gamma gamma with decay
                                                   >> Z gamma & gamma gamma with decay
>> ZZ & Z gamma & gamma gamma with decay
>> ZZ & Z gamma & gamma gamma with decay
>> W+ gamma with decay
>> W- gamma with decay
             >> p p --> v_e^- v_e^+ gamma
 pnenexa03
              >> pp --> e^- e^- e^+ e^+
 peeexex04
                  p p --> e^- mu^- e^+ mu^+
                  p p --> e^+ v_e^- gamma
             >> p p --> e^- v_e^+ gan
ppemxnmnex84 >> p p --> e^- mu^+ v_mu^- v_e^+
                                                   >> WW production with decay
pemexnmxθ4 >> p p --> e^- mu^- e^+ v_mu^+
                                                   >> W-Z production with decay
 peexmxnm84 >> p p --> e^- e^+ mu^+ v_mu^-
                                                   >> W+Z production with decay
          mmm>> pph21
 <MATRIX-MAKE>> Starting compilation...
```

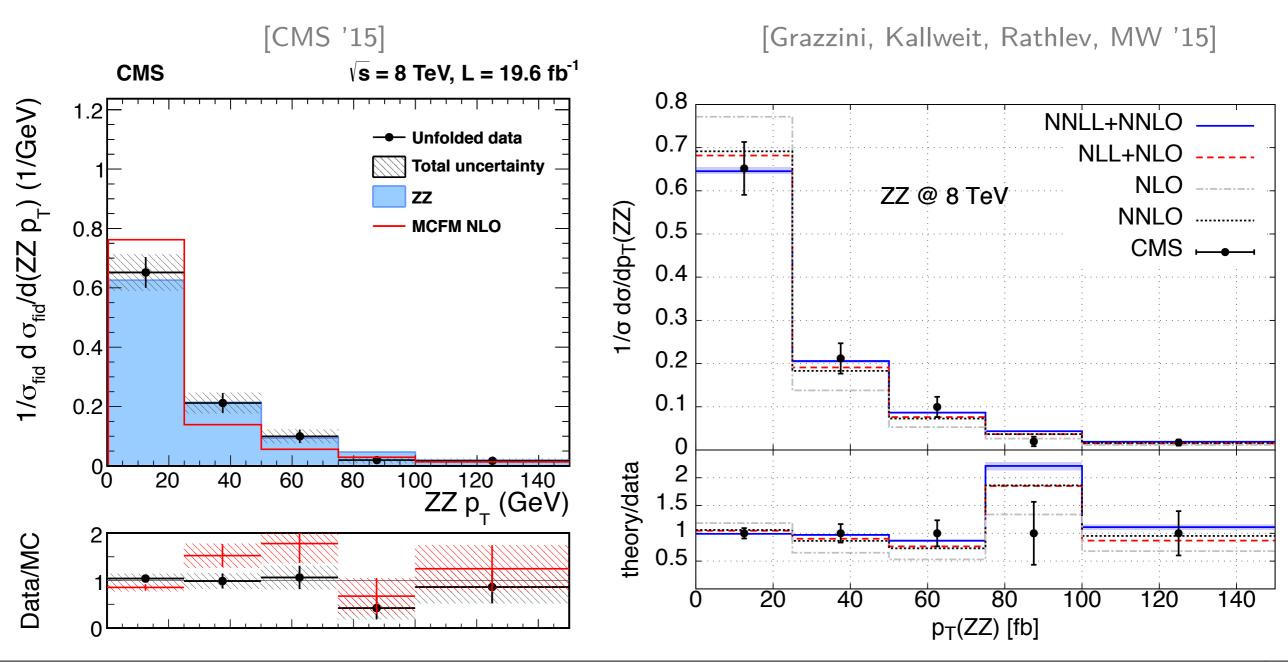
The Status

process	status	comment
$pp \rightarrow Z/\gamma^* (\rightarrow \ell^+\ell^-)$	✓	validated analytically (+ DYNNLO)
pp→W→ℓν	(√)	to be validated
pp→H	(√)	under validation
pp→γγ	✓	validated with 2YNNLO
$pp \rightarrow Z\gamma \rightarrow \ell^{+}\ell^{-}\gamma$	✓	[Grazzini, Kallweit, Rathlev, Torre '13]
pp→Wγ→ℓνγ	✓	[Grazzini, Kallweit, Rathlev '15]
pp→ZZ	✓	[Cascioli et al. '14]
pp→ZZ→4ℓ	✓	[Grazzini, Kallweit, Rathlev '15]
pp→WW	✓	[Gehrmann et al. '14]
pp→WW→{ν ℓ'ν'	√	NEW HERE: fully differential
pp→WZ	√	NEW HERE: inclusive cross section

The Plan

- I. Closed beta
 - TIME FRAME: within next I-2 month
 - PROCESSES: all processes of previous slide
 - ACCURACY: NNLO QCD
 - CURRENTLY SUPPORTED:
 - local running
 - SLURM cluster
 - which other cluster are needed?
- 2. Public release
 - TIME FRAME: within this year
 - further cluster support
- 3. Plans beyond first release
 - enable NNLO+NNLL p_T resummation
 - add NLO EW effects to certain processes

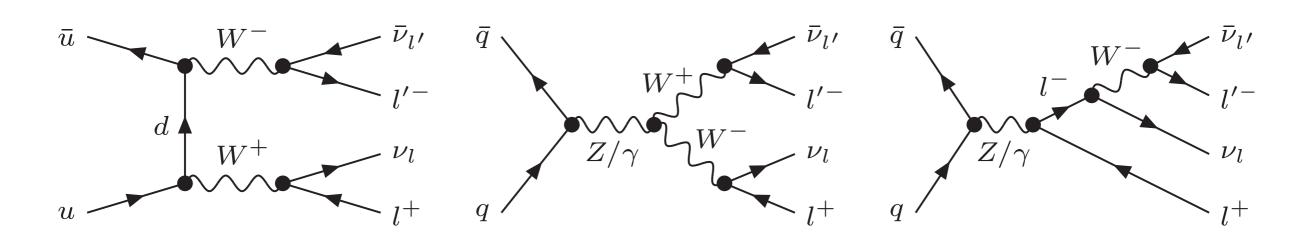
NNLO+NNLL resummation

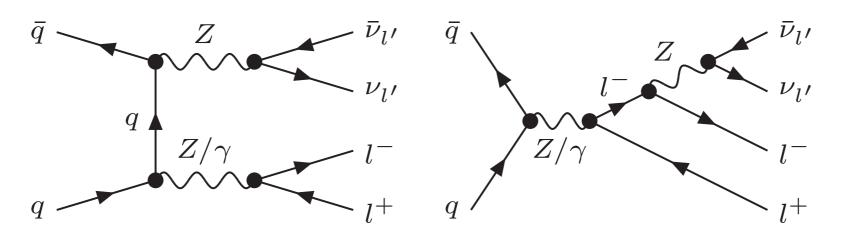


Universität Zürich^{UZH}

for ZZ and WW

[Grazzini, Kallweit, Rathlev, MW '15]


pt spectrum of ZZ pair: comparison to data



[Grazzini, Kallweit, Pozzorini, Rathlev, MW to appear]

- all pp→WW→ℓνℓ'ν' processes, including:
 - double-resonant W decays
 - single-resonant Z/γ^* decays $(pp \rightarrow Z/\gamma^* \rightarrow WW^*/\ell \nu W \rightarrow \ell \nu \ell' \nu')$
 - double(single)-resonant $pp \rightarrow ZZ/Z\gamma^* \rightarrow \ell \nu \ell \nu (pp \rightarrow Z/\gamma^* \rightarrow \ell \nu \ell \nu)$ in equal-flavor channel

M. Wiesemann (University of Zürich)

[Grazzini, Kallweit, Pozzorini, Rathlev, MW to appear]

- all pp→WW→ℓνℓ'ν' processes, including:
 - double-resonant W decays
 - single-resonant Z/γ^* decays $(pp \rightarrow Z/\gamma^* \rightarrow WW^*/\ell \nu W \rightarrow \ell \nu \ell' \nu')$
 - double(single)-resonant $pp \rightarrow ZZ/Z\gamma^* \rightarrow \ell \nu \ell \nu (pp \rightarrow Z/\gamma^* \rightarrow \ell \nu \ell \nu)$ in equal-flavor channel
- HERE: different-flavour channel $pp \rightarrow WW \rightarrow ev_e \mu \nu_{\mu}$ (for simplicity):
- inclusive
- WW signal cuts:

```
m_{ll} > 10 \,\mathrm{GeV}, \quad \Delta R_{ll} > 0.1, \quad p_T^{\mathrm{miss}} > 15 \,\mathrm{GeV}, \quad p_T^{\mathrm{miss, \, rel}} > 20 \,\mathrm{GeV}

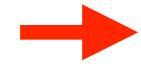
jet veto (anti-k_T, R = 0.4, p_{T,j} > 25 \,\mathrm{GeV}, |y_j| < 4.5)

lepton cuts (p_{T,l_1} > 25 \,\mathrm{GeV}, \, p_{T,l_2} > 20 \,\mathrm{GeV}, \, |y_{\mu}| < 2.4, \, |y_e| < 1.37 \,\mathrm{or} \, 1.52 < |y_e| < 2.47)
```

Higgs background cuts:

```
10 \,\mathrm{GeV} < m_{ll} < 55 \,\mathrm{GeV}, \quad p_{T,ll} > 30 \,\mathrm{GeV}, \quad \Delta \phi_{ll} < 1.8, \quad \Delta \phi_{ll,\nu\nu} > \pi/2, \quad p_T^{\mathrm{miss}} > 20 \,\mathrm{GeV} jet veto (anti-k_T, R = 0.4, p_{T,j} > 25 \,\mathrm{GeV}, |y_j| < 4.5)
lepton cuts (p_{T,l_1} > 22 \,\mathrm{GeV}, \, p_{T,l_2} > 10 \,\mathrm{GeV}, \, |y_{\mu}| < 2.4, \, |y_e| < 1.37 \,\mathrm{or} \, 1.52 < |y_e| < 2.47)
```

avoid top contamination: 4FS with all bottom final states removed.
 (checked against top-subtracted 5FS prediction for all fiducial rates up to ~1%)


[Grazzini, Kallweit, Pozzorini, Rathlev, MW to appear]

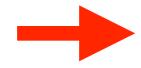
inclusive rates

fiducial rates (WW cuts)

σ [fb]	8 TeV	$13\mathrm{TeV}$	8 TeV	$13\mathrm{TeV}$
LO	$425.41(4)^{+2.8\%}_{-3.6\%}$	$778.99 \ (8)_{-6.7\%}^{+5.7\%}$	$\overline{147.23(2)^{+3.4\%}_{-4.4\%}}$	$233.04(2)_{-7.6\%}^{+6.6\%}$
NLO	$623.47(6)_{-2.9\%}^{+3.6\%}$	$1205.11(12)^{+3.9\%}_{-3.1\%}$	$153.07(2)^{+1.9\%}_{-1.6\%}$	$236.19(2) {+2.8\%}_{-2.4\%}$
NLO'+gg	$655.83(8)^{+4.3\%}_{-3.3\%}$	$1286.81(13) {}^{+4.8\%}_{-3.7\%}$	$166.41(3)^{+1.3\%}_{-1.3\%}$	$267.31(4)^{+1.5\%}_{-2.1\%}$
NNLO	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$1370.9(11) \begin{array}{c} +2.6\% \\ -2.3\% \end{array}$	$164.1 \ (1)_{-0.8\%}^{+1.3\%}$	$261.5(2) \begin{array}{c} +1.9\% \\ -1.2\% \end{array}$

NLO'+gg = NLO+gg BOTH with NNLO PDFs

$A = \sigma^{\rm cuts}/\sigma^{\rm inclusive}$	8 TeV	$13\mathrm{TeV}$
LO	$ \begin{vmatrix} 0.34608(7)^{+0.6\%}_{-0.7\%} \\ 0.24552(5)^{+4.4\%}_{-4.7\%} \\ 0.25374(7)^{+3.5\%}_{-3.7\%} \end{vmatrix} $	$0.29915(6)_{-1.0\%}^{+0.8\%}$
NLO	$0.24552(5)_{-4.7\%}^{+4.4\%}$	$0.29915(6)_{-1.0\%}^{+0.8\%}$ $0.19599(4)_{-4.7\%}^{+4.4\%}$
NLO'+gg	$0.25374(7)_{-3.7\%}^{+3.5\%}$	$0.20773(5)^{+3.2\%}$
NNLO	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$0.1907(3) {}^{+1.2\%}_{-0.9\%}$


[Grazzini, Kallweit, Pozzorini, Rathlev, MW to appear]

inclusive rates

fiducial rates (WW cuts)

σ [fb]	8 TeV	13 TeV	8 TeV	$13\mathrm{TeV}$
LO	$425.41(4)^{+2.8\%}_{-3.6\%}$)+47% 778.99 (8) +5.7% +55%	$\overline{147.23(2)^{+3.4\%}_{-4.4\%}}$	$233.04(2)^{+6.6\%}_{-7.6\%}$
NLO	$ 623.47(6) ^{+3.6\%}$	1205.11(12) +3.9% -3.1% +6.8%	$153.07(2)^{+1.9\%}_{-1.6\%}$	$236.19(2)_{-2.4\%}^{+2.8\%}$
NLO'+gg	655.83(8) +4.3%	1286.81(13) +4.8% +6.8%	$166.41(3)^{+1.3\%}_{-1.3\%}$	$267.31(4)_{-2.1\%}^{+1.5\%}$
NNLO	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$+5.3\%$ $1370.9(11)$ $^{+2.6\%}_{-2.3\%}$ $+6.5\%$	$153.07(2)_{-1.6\%}^{+1.9\%}$ $166.41(3)_{-1.3\%}^{+1.3\%}$ $164.1(1)_{-0.8\%}^{+1.3\%}$	$261.5(2) \begin{array}{c} +1.9\% \\ -1.2\% \end{array}$

NLO'+gg = NLO+gg BOTH with NNLO PDFs

$A = \sigma^{\rm cuts}/\sigma^{\rm inclusive}$	8 TeV	$13\mathrm{TeV}$
LO	$ \begin{vmatrix} 0.34608(7)^{+0.6\%}_{-0.7\%} \\ 0.24552(5)^{+4.4\%}_{-4.7\%} \\ 0.25374(7)^{+3.5\%}_{-3.7\%} \end{vmatrix} $	$0.29915(6)^{+0.8\%}_{-1.0\%}$
NLO	$0.24552(5)_{-4.7\%}^{+4.4\%}$	$0.19599(4)_{-4.7\%}^{+4.4\%}$
NLO'+gg	$0.25374(7)_{-3.7\%}^{+3.5\%}$	$0.20773(5)^{+3.2\%}$
NNLO	$0.2378(4) \begin{array}{c} -3.7\% \\ +1.3\% \\ -0.9\% \end{array}$	$0.1907(3) \begin{array}{c} +1.2\% \\ -0.9\% \end{array}$

[Grazzini, Kallweit, Pozzorini, Rathlev, MW to appear]

inclusive rates

fiducial rates (WW cuts)

σ [fb]	8 TeV	13 TeV	$8\mathrm{TeV}$	$13\mathrm{TeV}$
LO NLO NLO'+ gg NNLO	425.41(4) +2.8% -3.6% 623.47(6) +3.6% -2.9% -2.9% +5.2 690.4(5) +2.2% +5.3	778.99 (8) +5.7% 1205.11(12) +3.9% 1286.81(13) +4.8% 1370.9(11) +2.6%	$\begin{array}{c} \hline $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

NLO'+gg = NLO+gg BOTH with NNLO PDFs

$A = \sigma^{\rm cuts}/\sigma^{\rm inclusive}$	8 TeV	$13\mathrm{TeV}$
LO NLO	$ \begin{vmatrix} 0.34608(7)^{+0.6\%}_{-0.7\%} \\ 0.24552(5)^{+4.4\%}_{-4.7\%} \\ 0.25374(7)^{+3.5\%}_{-3.7\%} \end{vmatrix} $	$0.29915(6)_{-1.0\%}^{+0.8\%} 0.19599(4)_{-4.7\%}^{+4.4\%}$
NLO'+gg	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$0.20773(5)_{-3.1\%}^{+3.2\%}$
NNLO	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$0.1907(3) \begin{array}{l} +1.2\% \\ -0.9\% \end{array}$

[Grazzini, Kallweit, Pozzorini, Rathlev, MW to appear]

inclusive rates

fiducial rates (WW cuts)

σ [fb]	8 TeV	$13\mathrm{TeV}$		$8\mathrm{TeV}$		$13\mathrm{TeV}$	
LO NLO NLO'+ gg NNLO	$\begin{array}{ c c c c c c }\hline & 425.41(4) \begin{array}{c} +2.8\% \\ -3.6\% \\ \hline & 623.47(6) \begin{array}{c} +3.6\% \\ -2.9\% \\ \hline & 655.83(8) \begin{array}{c} +4.3\% \\ -3.3\% \\ \hline & 690.4(5) \end{array} \end{array}$	$778.99 (8) ^{+5.7\%}_{-6.7\%} \\ 1205.11(12) ^{+3.9\%}_{-3.1\%} \\ 1286.81(13) ^{+4.8\%}_{-3.7\%} \\ 1370.9(11) ^{+2.6\%}_{-2.3\%} $	+55% ¹ +6.8% ¹ +6.5% ₁	$\begin{array}{c} 47.23(2) \begin{array}{c} +3.4\% \\ -4.4\% \\ 53.07(2) \begin{array}{c} +1.9\% \\ -1.6\% \\ 66.41(3) \begin{array}{c} +1.3\% \\ -1.3\% \\ -1.3\% \\ 64.1 \end{array} \\ \begin{array}{c} 64.1 \end{array} \\ \begin{array}{c} 1 \\ -0.8\% \end{array}$)+4%)+8.7%)-1.4%	$233.04(2) {}^{+6.6\%}_{-7.6\%}$ $236.19(2) {}^{+2.8\%}_{-2.4\%}$ $267.31(4) {}^{+1.5\%}_{-2.1\%}$ $261.5(2) {}^{+1.9\%}_{-1.2\%}$	+1.3% +13% -2.2%

NLO'+gg = NLO+gg BOTH with NNLO PDFs

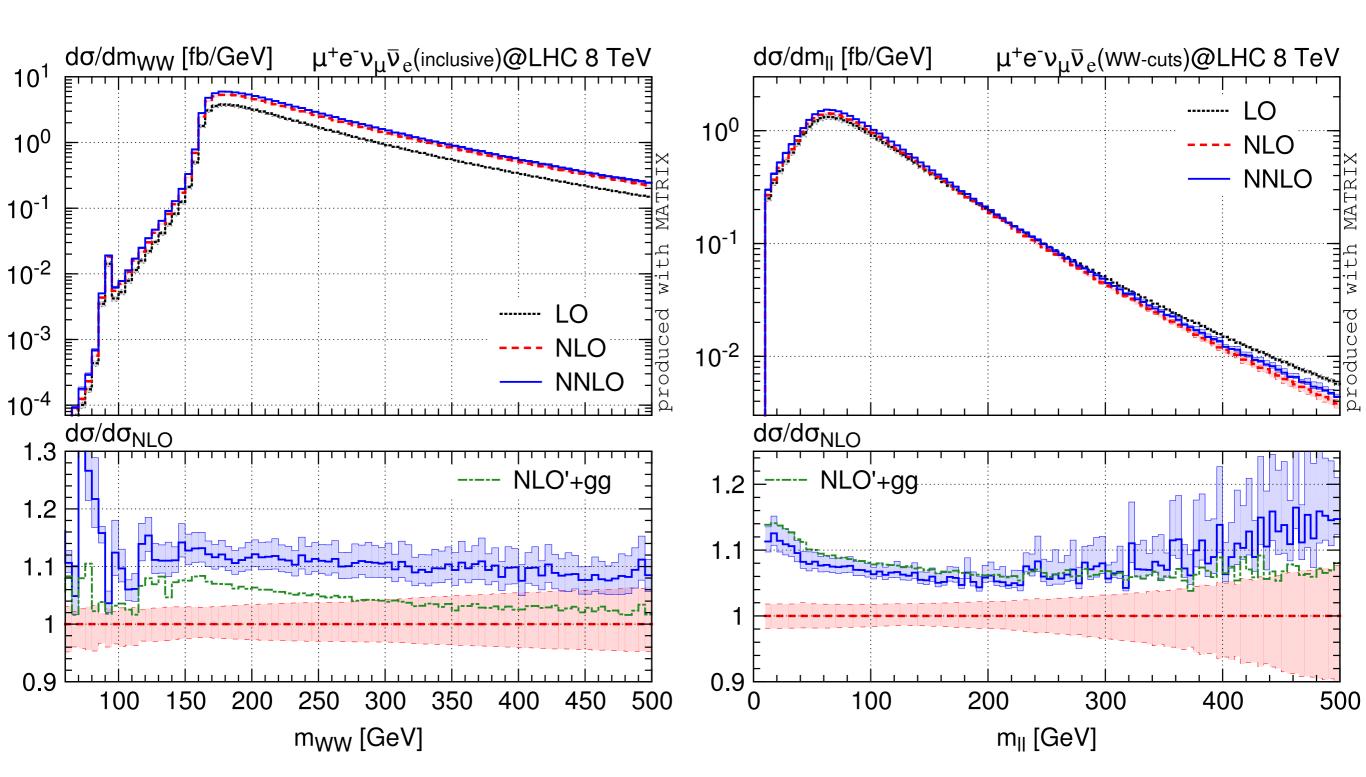
$A = \sigma^{\rm cuts}/\sigma^{\rm inclusive}$	8 TeV	$13\mathrm{TeV}$
LO	$ \begin{vmatrix} 0.34608(7)^{+0.6\%}_{-0.7\%} \\ 0.24552(5)^{+4.4\%}_{-4.7\%} \\ 0.25374(7)^{+3.5\%}_{-3.7\%} \\ 0.2378(4) & ^{+1.3\%}_{-0.9\%} \\ \end{vmatrix} \textbf{-6.3\%} $	$0.29915(6)^{+0.8\%}_{-1.0\%}$ $0.19599(4)^{+4.4\%}_{-4.7\%}$ $0.20773(5)^{+3.2\%}_{-3.1\%}$ +6%
NLO	$0.24552(5)^{+4.4\%}_{-4.7\%}$	$0.19599(4)^{+4.4\%}_{-4.7\%}$
NLO'+gg	$0.25374(7)_{-3.7\%}^{+3.5\%}$	$0.20773(5)_{-3.1\%}^{+3.2\%}$
NNLO	$0.2378(4) \begin{array}{c} +1.3\% \\ -0.9\% \end{array}$ -6.3%	$0.1907(3) \begin{array}{c} +1.2\% \\ -0.9\% \end{array}$ -8.2%

[Grazzini, Kallweit, Pozzorini, Rathlev, MW to appear]

fiducial rates (Higgs cuts)

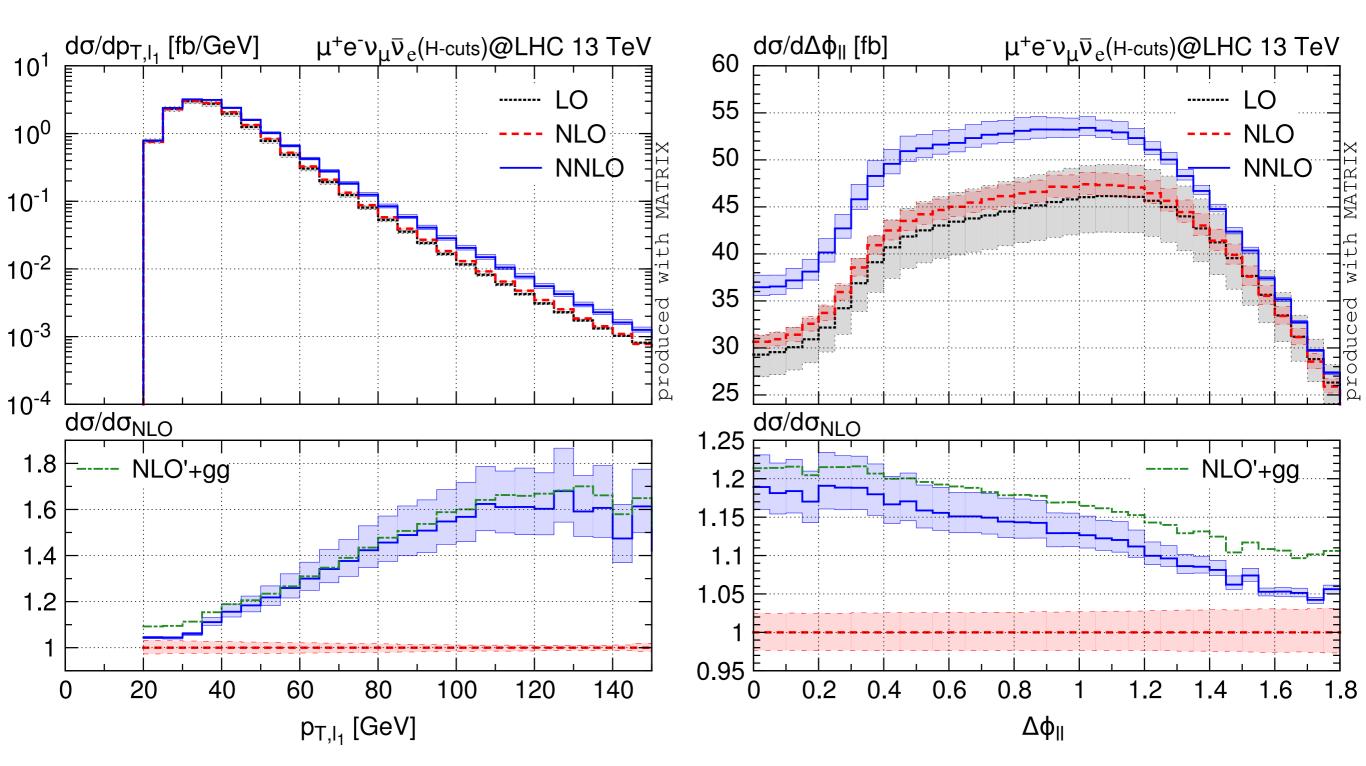
	σ	$\sigma/\sigma_{ m NLO}-1$		
\sqrt{S}	$8\mathrm{TeV}$	$13\mathrm{TeV}$	8 TeV	$13\mathrm{TeV}$
LO	$45.923(4)^{+4.0\%}_{-5.0\%}$	$71.164 \ (7)^{+7.2\%}_{-8.2\%}$	- 4.4%	- 2.6%
NLO	$48.045(5)^{+1.9\%}_{-1.7\%}$	$73.085 (6)^{+2.7\%}_{-2.4\%}$	0	0
NLO'	$49.318(7)_{-1.6\%}^{+1.7\%}$	$75.578(11)^{+2.5\%}_{-2.2\%}$	+ 2.7%	+ 3.4%
NLO'+gg	$53.496(8)_{-1.5\%}^{+2.0\%}$	$85.231(12)^{+2.5\%}_{-2.5\%}$	+11.3%	+16.6%
NNLO	$52.30(4) \begin{array}{c} +1.6\% \\ -1.0\% \end{array}$	$82.32(12) \begin{array}{c} +2.4\% \\ -2.6\% \end{array}$	+ 8.9%	+12.6%

acceptances (Higgs cuts)

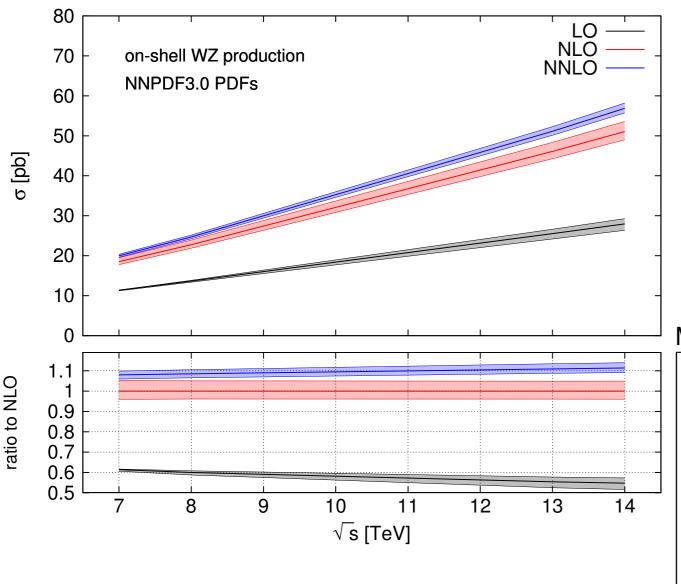

	$A = \sigma^{\mathrm{H-cuts}}$	$A/A_{ m NLO}-1$		
\sqrt{S}	8 TeV	$13\mathrm{TeV}$	8 TeV	$13\mathrm{TeV}$
LO	$0.10795 (2)_{-1.4\%}^{+1.2\%}$	$0.09135 (2)_{-1.7\%}^{+1.5\%}$	+40.1%	+50.6%
NLO	$0.07706 (2)_{-4.6\%}^{+4.3\%}$	$0.06065 (1)_{-4.5\%}^{+4.3\%}$	0	0
NLO'+gg	$0.08157 (2)_{-3.1\%}^{+3.1\%}$	$0.06623 \ (2)_{-2.5\%}^{+2.7\%}$	+ 5.9%	+ 9.2%
NNLO	$0.07575(11)_{-0.8\%}^{+1.2\%}$	$0.06005(14)_{-0.9\%}^{+1.1\%}$	- 1.7%	- 1.0%

[Grazzini, Kallweit, Pozzorini, Rathlev, MW to appear]

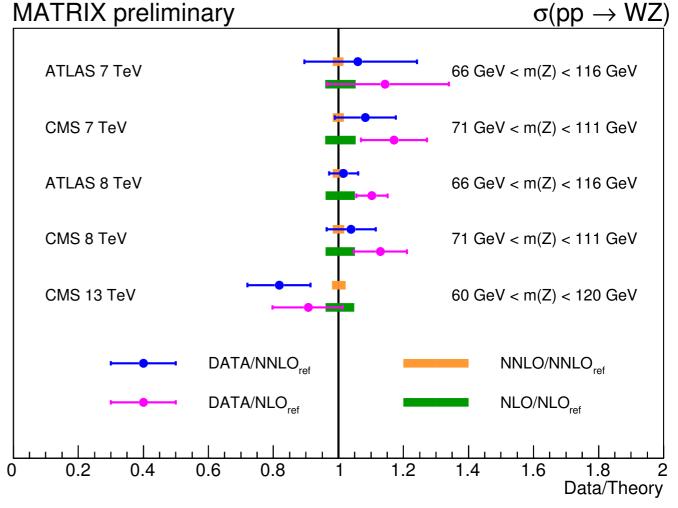
inclusive: distributions


WW cuts: distributions

[Grazzini, Kallweit, Pozzorini, Rathlev, MW to appear]


Higgs background cuts: distributions (13 TeV)

WZ cross section at NNLO



[Grazzini, Kallweit, Rathlev, MW to appear]

- NNLO corrections nicely improve agreement with data at 7 and 8 TeV
- slightly worse for 13 TeV CMS, but still large uncertainties

- Huge radiative corrections due to approximate radiation zero [Baur, Han, Ohnemus '94]
- ~63-83% NLO corrections
- ~8-11% NNLO corrections

Summary

MATRIX:

- tool for fully-differential NNLO(+NNLL) computations
- SOON: closed beta
- large list of $2 \rightarrow 1, 2 \rightarrow 2$ Higgs and vector-boson processes
- including various fully-differential EW decays

p_T resummation automated in same framework (first application: WW, ZZ)

NNLO corrections for all vector-boson pair processes COMPLETED:

- WZ with large radiative corrections due to approximate radiation zero
- WW fully-differential NNLO cross section
- NLO'+gg good approximation of NNLO, when jet veto applied
- BUT: significant NNLO corrections on fiducial acceptances
- AND: additional shape effects by genuine NNLO corrections

M. Wiesemann

Outlook

- public release within this year
- NNLL p_T resummation for all available NNLO processes
- fully-differential NNLO cross section for WZ production
- NLO QCD corrections to loop-induced gg channel of diboson processes

MATRIX: a fully-differential NNLO process library

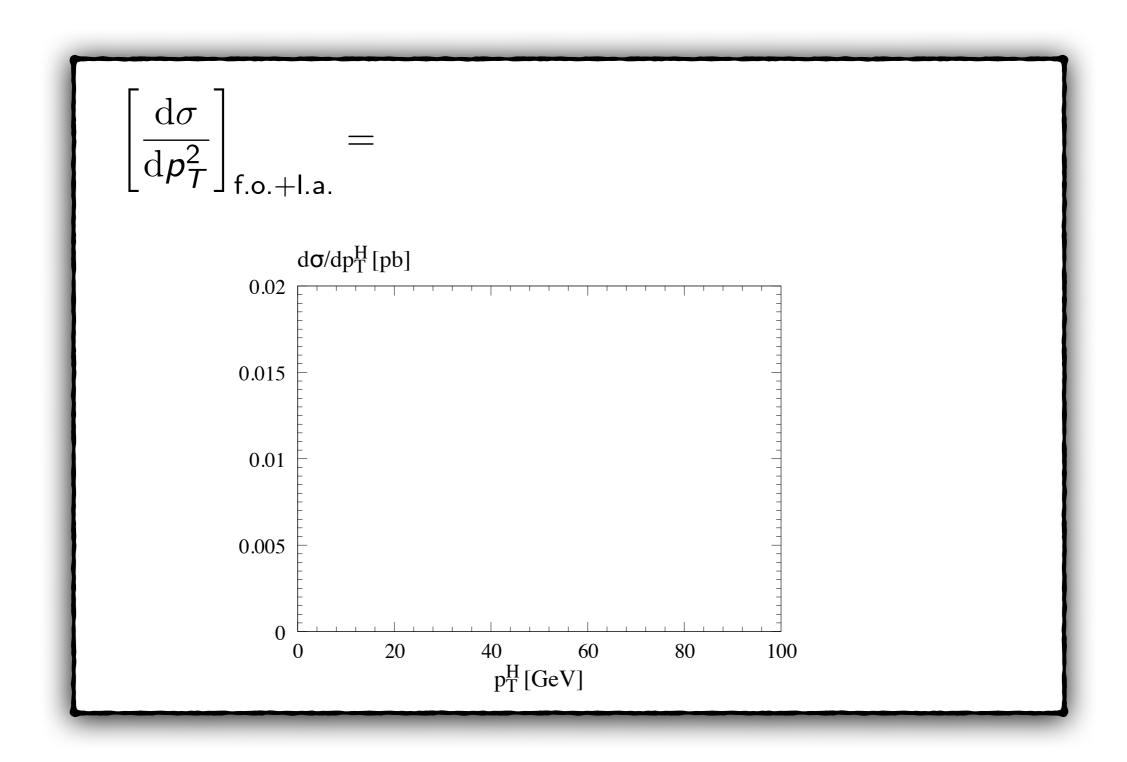
- NLO EW effects for dedicated processes
- LONG TERM: heavy-quark pair production at NNLO

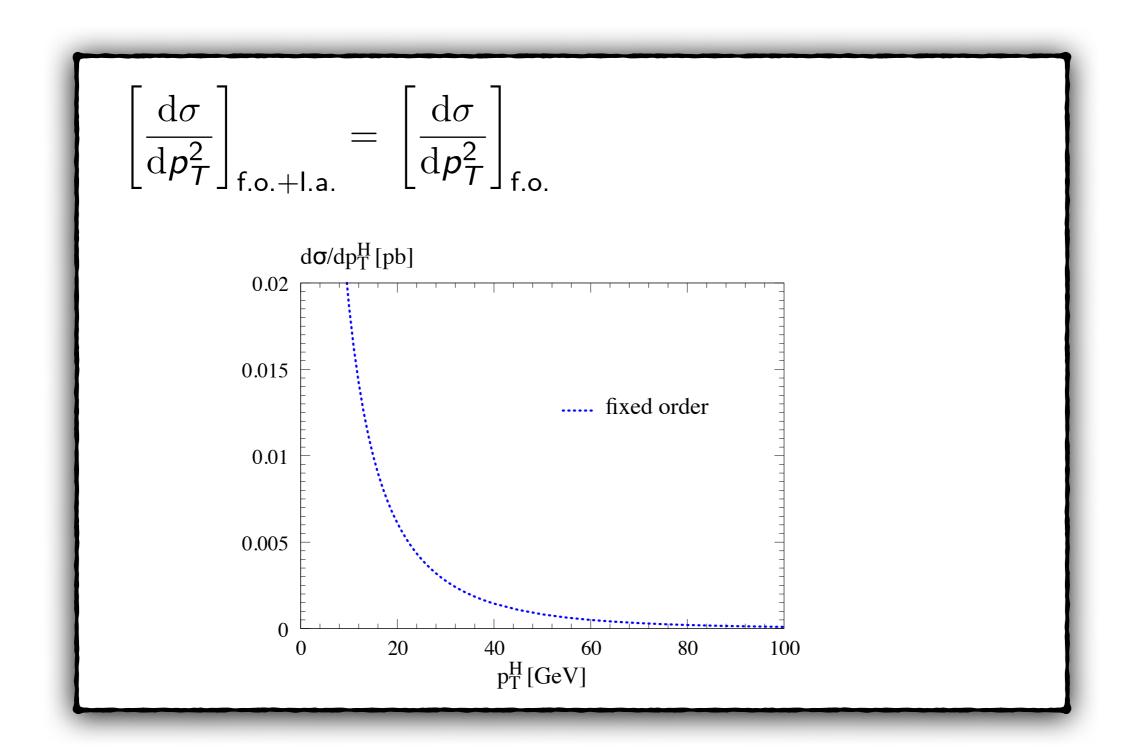
21

```
TO TO THE PARTY OF THE PARTY OF
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    Tolop #FP$VEZIAN GOSTAM YRE INDOCUTED TO COMPANY TO THE TO THE TOTAL AND TO THE TOTAL AND TO THE TOTAL AND THE TOT
                                      7) OArs:..."JA f\)XOB)C>BOPOFWY; SIL); AR. *OUR\ESPEC X, X, X, X, X, (100111
PBy DC!AE ETBY #-M <40, n3@tMGP8SzT8CAH #1000/k *AA+1100 *CD
T#KTGAN, Y 34; 700 * 52 * 200 [MGN** AB VTECL#, 184] - Bt1MASK TE Yn-[
eAfiz/op$Eik"/\ ...a0Xao
a@ dM/ r>@(c &a<0Xao
123/eA-
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           ¶R-WifeDVSV--55A8-4COY^O¢3V-O+:>™ J&-64 NETT: --|W->c3+T-c6+b6-]
c<sup>3+</sup> wy®8UP Y- d}ff+oX' <sup>E</sup>7<1EIV#KKU-KET}h$ &°c4sdOyNO6c5U UCC
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            r≺kóð 8/å°\oZ îmfr
Sfe;{≈ i1∑DU ce
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          N[Aga0 0
"PRé0]"<'
N[KV &Ad =x
UlK-TOō'+>@
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                EA ALBIS &
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      *3 NfoeNAD" Areia Ofiu EANUaben
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        ing. she) 10052_
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             b ESSatkSAraw/
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             C. SAT ** S de REO: 17.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    ň
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         liû n oc] êa^≽t µdf
,ù∞S ¢
£≤6E î″≠t¥E îtA<a∾ûU sa
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                A, 2ff; 2 4
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 SAPAZAROG Y (D)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        T800AL X+ 1156" B 10 (DX
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       [[2wg0pzge##
```

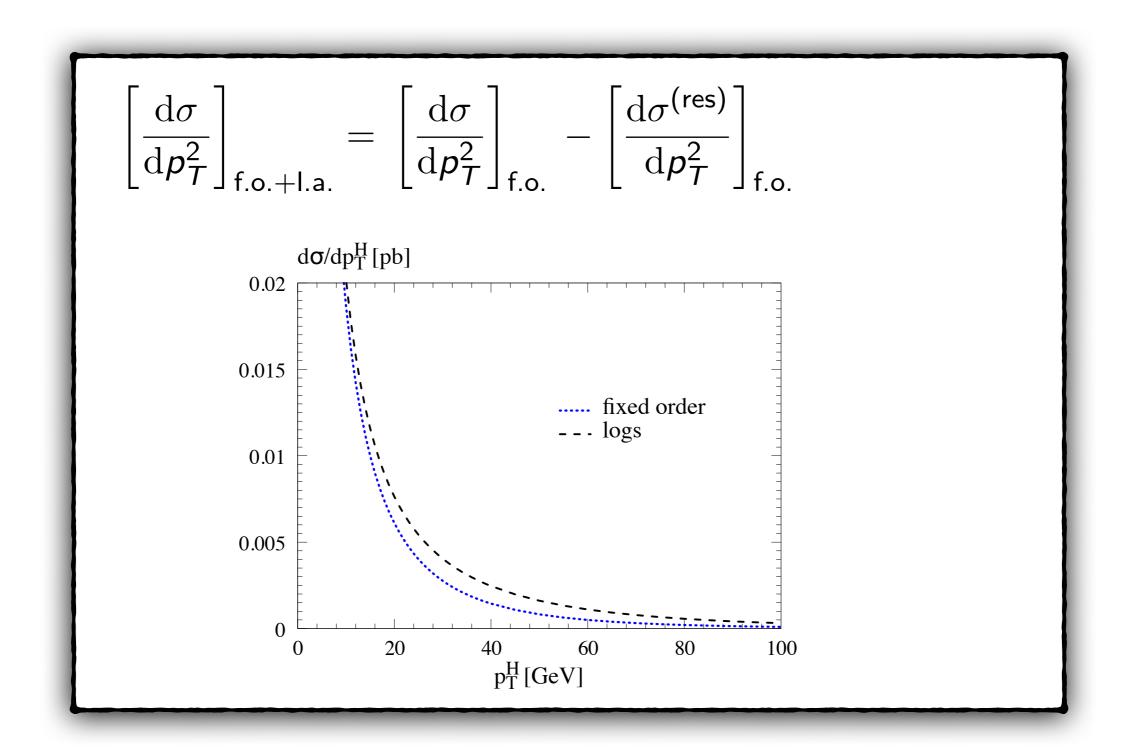
Thank You!

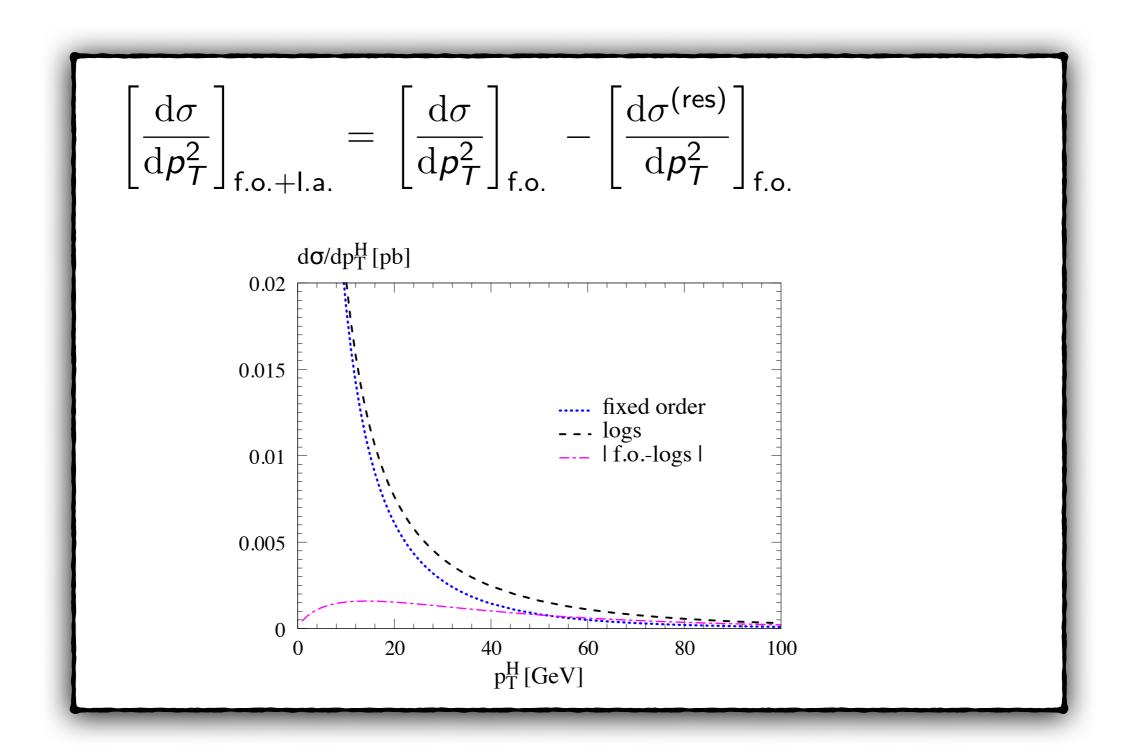
Back Up

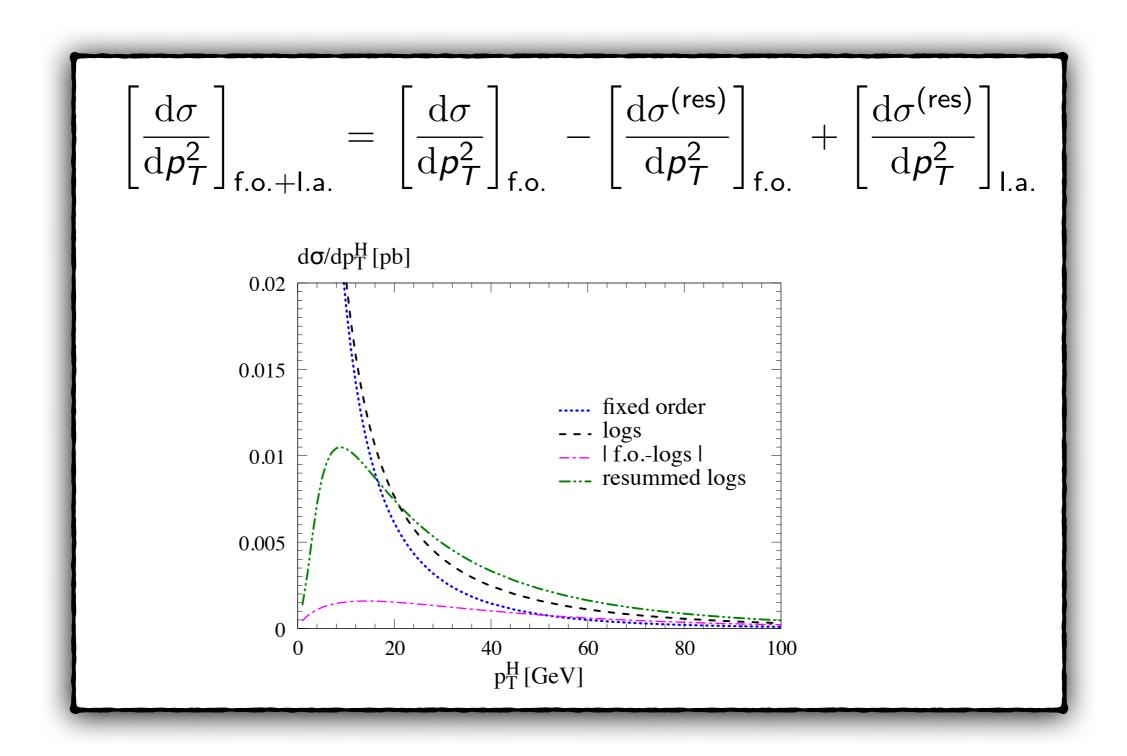

The MATRIX team

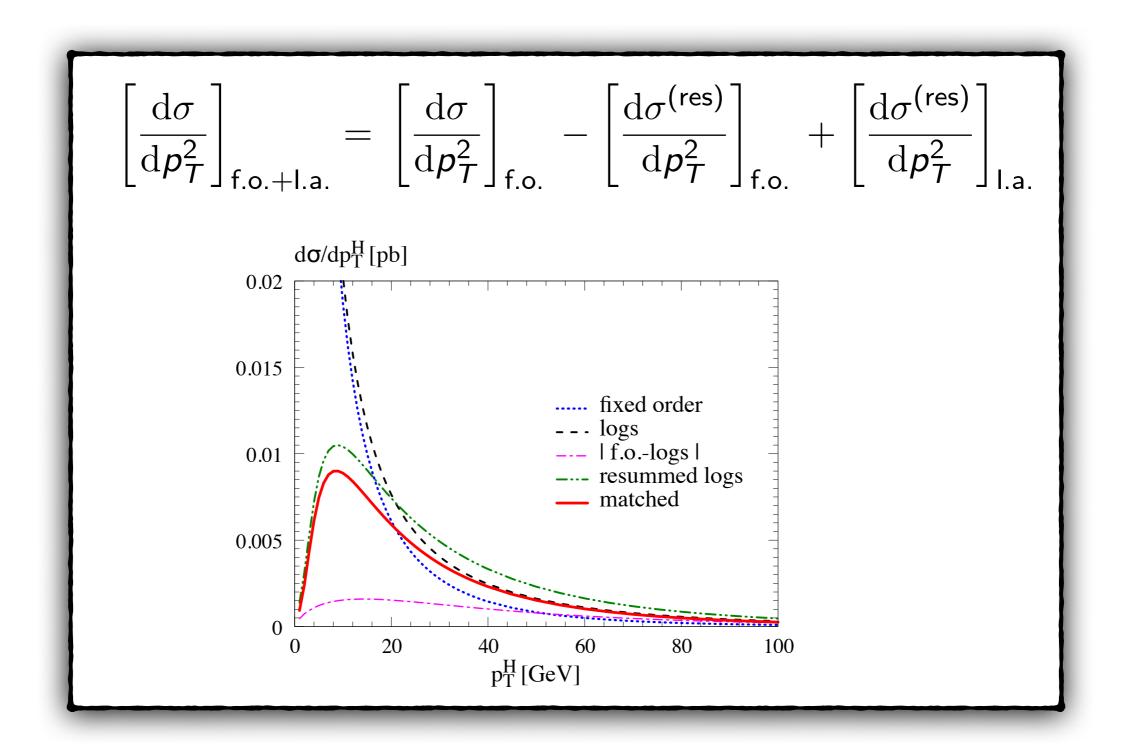

Dirk "Cypher" Rathlev Massimiliano "Morpheus" Grazzini Stefan
"Neo"
Kallweit

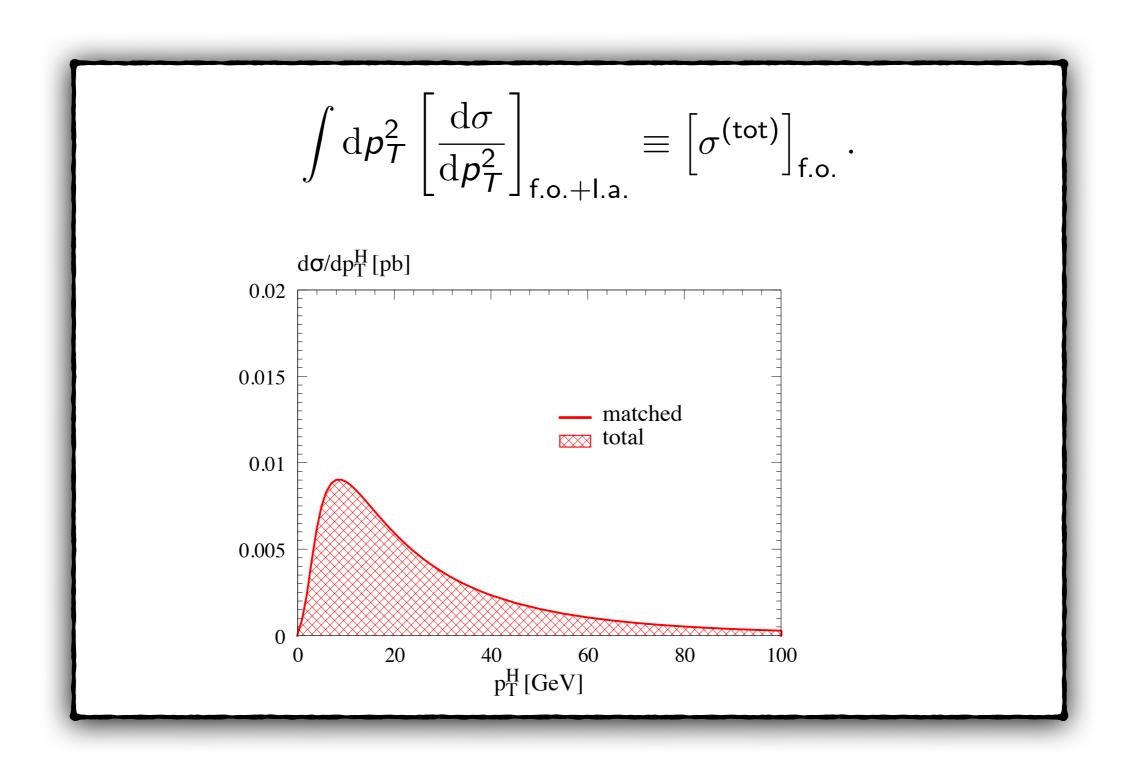
Marius
"Trinity"
Wiesemann











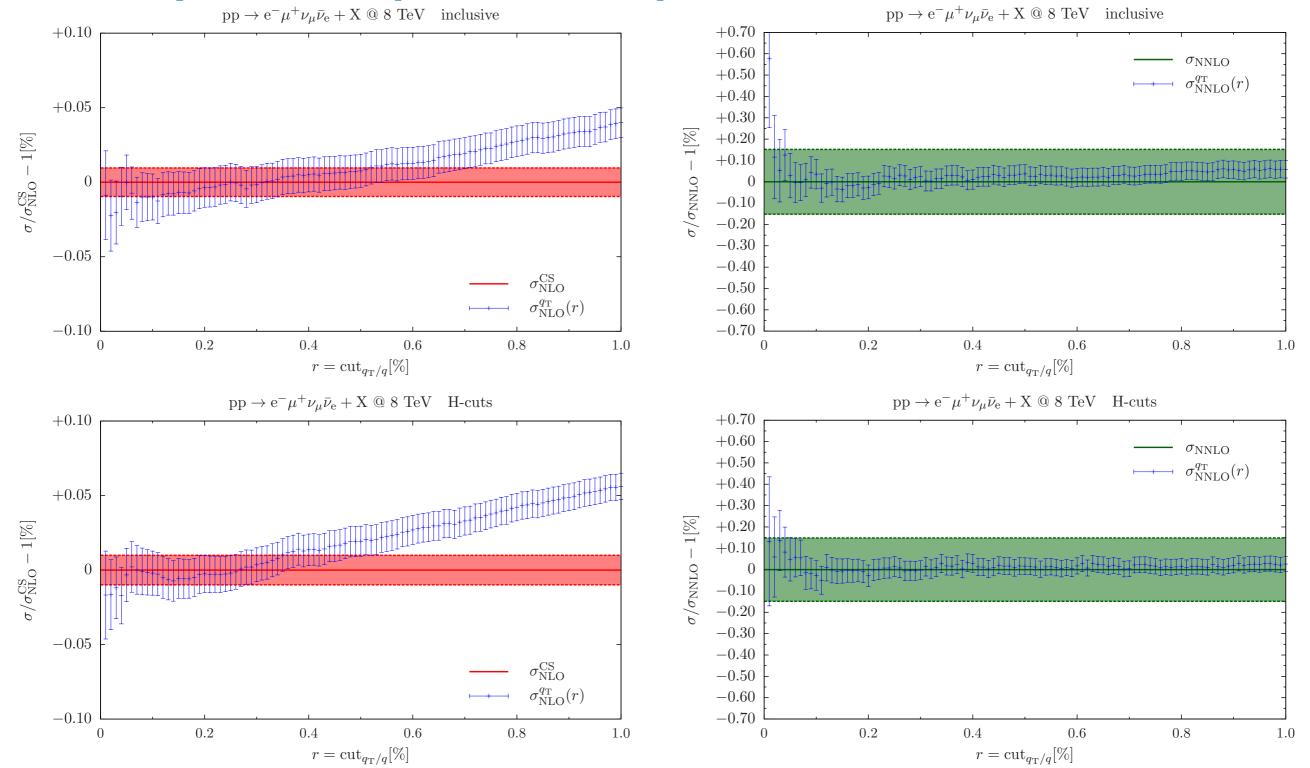
NNLO+NNLL resummation


Universität Zürich^{UZH}

for ZZ and WW

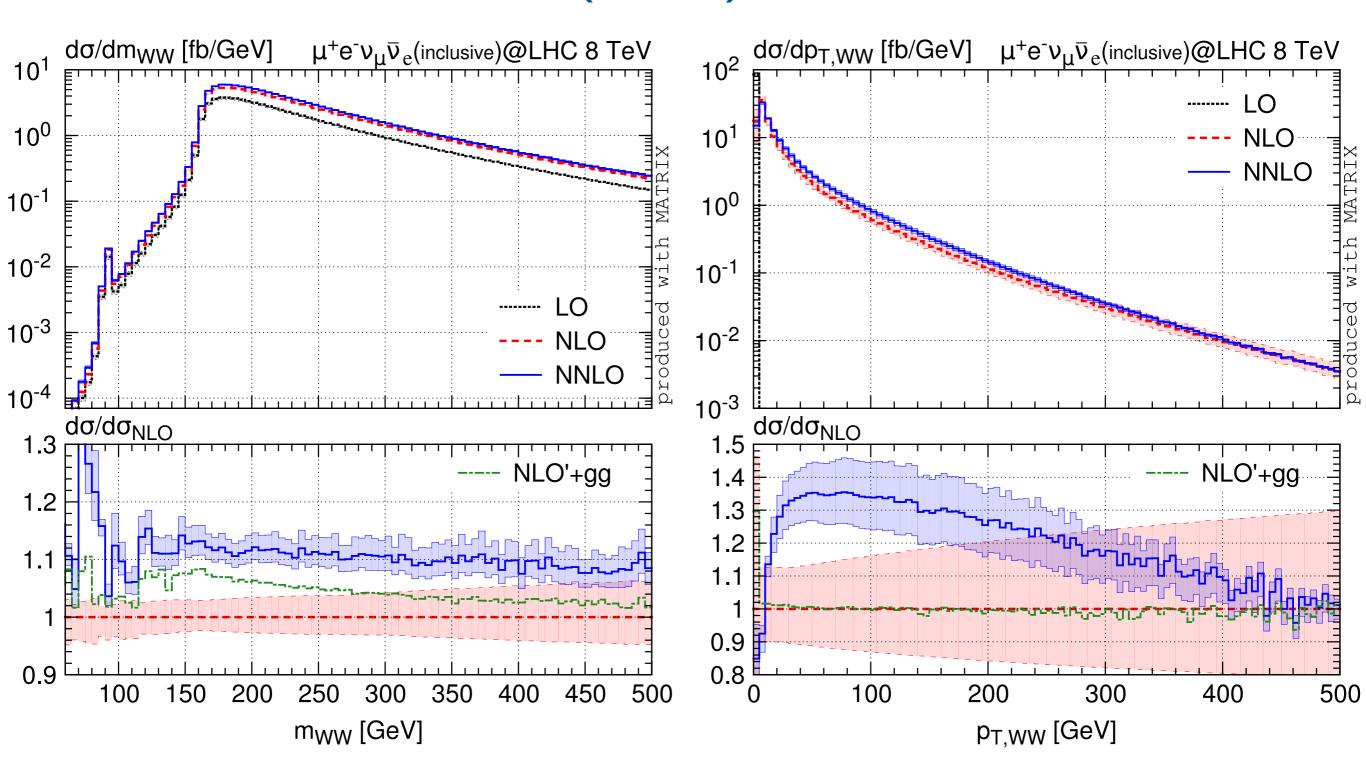
[Grazzini, Kallweit, Rathlev, MW '15]

p_T spectrum of ZZ pair


p_T veto WW cross section

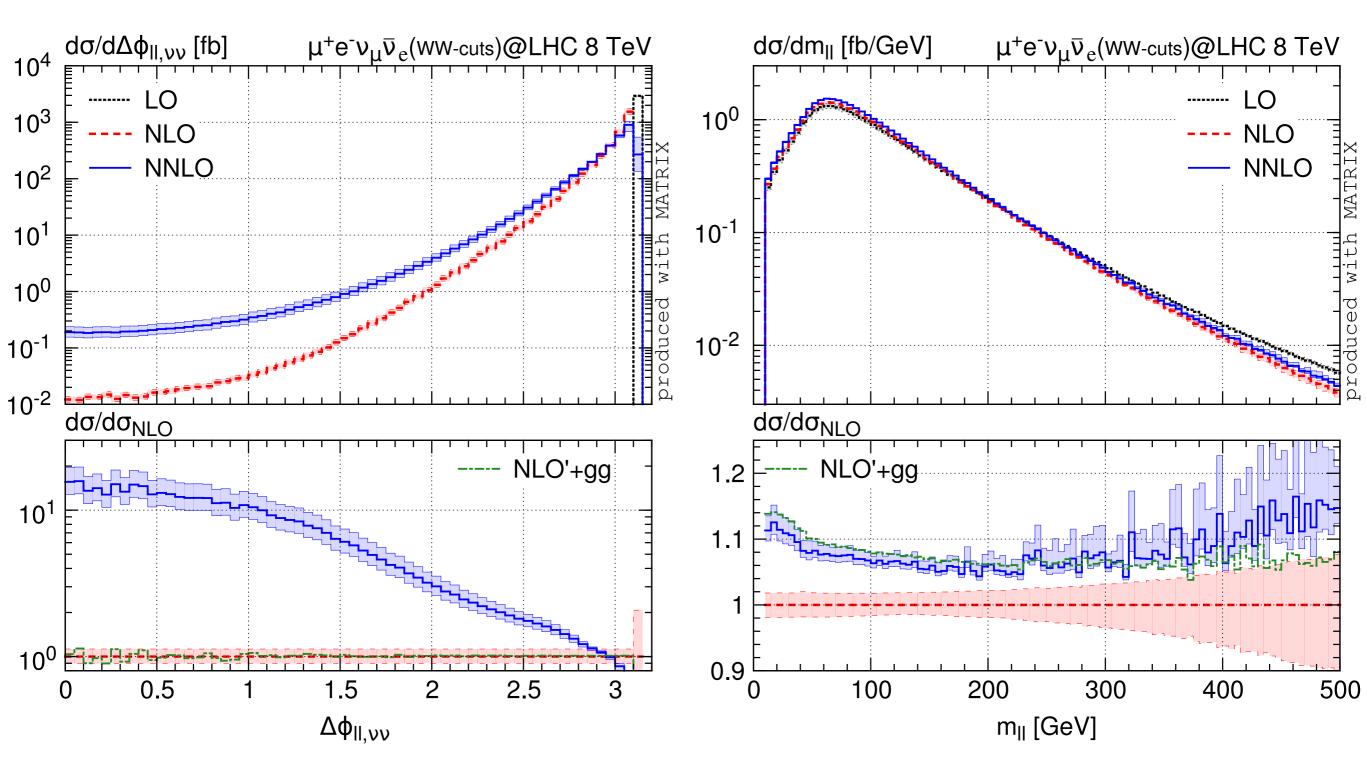
[Grazzini, Kallweit, Pozzorini, Rathlev, MW to appear]

stability of r_{cut}= p_T/m_{WW} dependence



Universität Zürich^{UZH}

[Grazzini, Kallweit, Pozzorini, Rathlev, MW to appear]


inclusive: distributions (8 TeV)

[Grazzini, Kallweit, Pozzorini, Rathlev, MW to appear]

WW signal cuts: distributions (8 TeV)

