Forcer: a FORM program for 4-loop massless propagators

Takahiro Ueda Nikhef, The Netherlands

Collaboration with: Ben Ruijl, Jos Vermaseren and Andreas Vogt

28 April 2016 LL2016, Leipzig

Introduction

Introduction

- Massless propagator-type Feynman integrals: many physics applications Andreas's talk
- At the 1-loop:

$$F(n_1, n_2) = \int \frac{d^D p_1}{(2\pi)^D} \frac{1}{(p_1^2)^{n_1} (p_2^2)^{n_2}}$$

indices: powers of the denominators

- Dimensional regularization: $D = 4 2\epsilon$
- The external momenta Q is off-shell: $Q^2 \neq 0$

Feynman integral calculus

- The "standard" way of Feynman integral calculus
 - (1) Reduction to master integrals (MIs) via integration-by-parts identities (IBPs) [Chetyrkin, Tkachov '81]
 - (2) Evaluation of MIs
- Generic IBP reduction algorithms for any processes
 - Laporta's algorithm, Baikov's method, Lee's "LiteRed", ... [Laporta '01] [Baikov '96; '05] [Lee '12; '13]
 AIR, FIRE, Reduze,...
- "Mincer" algorithm [Chetyrkin, Tkachov '81]
 - Specialized reduction for massless propagator-type integrals (up to 3-loops), very efficient

"Mincer" approach

General 1-loop formula

"Carpet" 1-loop integral

• We can perform another type of 1-loop integral (outer loop of p_1) for arbitrary indices α and β possibly with numerators

 $p_i \cdot p_j$, $p_i \cdot Q$

(loop momenta in the blob)

 Used for the following topology at the 3-loop level [Chetyrkin, Tkachov '81]

Triangle rule

 n_2

 $n_3 \atop 8$ / 30

 n_5

 n_4

• IBP ($\frac{\partial}{\partial k} \cdot k$) in one-loop triangle-shaped (sub-)diagrams any # of lines numerator $k^{\mu_1} \dots k^{\mu_N}$ OK $\frac{a_{2}}{b} = \frac{1}{D + N - a_{1} - a_{2} - 2b} \left[a_{1} \left(\begin{array}{c} a_{1} + 1 \\ c_{1} \end{array} \right)^{a_{2}} - \begin{array}{c} a_{1} + 1 \\ c_{2} \end{array} \right)^{a_{1}} \left(\begin{array}{c} a_{1} + 1 \\ c_{2} \end{array} \right)^{a_{2}} - \begin{array}{c} a_{1} + 1 \\ c_{2} \end{array} \right)^{a_{2}} \left(\begin{array}{c} a_{1} + 1 \\ c_{2} \end{array} \right)^{a_{2}} \left(\begin{array}{c} a_{1} + 1 \\ c_{2} \end{array} \right)^{a_{2}} - \begin{array}{c} a_{1} + 1 \\ c_{2} \end{array} \right)^{a_{2}} \left(\begin{array}{c} a_{1} + 1 \\ c_{2} \end{array} \right)^{a_{2}} - \begin{array}{c} a_{1} + 1 \\ c_{2} \end{array} \right)^{a_{2}} \left(\begin{array}{c} a_{1} + 1 \\ c_{2} \end{array} \right)^{a_{2}} - \begin{array}{c} a_{1} + 1 \\ c_{2} \end{array} \right)^{a_{2}} \left(\begin{array}{c} a_{1} + 1 \\ c_{2} \end{array} \right)^{a_{2}} - \begin{array}{c} a_{1} + 1 \\ c_{2} \end{array} \right)^{a_{2}} \left(\begin{array}{c} a_{1} + 1 \\ c_{2} \end{array} \right)^{a_{2}} - \begin{array}{c} a_{1} + 1 \\ c_{2} \end{array} \right)^{a_{2}} \left(\begin{array}{c} a_{1} + 1 \\ c_{2} \end{array} \right)^{a_{2}} - \begin{array}{c} a_{1} + 1 \\ c_{2} \end{array} \right)^{a_{2}} \left(\begin{array}{c} a_{1} + 1 \\ c_{2} \end{array} \right)^{a_{2}} - \begin{array}{c} a_{1} + 1 \\ c_{2} \end{array} \right)^{a_{2}} \left(\begin{array}{c} a_{1} + 1 \\ c_{2} \end{array} \right)^{a_{2}} - \begin{array}{c} a_{1} + 1 \\ c_{2} \end{array} \right)^{a_{2}} \left(\begin{array}{c} a_{1} + 1 \\ c_{2} \end{array} \right)^{a_{2}} \left(\begin{array}{c} a_{1} + 1 \\ c_{2} \end{array} \right)^{a_{2}} - \begin{array}{c} a_{1} + 1 \\ c_{2} \end{array} \right)^{a_{2}} \left(\begin{array}{c} a_{1} + 1 \\ c_{2} \end{array} \right)^{a_{2}} - \begin{array}{c} a_{1} + 1 \\ c_{2} \end{array} \right)^{a_{2}} \left(\begin{array}{c} a_{1} + 1 \\ c_{2} \end{array} \right)^{a_{2}} \left(\begin{array}{c} a_{1} + 1 \\ c_{2} \end{array} \right)^{a_{2}} \left(\begin{array}{c} a_{1} + 1 \\ c_{2} \end{array} \right)^{a_{2}} \left(\begin{array}{c} a_{1} + 1 \\ c_{2} \end{array} \right)^{a_{2}} \left(\begin{array}{c} a_{1} + 1 \\ c_{2} \end{array} \right)^{a_{2}} \left(\begin{array}{c} a_{1} + 1 \\ c_{2} \end{array} \right)^{a_{2}} \left(\begin{array}{c} a_{1} + 1 \\ c_{2} \end{array} \right)^{a_{2}} \left(\begin{array}{c} a_{1} + 1 \\ c_{2} \end{array} \right)^{a_{2}} \left(\begin{array}{c} a_{1} + 1 \\ c_{2} \end{array} \right)^{a_{2}} \left(\begin{array}{c} a_{1} \\ c_{2} \end{array} \right)^{a_{2}} \left(\begin{array}{c} a_{2} \end{array} \right)^{a_{2}} \left(\begin{array}(\begin{array}{c} a_{1} \\ c_{2} \end{array} \right)^{a_{2}$ $+a_2\left(\begin{array}{c}a_1\\a_2+1\\c_1\\b-1\\c_2\\c_1\\b\end{array}\right)$ Decreases **b** or c_1 or c_2 by 1 at the cost of increasing a_1 or a_2 in the right-hand side

• From positive integer indices, recursive use of the triangle rule makes b = 0 or $c_1 = 0$ or $c_2 = 0$ (removal of a line)

sums of integrals in simpler topologies

Diamond rule

 Extension of the triangle rule to multi-loop diamond-shaped (sub-)diagrams
 any # of lines

2-loop topologies

3-loop topologies

3 top-level topologies

Mincer approach

Algorithm: [Chetyrkin, Tkachov '81] Schoonschip implementation: [Gorishny, Larin, Surguladze, Tkachov '89] Form implementation: [Larin, Tkachov, Vermaseren '91]

- Many topologies for massless propagator-type integrals can be reduced to simpler ones by
 - performing one-loop integrals from general algorithms
 - use of triangle rules to remove one of lines
- Special cases (where we need to solve IBPs) are not too many
 - Only 2 topologies up to 3-loops

- In principle, this approach can be extended to the 4-loop level
 - Laurent series of the MIs in ϵ at the 4-loop are known

Baikov, Chetyrkin '10 (via glue-and-cut symmetry) Lee, Smirnov² '11 (up to weight 12, via DRA, Mellin-Barnes, PSLQ)

Extension to the 4-loop level: "Forcer"

4-loop topologies

11 top-level topologies

- Carpet integral (24)
- \bigcirc Triangle rule (53)
- Oiamond rule (4)
- Special rules(21) (pure 4-loop: 9)

Total: 437

- Problem: enormous number of cases!!
- Coding such a reduction by hand is impractical
 Automatization

How to handle

• Each topology as an "undirected graph" in graph theory

Vertices and edges are labeled A graph is represented by connections of them "Stars" as color of edges

Implementation: Python3 with a graph library "igraph"

http://igraph.org

 Easy to detect one-loop insertion, carpet, triangles, diamonds and tadpoles

could be difficult by human eyes (diamond example)

How to handle

- Graph isomorphism
 - Detects equivalent graphs and finds mappings among them

- Graph automorphism
 - Finds symmetry / mappings in each graph

How to handle

- Input : top-level topologies (11 for 4-loops)
- From each topology, remove a line in all possible ways with graph isomorphism and dropping tadpoles

- For each topology, the next action is decided (one-loop, carpet, triangle, diamond, otherwise special rule needed)
 - Irreducible numerators (dot products) are chosen such as they do not interfere with the next action

Code generation

- In the end, we get
- Code generation from
 - Adequate subroutines are called at each topology
 - Symmetries from graph automorphism
 - Rewriting propagators and irreducible numerators at all transitions from a topology to another
 - Python program with 2813 lines generates FORM code with 39405 lines (+ auxiliary routines) for 4-loops (as of 28.4.2016)
- Works even for 5-loops (64 top-topologies, 6570 topology in total, but 284 special rules need to be implemented)

Manual reduction rules

• 21 topologies require special rules, manually constructed

Finding manual reduction rules

• Shift an index by 1 (or -1 or more) in IBPs in all possible ways $n_1 \rightarrow n_1 \pm 1, \ n_2 \rightarrow n_2 \pm 1, \ n_3 \rightarrow n_3 \pm 1, \ \dots$

- Combined with the original IBPs \implies new set of equations
- Eliminate "complicated" integrals that increase indices for propagators (and/or decrease those for irreducible numerators) from the system of equations as possible
- In general, this is not complete, but helps a lot. Human eyes for finding "good" rules for reducing integrals

less number of terms, decrease of complexity, short coefficients, no spurious poles, etc.

 Expressions may be very complicated. A rule can easily be 100-1000 lines or more. Use of computer algebra systems. (Don't do that by hand!)

Example: 3-loop NO

3 loop momenta and 1 external momentum
 8 propagators and 1 irreducible numerator

→ 3 × 4 = 12 IBPs

• Shift an index by -1 in the IBPs in all possible ways $n_1 \rightarrow n_1 - 1, n_2 \rightarrow n_2 - 1, \dots, n_9 \rightarrow n_9 - 1$

positive: n_1, \ldots, n_8 negative: n_9

 \implies 12 \times 9 = 108 \implies 12 + 108 = 120 combined equations

• Eliminate "complicated" integrals from the system of the equations A solution is (after overall $n_9 \rightarrow n_9 + 1$)

 $id \ Z(n1?{>=1}, n2?{>=1}, n3?{>=1}, n4?{>=1}, n5?{>=1}, n6?{>=1}, n7?{>=1}, n8?{>=1}, n9?{<=-1}) = +Z(n1, n2-1, n3+1, n4, n5, n6, n7, n8, n9+1)*rat(1, 2)*rat(n3, -7+n9+n8+n7+n6+n5+n4+n3+n2+n1+4*ep) +Z(n1, n2, n3+1, n4, n5, n6, n7, n8-1, n9+1)*rat(-1, 2)*rat(n3, -7+n9+n8+n7+n6+n5+n4+n3+n2+n1+4*ep) +Z(n1+1, n2-1, n3, n4, n5, n6, n7, n8, n9+1)*rat(1, 2)*rat(n1, -7+n9+n8+n7+n6+n5+n4+n3+n2+n1+4*ep) +Z(n1+1, n2, n3, n4, n5, n6, n7-1, n8, n9+1)*rat(-1, 2)*rat(n1, -7+n9+n8+n7+n6+n5+n4+n3+n2+n1+4*ep) +Z(n1, n2, n3, n4, n5, n6, n7, n8, n9+1)*rat(1, 2)*rat(-3+n9+n3+2*n2+n1+2*ep, -7+n9+n8+n7+n6+n5+n4+n3+n2+n1+4*ep) +Z(n1, n2-1, n3, n4, n5, n6, n7, n8, n9+2)*rat(1, 2)*rat(1+n9, -7+n9+n8+n7+n6+n5+n4+n3+n2+n1+4*ep) ; ;$

Repeated use until $n_9 = 0$ (removal of the irreducible numerator)

Example: 3-loop NO

- Substitute $n_9 = 0$ to the equations
- Eliminate "complicated" integrals (with overall $n_1 \rightarrow n_1 - 1$, the 12 IBPs are enough)

Decrease the complexity until $n_1 = 1$

 n_6

 n_3

 n_{A}

 $n_{9} = 0$

 n_5

The symmetry of the topology gives similar rules for n_3 , n_4 and n_6

Example: 3-loop NO

• Substitute $n_1 = n_3 = n_4 = n_6 = 1$ and $n_9 = 0$ to the 120 combined equations

$$n_9 = 0$$

Eliminate "complicated" integrals

```
id Z(1,n2?{>=2},1,1,n5?{>=1},1,n7?{>=1},n8?{>=1},0) =
+Z(1,n2-1,1,1,n5-1,1,n7,n8+1,0)*rat(-n8,-1+n2)*rat(-5+n8+2*n7+2*n5+4*ep,-3+n8+n5+n2+2*ep)
+Z(1,n2-1,1,1,n5-1,1,n7+1,n8,0)*rat(-n7,-1+n2)*rat(-7+n8+2*n7+2*n5+2*n2+4*ep,-3+n8+n5+n2+2*ep)
+Z(1,n2-1,1,1,n5,1,n7,n8,0)*rat(-1,-3+n8+n5+n2+2*ep)*rat(30-12*n8+n8*2-15*n7+3*n7*n8+2*n7*2-22*n5
+4*n5*n8+6*n5*n7+4*n5*2-11*n2+3*n2*n8+2*n2*n7+4*n2*n5+n2*2-32*ep+6*ep*n8+8*ep*n7+12*ep*n5+6*ep*n2
+8*ep^2,-1+n2)
+Z(1,n2,1,1,n5-1,1,n7,n8,0)*rat(2-n8-n5-2*ep,-3+n8+n5+n2+2*ep)
+Z(1,n2,1,1,n5,1,n7-1,n8,0)
+Z(1,n2,1,1,n5,1,n7,n8-1,0)*rat(7-n8-2*n7-2*n5-2*n2-4*ep,-3+n8+n5+n2+2*ep)
+Z(1,n2-1,1,0,n5,1,n7+1,n8,0)*rat(n7,-1+n2)*rat(-7+n8+2*n7+2*n5+2*n2+4*ep,-3+n8+n5+n2+2*ep)
+Z(1,n2-1,1,1,n5,0,n7,n8+1,0)*rat(n8,-1+n2)*rat(-7+n8+2*n7+2*n5+2*n2+4*ep,-3+n8+n5+n2+2*ep)
+Z(1,n2,0,1,n5,0,n7,n8+1,0)*rat(-2*n8,-3+n8+n5+n2+2*ep)
+Z(1,n2,0,1,n5,1,n7,n8,0)*rat(-9+2*n8+2*n7+3*n5+2*n2+6*ep,-3+n8+n5+n2+2*ep)
+Z(1,n2,1,1,n5,0,n7,n8+1,0)*rat(-9+2*n8+2*n7+3*n5+2*n2+6*ep,-3+n8+n5+n2+2*ep)
+Z(1,n2,1,1,n5,0,n7,n8,0)*rat(-9+2*n8+2*n7+3*n5+2*n2+6*ep,-3+n8+n5+n2+2*ep)
+Z(1,n2,1,1,n5,0,n7,n8,0)*rat(-9+2*n8+2*n7+3*n5+2*n2+6*ep,-3+n8+n5+n2+2*ep)
;
```

Decrease the complexity until $n_2 = 1$ Similar rules for n_5 , n_7 and n_8

The MI: NO(1,1,1,1,1,1,1,1,0)

Example: 4-loop BUBU

A part of rules (reduction of n11 to 0)

id Z(n1?{>=1},n2?{>=1},n3?{>=1},n4?{>=2},n5?{>=1},n6?{>=1},n7?{>=1},n8?{>=1},n9?{>=1}, n10?{<=0},n11?{<=-1},n12?{<=0},n13?{<=0},n14?{<=0}) = +Z(n1,n2-1,n3,n4-1,n5+1,n6,n7,n8,n9,n10,n11+1,n12,n13,n14)*rat(n5,-1+n4) +Z(n1,n2,n3,n4-1,n5,n6,n7+1,n8-1,n9,n10,n11+1,n12,n13,n14)*rat(-n7,-1+n4) +Z(n1,n2,n3,n4-1,n5,n6,n7+1,n8,n9-1,n10,n11+1,n12,n13,n14)*rat(n7,-1+n4) +Z(n1,n2,n3,n4-1,n5+1,n6,n7,n8-1,n9,n10,n11+1,n12,n13,n14)*rat(-n5,-1+n4) +Z(n1,n2,n3,n4-1,n5,n6,n7,n8,n9,n10,n11+1,n12,n13,n14)*rat(3-2*n8-n7-n5-n14-n11-2*ep,-1+n4) +Z(n1,n2,n3,n4,n5,n6,n7-1,n8,n9,n10,n11+1,n12,n13,n14)*rat(-1,1) +Z(n1,n2,n3,n4,n5,n6,n7,n8-1,n9,n10,n11+1,n12,n13,n14)*rat(-1,1) ;

One of difficult topologies to solve, though no MI

id Z(n1?{>=1}, n2?{>=1}, n3?{>=1}, 1, n5?{>=1}, n6?{>=1}, n7?{>=1}, n8?{>=1}, n9?{>=1}, n9?{>=1

 $n10?{<=0}, n11{<=-1}, n12?{<=0}, n13?{<=0}, n14?{<=0} =$

-8+n9+n8+n7+n6+n5+n3+n2+n14+n13+n12+n11+n10+n1+5*ep)

+Z(n1,n2,n3,1,n5,n6,n7-1,n8,n9,n10,n11+1,n12,n13,n14)*rat(-1,1)

 $+Z(n1, n2, n3, 1, n5, n6, n7 - 1, n8, n9, n10, n11+1, n12, n13, n14+1) * rat(n14, -8+n9+n8+n7+n6+n5+n3+n2+n14+n13+n12+n11+n10+n1+5*ep) \\+Z(n1, n2, n3, 1, n5, n6, n7 - 1, n8, n9, n10, n11+2, n12, n13, n14) * rat(-1-n11, -8+n9+n8+n7+n6+n5+n3+n2+n14+n13+n12+n11+n10+n1+5*ep) \\+Z(n1, n2, n3, 1, n5, n6, n7, n8 - 1, n9, n10, n11+1, n12, n13, n14+1) * rat(-n14, -8+n9+n8+n7+n6+n5+n3+n2+n14+n13+n12+n11+n10+n1+5*ep) \\+Z(n1, n2, n3, 1, n5, n6, n7, n8 - 1, n9, n10, n11+2, n12, n13, n14) * rat(1+n11, -8+n9+n8+n7+n6+n5+n3+n2+n14+n13+n12+n11+n10+n1+5*ep) \\+Z(n1, n2, n3, 1, n5, n6, n7, n8, n9 - 1, n10, n11+1, n12, n13, n14) * rat(-n14, -8+n9+n8+n7+n6+n5+n3+n2+n14+n13+n12+n11+n10+n1+5*ep) \\+Z(n1, n2, n3, 1, n5, n6, n7, n8, n9 - 1, n10, n11+2, n12, n13, n14) * rat(1+n11, -8+n9+n8+n7+n6+n5+n3+n2+n14+n13+n12+n11+n10+n1+5*ep) \\+Z(n1, n2, n3, 1, n5, n6, n7, n8, n9 - 1, n10, n11+2, n12, n13, n14) * rat(1+n11, -8+n9+n8+n7+n6+n5+n3+n2+n14+n13+n12+n11+n10+n1+5*ep) \\+Z(n1, n2, n3, 0, n5, n6, n7, n8, n9 - 1, n10, n11+2, n12, n13, n14) * rat(1+n11, -8+n9+n8+n7+n6+n5+n3+n2+n14+n13+n12+n11+n10+n1+5*ep) \\+Z(n1, n2, n3, 0, n5, n6, n7, n8, n9 - 1, n10, n11+2, n12, n13, n14) * rat(1+n11, -8+n9+n8+n7+n6+n5+n3+n2+n14+n13+n12+n11+n10+n1+5*ep) \\+Z(n1, n2, n3, 0, n5, n6, n7, n8, n9, n10, n11+1, n12, n13, n14) * rat(1+n11, -8+n9+n8+n7+n6+n5+n3+n2+n14+n13+n12+n11+n10+n1+5*ep) \\+Z(n1, n2, n3, 0, n5, n6, n7, n8, n9, n10, n11+1, n12, n13, n14) * rat(1+n11, -8+n9+n8+n7+n6+n5+n3+n2+n14+n13+n12+n11+n10+n1+5*ep) \\+Z(n1, n2, n3, 0, n5, n6, n7, n8, n9, n10, n11+1, n12, n13, n14) * rat(1+n11, -8+n9+n8+n7+n6+n5+n3+n2+n14+n13+n12+n11+n10+n1+5*ep) \\+Z(n1, n2, n3, 0, n5, n6, n7, n8, n9, n10, n11+1, n12, n13, n14) * rat(1+n11, -8+n9+n8+n7+n6+n5+n3+n2+n14+n13+n12+n11+n10+n1+5*ep) + rat(1+n11, -8+n9+n8+n7+n6+n5+n3+n2+n14+n13+n12+n11+n10+n1+5*ep) + rat(1+n11, -8+n9+n8+n7+n6+n5+n3+n2+n14+n13+n12+n11+n10+n1+5*ep) + rat(1+n12, n13, n14) * rat(1+n11, -8+n9+n8+n7+n6+n5+n3+n2+n14+n13+n12+n11+n10+n1+5*ep) * rat(1+n11, -8+n9+n8+n7+n6+n5+n3+n2+n14+n13+n12+n11+n10+n1+5*ep) + rat$

3274 lines for whole BUBU reduction

Run Forcer: result looks like...

one of the top-level topology 11 propagators 3 irreducible numerators

How to convert Qgraf output to Forcer input?

 \square Jos's talk

[no1(2,2,2,2,2,2,2,2,2,2,2,2,-1,-1,-1)] =

 $-10/9*num(1+2*ep)^{2*num(2+5*ep)*num(3+2*ep)^{2*num(3+5*ep)*num(4+5*ep)*num(6+5*ep)*num(7+5*ep)*num(8+5*ep)*num(9+5*ep)*num(36141384+167650024*ep+369157793*ep^{2+504389598*ep^{3+470560515*ep^{4+312347786*ep^{5+1497}}}{70838*ep^{6+51734214*ep^{7+12600912*ep^{8+2060632*ep^{9+203648*ep^{10+9216*ep^{11}}*den(1+ep)^{2*den(2+ep)^{2*den(2+ep)^{2*den(2+ep)}*den(7+3*ep)*den(8+3*ep)*Master(no1)}}$

 $+2/9*num(1+2*ep)*num(1+4*ep)^{2*num(3+2*ep)*num(39337381531008+422506983834144*ep+2126828256064272*ep^{2+6}682923999248124*ep^{3+14715479582570820*ep^{4+24142592323497543*ep^{5+30606097414180459*ep^{6+30663886432898}386*ep^{7+24613240685251374*ep^{8+15944111435166437*ep^{9+8353498138352567*ep^{10+3530865125153640*ep^{11+119}5052526807120*ep^{12+319518770241334*ep^{13+66015276933500*ep^{14+10173244132808*ep^{15+1101566031376*ep^{16+74820000000*ep^{17+2400000000*ep^{18})*den(1+ep)^{2*den(2+ep)^{2*den(2+3*ep)*den(3+ep)^{2*den(4+3*ep)*den(5+3*ep)*den(5+3*ep)*den(7+3*ep)*den(8+3*ep)*Master(no6)}$

-4/9*num(ep)^2*num(1+2*ep)*num(3+2*ep)*num(4970268890523930816+65981799142896214872*ep+41636699974387213 0470*ep^2+1663841711414114631648*ep^3+4730696245772216998455*ep^4+10190116418687033776180*ep^5+172831512 25628577356718*ep^6+23674869565869007631757*ep^7+26649665048245779930527*ep^8+24945440138420091798098*ep ^9+19571616320498135318722*ep^10+12933081950816489701881*ep^11+7214358008133792648788*ep^12+339681000556 8803286172*ep^13+1346680080420400500352*ep^14+447318716827968227680*ep^15+123500240869574621248*ep^16+28 008584917867939712*ep^17+5129371482425778688*ep^18+739826312414941184*ep^19+80910145880457216*ep^20+6306 386119458816*ep^21+312125440000000*ep^22+737280000000*ep^23)*den(1+ep)^2*den(2+ep)^2*den(3+ep)^2*den(3+ 4*ep)*den(4+3*ep)*den(5+3*ep)*den(5+4*ep)*den(7+3*ep)*den(7+4*ep)*den(8+3*ep)*den(9+4*ep)*den(11+4*ep)*d en(13+4*ep)*Master(1ala) (Cont'd on next page)

(cont'd)

+1/69984*num(-1+2*ep)^3*num(7241916201944976216509644800000+319933970273126101430280830976000*ep+6756458 704694283224428114990694400*ep^2+91350459184391655670944774398730240*ep^3+891289886775817303600596179144 718336*ep^4+6693037596934954757286105298423578624*ep^5+40235415927130336283161325668026920448*ep^6+19871 3617144519275979305008924953882368*ep^7+820916970447314603727085836746702354688*ep^8+2873881635171369729 280438878868838131008*ep^9+8607952779410951522413494094313728793280*ep^10+222147773368444730132424667001 94857424432*ep^11+49635643135503998398733139623853337720392*ep^12+96271970320109519554706474095019058884 972*ep^13+162092004243336736948422894086915245188710*ep^14+236011025514494738395477852326524380246208*ep ^15+294116625122127952136996687381588045466897*ep^16+306225945611093340988941157877804946565622*ep^17+25 0395537138862785223188155623245534964532*ep^18+127849096823093076621319723934762735418774*ep^19-32311698 658641642165998037752400422510997*ep^20-183932395284770686557606510999638263724434*ep^21-284795600836347 457186578491353430578870326*ep^22-315022919192483812286675434478208160276910*ep^23-282305580037611102151 358311949984849163164*ep^24-212936199022871691907574075383055371432706*ep^25-136445993518657866963478040 015820540166838*ep^26-73490078278879345786210757806097518867018*ep^27-3189846583021924021328559833408903 5466304*ep^28-9651382484951439893472757109220693984414*ep^29-421236561806300181608330799113484613884*ep^ 30+2017002468644720352265271521884033262822*ep^31+1832874761562866686698305090568644702899*ep^32+1096707 581456919232171368580075436795092*ep^33+524523702662773366611140017451441153706*ep^34+212149752741671710 649385032559095034796*ep^35+74250901029010212070735988610887333749*ep^36+2272051252243184038118975458520 5484412*ep^37+6103292399690879903999959233123243684*ep^38+1439736393111277351174910769581576800*ep^39+29 7528530322975798096839220046747248*ep^40+53606182091916632708972765495066048*ep^41+835965908902794893568 4267151014592*ep^42+1117001205642226519475032390006784*ep^43+126129308732809465322496308824064*ep^44+118 10033418325211214154334027776*ep^45+892823848935298884179601309696*ep^46+52384336126816611070473928704*e p^47+2238933537865339140484104192*ep^48+62029021136981852160000000*ep^49+83626417685790720000000*ep^50) $*den(ep)^{6*}den(-1+ep)*den(1+ep)^{6*}den(1+2*ep)^{2*}den(1+3*ep)^{2*}den(-2+ep)*den(2+ep)^{6*}den(2+3*ep)^{2*}den(3+ep)^{6*}den(2+ep)^{6*}den(2+3*ep)^{2*}den(3+ep)^{6*}den(2+ep)^{6*}den(2+ep)^{6*}den(2+ep)^{6*}den(3+ep)^{6*$ $+ep)^{3}den(3+2*ep)^{2}den(3+4*ep)*den(4+3*ep)^{2}den(5+2*ep)^{2}den(5+3*ep)^{2}den(5+4*ep)*den(7+3*ep)^{2}den(5+3*ep)^{2}de$ (7+4*ep)*den(8+3*ep)*den(9+4*ep)*den(11+4*ep)*den(13+4*ep)*G10*G20*G30

4.2 hours on a desktop PC with "tform -w4"

Exact in ϵ Optionally: ϵ -expansions in intermediate steps

Checks

- Recomputing known results: strong non-trivial checks

 - Checked the gauge invariance, all powers of ξ

Forcer gives 4-loop propagators and vertices, exact in ϵ , all powers of ξ

Also with using background field method

 with nullifying external momenta except two of them

with no gauge parameter	10 minutes
with one power	38 minutes
with FULL gauge parameters	8.5 hours

on a decent 24 core machine (6 "tform -w4" jobs)

 Reproduced low-N NS splitting functions Andreas's talk GLS, N=2,3,4 [Baikov, Chetyrkin, Kühn; Velizhanin]

Summary

Summary

- Forcer: a "4-loop extension" of Mincer for massless propagator-type Feynman integrals
 - Highly complicated structure of the program / equations
 - \rightarrow Automatization: write a program for generating a code

Manual rules are derived with the aid of computers

• Correctness of the program was checked for known results

Backup

Diamond rule

[Ruijl, TU, Vermaseren '15]

$$(L+S)D + \sum_{i=1}^{L+1} (N_i - a_i - 2b_i) + \sum_{i=1}^{S} (R_i - 2s_i) = \sum_{i=1}^{L+1} a_i A_i^+ \left[B_i^- - (p_i^2 + m_i^2) \right]$$

Diamond rule

• Explicit summation formula

$$\begin{split} F(\{a_i\},\{b_i\},\{c_i\}) &= \\ \sum_{r=1}^{L+1} \left[\left(\prod_{\substack{i=1\\i\neq r}}^{L+1} \sum_{k_i^+=0}^{b_i-1} \right) \left(\prod_{i=1}^{L+1} \sum_{k_i^-=0}^{c_i-1} \right) (-1)^{k^-} \frac{k_r^+(k^++k^--1)!}{\prod_{i=1}^{L+1} k_i^+!k_i^{-!}} (E+k^+)_{-k^+-k^-} \right. \\ &\times \left(\prod_{i=1}^{L+1} (a_i)_{k_i^++k_i^-} \right) F\left(\{a_i+k_i^++k_i^-\},\{b_i-k_i^+\},\{c_i-k_i^-\}\right) \right]_{k_r^+=b_r} \\ &+ \sum_{r=1}^{L+1} \left[\left(\prod_{i=1}^{L+1} \sum_{k_i^+=0}^{b_i-1} \right) \left(\prod_{\substack{i=1\\i\neq r}}^{L+1} \sum_{k_i^-=0}^{c_i-1} \right) (-1)^{k^-} \frac{k_r^-(k^++k^--1)!}{\prod_{i=1}^{L+1} k_i^+!k_i^{-!}} (E+k^++1)_{-k^+-k^-} \right. \\ &\times \left(\prod_{i=1}^{L+1} (a_i)_{k_i^++k_i^-} \right) F\left(\{a_i+k_i^++k_i^-\},\{b_i-k_i^+\},\{c_i-k_i^-\}\right) \right]_{k_r^-=c_r} \end{split}$$

$$E = (L+S)D + \sum_{i=1}^{L+1} (N_i - a_i - 2b_i) + \sum_{i=1}^{S} (R_i - 2s_i)$$

$$k^{+} = \sum_{i=1}^{L+1} k_{i}^{+} \qquad k^{-} = \sum_{i=1}^{L+1} k_{i}^{-}$$

Avoids spurious poles

Triangle/diamond rule may be not the best

• The triangle rule does not change the total complexity of integrals

```
id Z(n1?{>=1}, n2?{>=1}, n3?{>=1}, n4?{>=1}, n5?{>=1}) =
+Z(n1, n2, n3-1, n4+1, n5)*rat(n4, -4+2*n5+n4+n1+2*ep)
+Z(n1, n2, n3, n4+1, n5-1)*rat(-n4, -4+2*n5+n4+n1+2*ep)
+Z(n1+1, n2-1, n3, n4, n5)*rat(n1, -4+2*n5+n4+n1+2*ep)
+Z(n1+1, n2, n3, n4, n5-1)*rat(-n1, -4+2*n5+n4+n1+2*ep);
```


 The following rule (a solution of 6+30 equations) decreases the complexity and gives only 3 terms in the RHS

```
id Z(n1?{>=1}, n2?{>=1}, n3?{>=1}, n4?{>=1}, n5?{>=1}) =
+Z(n1, n2-1, n3, n4, n5)*rat(-7+2*n5+n4+n3+n2+n1+3*ep, -3+n5+n2+n1+ep)
+Z(n1, n2, n3-1, n4, n5)*rat(-7+2*n5+n4+n3+n2+n1+3*ep, -3+n5+n4+n3+ep)
+Z(n1, n2, n3, n4, n5-1)*rat(3-n5-n4-n1-ep, -3+n5+n2+n1+ep)
*rat(-4+n5+n4+n1+2*ep, -3+n5+n4+n3+ep)
```

Possibility of more optimizations??