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The promise of perturbative QCD

Incontrovertible fact 
that 𝛼s is small at high 
energies.

𝛼s(MZ) ~ 0.1185+0.0006

NLO ~ 11%?

NNLO~1%? Also some outliers from thrust and C-parameter, Parton fits
Abate et al, 1060.3080, 𝛼s(MZ)=0.1135+0.0010

Hoang et al, 1501.04111,1501.04753,𝛼s(MZ)=0.1123±0.0015
Alekhin et al, 0908.2766,𝛼s(MZ)=0.1135±0.0014

Data from PDG, September 2013



The reality
The reality for the 
Higgs cross section 
(known to N3LO) is 
less optimistic.

Consequence of the 
special nature of 
renormalisation 
group improved 
perturbation theory.

At least NNLO is 
needed.

Anastasiou et al, 1602.00695

𝜎=16pb x(1+1.30+0.59+0.09)



Processes currently known through NNLO
H+0jet fully inclusive N3LO Higgs couplings 1503.06056

H+1jet exclusive Higgs couplings
1604.04085,1408.5325,1504.07922,

1505.03893

WBF exclusive VBF cuts Higgs couplings 1506.02660

H->bb exclusive, massless Higgs couplings boosted 1110.2368,1501.07226

W+0jet fully exclusive, decays PDFs 0903.2120,1208.5967

Z/gamma+0jet fully exclusive, decays PDFs 0903.2120,1208.5967

W+j fully exclusive, decays PDFs 1504.02131

Z+j decay, off-shell effects PDFs 1601.04569,1507.20850, 1507.02850

ZH decays to bb at NLO Higgs couplings 1407.4747,1601.00658

WH fully exclusive Higgs couplings 1312.1669, 1601.00658

ZZ fully exclusive, off-shell trilinear gauge couplings,BSM 1405.2219, 1507.06257,1509.06734

WW fully inclusive trilinear gauge couplings,BSM 1408.5243,1511.08617

W𝛾,Z𝛾 fully exclusive trilinear gauge couplings,BSM 1601.06751

𝛾𝛾 fully differential Background studies 1110.2375,1603.02663

tt pair fully exclusive, stable tops top cross section ,mass pt, FB 
asymmetry,PDFs BSM

1601.05375, 1506.04037

single top fully exclusive, stable tops, t-
channel Vtb,width, PDfs 1404.7116

top decay exclusive Top couplings 1210.2808, 1301.7133

dijets gluon-gluon PDFs,strong couplings,BSM 1407.5558

Adapted from K. Melnikov,  Aspen Winter Conference 2016



Several techniques for assembly of 
fully differential NNLO cross 
sections have reached maturity in 
the last few years.

Antenna Subtraction

Sector decomposition 

Phase space mapping

Non-local QT/SCET-based slicing 
methods, separating phase space 
into single and double unresolved 
regions and make use of a 
factorisation theorem for the latter.

Some assembly required



Slicing methods 
Slicing methods fell out of favour at NLO because of 
lack of local cancellation.

We take a second look because they:-

Mesh well with existing NLO calculations

It could be that with the increase in computing 
power, large numerical cancellations can be 
handled.



�NNLO =

Z
dqT

d�

dqT
✓(qcutT � qT ) +

Z
dqT

d�

dqT
✓(qT � qcutT )

For colour neutral final states the transverse momentum of the 
recoiling EW particles can be used to separate the double and singly 
unresolved regions of phase space. (Catani Grazzini 07)  

Obtained from the Collins-Soper-Sterman 
factorization theorem for small qT

This is an NLO cross section for one 
additional parton 

MCFM contains an extensive library of NLO processes, which in this 
approach are a component of the NNLO process with one fewer 
parton.



The idea is to use the event shape variable N-jettiness (Stewart, Tackmann, Waalewijn 

2009) to separate the phase space into two regions            (Boughezal, Liu, Petriello  2015,  

Gaunt, Stahlhofen, Tackmann Walsh 2015) which separates the doubly-from singly unresolved 
regions. 

Small N-jettiness, use 
factorization theorem. 

Doubly unresolved Singly  unresolved

“Large” N-jettiness, what is 
required is an NLO calculation. 
Can use existing tools, like MCFM 

Extension to coloured final states



When there is no ambiguity, we will associate i ⌘ i (e.g., we use fa ⌘ fa), and we use

the collective label  to denote the whole partonic channel, i.e.,

 ⌘ {a,b;1, . . . ,N} ⌘ {a, b; 1, . . . , N} . (3.3)

We write the massless Born momenta qi as

qµi = Ei n
µ
i , nµ

i = (1,~ni) , |~ni| = 1 . (3.4)

In particular, for the incoming momenta we have

Ea,b = xa,b
Ecm

2
, nµ

a = (1, ẑ) , nµ
b = (1,�ẑ) , (3.5)

where Ecm is the total (hadronic) center-of-mass energy and ẑ points along the beam axis.

The xa,b are the light-cone momentum fractions of the incoming partons, and momentum

conservation implies

xaEcm = nb · (q1 + · · ·+ qN + q) , xbEcm = na · (q1 + · · ·+ qN + q) . (3.6)

The total invariant mass-squared Q2 and rapidity Y of the Born phase space are

Q2 = xaxbE
2
cm , Y =

1

2
ln

xa
xb

, xaEcm = QeY , xbEcm = Qe�Y . (3.7)

The complete d�N phase-space measure corresponds to

Z

d�N ⌘ 1

2E2
cm

Z

dxa
xa

dxb
xb

Z

d�N (qa + qb; q1, . . . , qN , q)
dq2

2⇡
d�L(q)

X



s , (3.8)

where d�N (...) on the right-hand side denotes the standard Lorentz-invariant N -particle

phase space, the sum over  runs over all partonic channels, and s is the appropriate

factor to take care of symmetry, flavor and spin averaging for each partonic channel.

3.1.2 N-jettiness

Given an M -particle phase space point with M � N , N -jettiness is defined as [50]

TN (�M ) =
M
X

k=1

min
i

n2qi · pk
Qi

o

, (3.9)

where i runs over a, b, 1, . . . , N . (Here we use a dimension-one definition of TN following

refs. [52, 62].) For ep or ee collisions, one or both of the incoming directions are absent.

The Qi are normalization factors, which are explained below. The pk are the M final-state

parton momenta (so excluding the nonhadronic final state) of �M . The qi in eq. (3.9)

are massless Born “reference momenta”, and the corresponding directions ~ni = ~qi/|~qi| are
referred to as the N -jettiness axes. For later convenience we also define the normalized

vectors

q̂i =
qi
Qi

. (3.10)
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N-jettiness is an event shape variable, designed to classify final state 
jets (Stewart, Tackmann, Waalewijn 09) 

Number of final 
state jets

Number of 
final state 
partons All final state 

partons

A hard scale 
(e.g. Energy of 
jets)

Momentum 
of final state 
jets and 
beams

N-jettiness



We need to understand the below cut region for the method to be 
applied. We use the factorization theorem (Stewart, Tackmann, Waalewijn 09), based 
upon SCET.

�(⌧N < ⌧ cutN ) =

Z
H ⌦B ⌦B ⌦ S ⌦

"
NY

n

Jn

#
+O(⌧ cutN )

Process dependent
hard function, includes 2-loop virtual

Beam functions, describes radiation collinear 
to initial state 

Soft function, describes soft radiation 

Jet functions, describes radiation collinear 
to final state jets

B@NNLO : Gaunt, Stahlhofen, Tackmann (14) …

S@NNLO : Boughezal, Liu, Petriello (14)  ….

J@NNLO:Becher, Neubert (06), Becher, Bell (11) …

H@NNLO: Derived from two loop virtual corrections



In order to test our implementation of the SCET N-jettiness routine we 
establish cross checks using the following public codes for the total 
cross sections for color singlet production.



Figure 1. The ratio of the MCFM jettiness calculation of the NLO coe�cient to the known result
presented in Table 4, as a function of the jettiness slicing parameter ⌧ cut. The comparison is performed
for gg ! H, Z, W+, ZH and W±H production and the lines represent fits to the individual points
using the form given in Eq. (5.1).
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Process Order MCFM cross-section Cross-check

H production LO 12.937± 0.001 pb 12.937 pb

NLO 29.520± 0.001 pb 29.521 pb

Z LO 44.303± 0.001 nb 44.303 nb

NLO 53.958± 0.002 nb 53.957 nb

W+ LO 81.559± 0.002 nb 81.561 nb

NLO 100.298± 0.003 nb 100.299 nb

ZH LO 0.68254± 0.00001 pb 0.68255 pb

NLO 0.79073± 0.00003 pb 0.79079 pb

W+H +W�H LO 1.2592± 0.02 pb 1.2593 pb

NLO 1.4629± 0.04 pb 1.4630 pb

Table 3. Comparison of LO and NLO cross-sections computed using the standard MCFM subtraction
method with the codes used for cross-checking in this paper.

a comparison are shown in Table 3. The agreement is excellent for all processes, so that we

can be sure that MCFM should produce the same results as the other codes when computing

the NLO and NNLO predictions using the jettiness subtraction method.

5 Jettiness subtraction at NLO

The calculation of NLO corrections using the jettiness subtraction approach is straightforward

in MCFM. The below-cut contribution is easily computed, while the above-cut contribution

corresponds to a LO calculation of the process that contains an additional parton. In order

to avoid numerical instability in calculations using MCFM, previous versions of the code have

applied a small cuto↵ on all invariant masses present in the problem, sij > cutoff. In this

version this has been changed so as to enforce a small cuto↵ on the partonic jettiness of every

parton present in a given calculation, ⌧ (j)N > cutoff. Since the above-cut region involves a

standard LO calculation, for which there are no numerical instabilities, we are able to choose

a value for this cuto↵ close to the limit of double precision, cutoff = 10�12.

5.1 Inclusive cross-sections

The benchmark cross-sections that form the basis for this comparison can be extracted from

Table 3 and, for convenience, have been summarized in Table 4. As is well-known, the NLO

corrections to Higgs production through gluon fusion are very large, while all of the other

processes receive corrections of order 20%.

A comparison of the jettiness calculations of these coe�cients, with the results shown in

Table 4, is shown in Fig. 1. The ratio of the calculations is shown as a function of ⌧ cut, for a

range of suitable values of ⌧ cut. The approach of the jettiness calculation to the correct result

as ⌧ cut ! 0 is clear for each process. However the manner of the approach varies considerably.
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We first establish the validity of our 
comparison by using standard MCFM 
to reproduce NLO results from other 
codes.

We calculate the cross sections at 
NLO with Catani-Seymour Dipoles 
as validation.



Figure 2. MCFM jettiness calculation of the NLO contribution to the rapidity distributions of the
Higgs boson (left), Z boson (centre) and ZH system (right), in the gg ! H, Z and ZH production
processes respectively. Results are shown for two values of ⌧ and are compared with the normal MCFM
calculation (solid histogram). The lower panel shows the ratio of the jettiness results to the normal
MCFM calculation.

is evidence for an increase in the size of the power corrections at larger absolute rapidities.

The reason for the qualitative di↵erence in the behaviour is thus two-fold. First, the onset

of power corrections with increased rapidity occurs sooner for Z production. Second, and

critically, the shape of the rapidity distribution is much broader for Z production so that

the e↵ect of the high-rapidity tails is more apparent in the inclusive rates presented in the

previous section. It suggests that a restriction to more central rapidities would decrease the

e↵ect of power corrections and speed the convergence to the correct result.

5.3 Cross-sections under cuts

As an explicit demonstration of this behaviour we will contrast the e↵ect of the power cor-

rections on the inclusive cross-section with the behaviour under a more realistic set of exper-

imental cuts. Rather than cutting directly on the rapidiy of the W or Z boson, we instead

apply a minimal set of cuts on the W and Z boson decay products that might be applied

in an experimental analysis. We consider a Z boson decay to an electron-positron pair and

demand that both leptons be observed in the central region, |y(e±)| < 2.5. For the W+ boson

case we consider the decay into an positron and neutrino, imposing a rapidity constraint on

the charged lepton |y(e+)| < 2.5 and a minimum missing transverse energy (of the neutrino),

MET > 30 GeV. Note that the application of these cuts means that a comparison with the

code ZWMS can no longer be made. Although FEWZ/DYNNNLO could be used to provide

a reference cross-section under these cuts we do not pursue that here. Instead we simply

normalize to the (fitted) asymptotic result.

The results of this study are shown in Fig. 3. As anticipated, the e↵ect of the cuts is

to significantly decrease the ⌧ cut-dependence of the cross-section. For instance, rather than

a di↵erence of approximately 1% with the asymptotic result for ⌧ cut = 0.02 in the inclusive

case, the fiducial cross-section di↵ers by a few per mille or less for the same value of ⌧ cut.
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We can then turn our attention to differential predictions (still at 
NLO) and see the impact of the tau dependence differentially. 

Dependence on the tau cutoff becomes more 
acute for larger values of the rapidity. 



Figure 4. The ratio of the MCFM jettiness calculation of the NNLO coe�cient to the known result
presented in Table 5, as a function of the jettiness slicing parameter ⌧ cut. The comparison is performed
for gg ! H, Z, W+, ZH and W±H production and the lines represent fits to the individual points
using the form given in Eq. (6.1).
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Process ��NNLO ��NNLO/�LO

H 10.01 pb 0.774

Z 2.200 nb 0.050

W+ 4.702 nb 0.058

ZH 0.06562 pb 0.096

W+H +W�H 0.0294 pb 0.023

Table 5. NNLO corrections to the processes computed in this paper.

range. Of these other processes ZH production has the largest correction, but this is largely

due to the e↵ect of gg ! ZH and top-Yukawa contributions that first enter at this order and

are finite.

The calculation of the NNLO coe�cients by jettiness subtraction are compared with

results from the literature in Fig. 4. Note that all of the plots use a common scale for the

ratio, except for the one representing the gg ! H calculation, for which the power corrections

are much smaller.

The form of the power corrections at NNLO results in a slower approach to the aymptotic

result. The leading two terms in the expansion of the power corrections take the form [5],

��NNLO
jettiness (⌧

cut) = ��NNLO + c3

✓
⌧ cut

Q

◆
log

✓
⌧ cut

Q

◆3

+ c2

✓
⌧ cut

Q

◆
log

✓
⌧ cut

Q

◆2

, (6.1)

where Q is the appropriate scale as before and c3, c4 are unknown constants. Also shown in

Fig. 4 are fits of the results to Eq. (6.1), with the values of ��NNLO and c3, c2 determined

in the fit. The subleading term is only important in the case of the gg ! H process, in

order to capture the observed turn-over for larger values of ⌧ cut. For gg ! H, ZH and W±H

production the fit value of ��NNLO di↵ers from the known result given in Table 5 by less

than one per mille. For the Z and W+ processes the agreement is much poorer, at the level

of approximately 4%.

6.2 Rapidity distributions at NNLO

Given the e↵ect of the power corrections on the rapidity distribution at NLO, we expect to

see a similar pattern at NNLO. Since in this case we do not have an exact calculation with

which to compare, we instead compares predictions for ⌧ cut = 0.01 and ⌧ cut = 0.004. For the

gg ! H and ZH processes that we study here, the predictions for ⌧ cut = 0.004 should be a

good proxy for the exact distibution given the small deviations from the incusive cross-section

to which they correspond (around 0.8% for both). For Z production, this value of ⌧ cut yields

a cross-section that di↵ers by 10% from the known result. Nevertheless it is su�cient to

demonstrate the pattern of the power corrections.

The dependence on ⌧ cut of the NNLO contributions to the rapidity distributions are

shown in Fig. 5. As observed at NLO, all three distributions are much less sensitive to the
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Next we study the dependence at NNLO 
for the inclusive cross sections. 

The dependence on tau can be formulated 
as follows 

Note, if desired a tau->0 extrapolation can 
be made (even at reasonably large tau). 

Note also the change in scale from the 
NLO comparisons. 

O(10%) corrections are more 
prevalent at NNLO for larger tau



Figure 5. MCFM jettiness calculation of the NNLO contribution to the rapidity distributions of the
Higgs boson (left), Z boson (centre) and ZH system (right), in the gg ! H, Z and ZH production
processes respectively. Results are shown for two values of ⌧ , with the lower panel showing the ratio
of the ⌧ cut = 0.01 result to the ⌧ cut = 0.004 one.

choice of ⌧ cut in the central region than at large rapidities. The quality of the independence

from ⌧ cut deteriorates substantially for |y| & 2. However, even in the central region, the Z

process is far more a↵ected by the choice of ⌧ cut than the other two calculations. In the more

forward regions, which still contribute to the cross-section at an appreciable level, the ⌧ cut

dependence rises to the level of a few tens of percent. For this reason it is crucial to apply

the basic fiducial cuts introduced earlier in order to obtain a percent level agreement with

the NNLO coe�cient.

In contrast, for phenomenology it is su�cient to study the e↵ect of the value of ⌧ cut

not on the e↵ect of the NNLO correction itself, but on the total prediction at that level of

accuracy. In that case the smallness of the NNLO coe�cient in the case of Z production is an

advantage as it suppresses the relative size of the power corrections in the total. On the other

hand the gg ! H process, which receives a very large correction at NNLO, is more easily

subject to power corrections. In order to provide a full NNLO prediction for the rapidity

distributions discussed in this section we sum the results of a standard MCFM calculation

at NLO and a computation of only the NNLO correction using jettiness subtraction. The

resulting distributions are shown in Fig. 6. The gg ! H and Z production processes di↵er

by a couple of percent in the tails of the distribution, for these two values of ⌧ cut, but are

otherwise in excellent agreement. The dependence on ⌧ cut is even smaller for the case of ZH

production.

6.3 Cross-sections under cuts

Although the W and Z production cases are the most sensitive to ⌧ cut at NNLO, at this order

both ZH andW±H production also display a non-negligible dependence on ⌧ cut. We therefore

consider all four processes in this section. We apply the same cuts as before for W and Z

production, with W±H and ZH subject to the same cuts as the W and Z cases respectively.
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Figure 7. The ratio of the MCFM jettiness calculation of the NNLO coe�cient to the (fitted)
asymptotic result, as a function of the jettiness slicing parameter ⌧ cut. The comparison is performed
for Z, W+, ZH and W±H production and for both the inclusive case and for a minimal set of fiducial
cuts (detailed in the text). The lines represent fits to the individual points using the form given in
Eq. (6.1).

two measures. The first is the size of the correction in the higher-order coe�cient itself,

which is mostly useful from a purely theoretical point of view. The second is the size of the

power correction relative to the total higher-order cross-section, which is most important for

phenomenological applications.

The situation is summarized in Table 7. One sees that, although in general the require-

ments on ⌧ are much more strict for W+ and Z production, for a full calculation with a few
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The issues at large rapidity are also more 
pronounced at NNLO, leading to substantial tau 
dependence at larger rapidity (especially for DY) 

Cuts on the rapidity of final state particles 
(relevant for phenomenology) improve the 
situation substantially. 



Process ��NNLO �NNLO

10% accuracy 2% accuracy 1% accuracy 0.2% accuracy

gg ! H inclusive 1 0.02 0.03 0.002

Z inclusive 0.005 0.001 0.01 0.002

lep. cuts 0.03 0.002 0.07 0.005

W+ inclusive 0.003 0.0008 0.005 0.001

lep. cuts 0.02 0.002 0.03 0.003

ZH inclusive 0.2 0.01 0.3 0.02

lep. cuts 1 0.05 0.8 0.04

W±H inclusive 0.01 0.002 0.2 0.01

lep. cuts 0.1 0.01 0.8 0.08

Table 7. Values of ⌧ required for the given level of contributions from power corrections in the
NNLO jettiness calculation of the processes studied in this paper.

per-mille power correction e↵ects a value of ⌧ = 0.002 is su�cient for all processes.

8 To-do

• Should mention that it is best to perform standard MCFM calculation at NLO and then

compute NNLO correction using jettiness subtraction, since size of ⌧ cut can otherwise

lead to competing e↵ects from NLO power corrections.

• Compare e↵ect on total NNLO, not just NNLO coe�cient.

• Summarize values of ⌧ required for given accuracy.
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Figure 6. MCFM calculation of the full NNLO result for the rapidity distributions of the Higgs boson
(left), Z boson (centre) and ZH system (right), in the gg ! H, Z and ZH production processes
respectively. Results are shown for two values of ⌧ , with the lower panel showing the ratio of the
⌧ cut = 0.01 result to the ⌧ cut = 0.004 one.

Process �LO,fid ��NNLO,fid ��NNLO,fid/�LO,fid

Z 708.6 pb 44.8 pb 0.063

W+ 3.259 nb 270 pb 0.083

ZH 9.606 fb 1.126 fb 0.12

W±H 0.1337 fb 0.00353 fb 0.026

Table 6. NNLO corrections under the basic fiducial cuts described in the text.

For definiteness we consider the final states W±(! e±⌫)H(! ��) and Z(! e�e+)H(! bb̄),

but do not apply any cuts to the Higgs boson decay products in either case in order for the

results to remain valid for any decay channel of the Higgs boson.

The results of this study are shown in Fig. 7. For the W and Z cases, the improvement

is dramatic; for ⌧ cut = 0.02 the di↵erence from the asymptotic result improves from approx-

imately 35% in the inclusive case to 8% under cuts. A similar level of improvement applies

in the case of W production. For ZH production the gain is less pronounced due to the fact

that only the Z decay products are restricted in rapidity, which results in a less stringent

constraint on the combined ZH system. Nevertheless, the agreement with the asymptotic

result improves by about a factor of two relative to the case of no cuts. The aymptotic value

of each NNLO jettiness calculation, together with the LO cross-sections under the fiducial

cuts used in this study, are shown in Table 6.

7 Summary

As a yardstick of the capabilities of the jettiness method for computing higher-order correc-

tions in the three processes studied in detail here, in this section we summarize the values

of ⌧ required in order to reduce the e↵ect of power corrections to a given size. We consider
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When combined with the NLO 
(computed with dipoles) the total tau 
dependence is suppressed. 

This method is acceptable for 
phenomenological applications.

Recipe for values of tau_cut to achieve a given accuracy



��@NNLO



Figure 1. Representative Feynman diagrams for the calculation of pp ! �� at NNLO. From
left to right these correspond to double virtual (calculated in ref. [48]), real-virtual and real-real
corrections.

calculation.

2 Calculation

In this section we present an overview of our calculation of diphoton production at NNLO
and discuss the various contributions that are included in this paper. Before going into
detail we introduce the following notation

�NLO
�� = �LO +��NLO

�NNLO
�� = �NLO +��NNLO

= �LO +��NLO
+��NNLO (2.1)

In this way ��X represents the correction obtained from including the coefficient that first
arises at order X in perturbation theory.

2.1 Overview

We present representative Feynman diagrams for the various topologies that enter the
calculation of the pp ! �� process at NNLO in Figure 1. At this order in perturbation
theory contributions arise from three distinct final states. The simplest is the one that also
represents the Born contribution and corresponds to a 2 ! 2 phase space. At NNLO this
final state receives corrections from two-loop amplitudes interfered with the LO amplitude,
and one-loop squared contributions. The 2 ! 3 real-virtual phase space consists of tree-
level and one-loop amplitudes for qqg�� interfered with one another. Finally the largest
phase space, representing a 2 ! 4 process, is referred to as the double-real contribution and
consists of two tree-level qq�� +2 parton amplitudes squared. The contributions discussed
above have ultraviolet (UV) poles in the double-virtual and real-virtual phase spaces, which
we renormalize in the MS scheme. Amplitudes for the double-virtual contribution can be
found in ref [48], and for the real-virtual in [49], tree-level amplitudes for the real-real can
be found in [50].

After UV renormalization the individual component pieces of the calculation still con-
tain copious singularities of infrared (IR) origin. These infrared poles must be regulated
and combined across the different phase spaces in order to ensure that a sensible prediction
is obtained. As discussed in the introduction, we will use the N -jettiness slicing technique
proposed in refs [29, 37] for this task. This results in an above-cut contribution correspond-
ing to the calculation of pp ! ��j at NLO. The below-cut contribution requires 2-loop
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Figure 2. Representative Feynman diagrams for the calculation of gg ! �� at LO (top left) and
NLO (the remainder). The virtual two-loop corrections are shown in the top right, while the bottom
row corresponds to real radiation contributions.

soft [51, 52] and beam [53] functions, together with the process-dependent hard function.
Various component pieces of this calculation, including explicit results for the hard function,
are given in Appendix A

2.2 gg initiated loops at LO and NLO

The NNLO calculation of �� production represents the first order in perturbation theory
that is sensitive to gg initial states. One class of gg configurations corresponds to real-real
corrections, i.e. the gg ! qq�� matrix element that is related to the contribution shown in
figure 1 (right) by crossing. These pieces are combined with contributions from the DGLAP
evolution of the parton distribution functions in the real-virtual and double-virtual terms
to ensure an IR-finite result. The second type of contribution is due to nF “box” loops, for
which a representative Feynman diagram is shown in the top left corner of Figure 2. This
contribution has no tree-level analogue and is thus separately finite.

The box diagrams result in a sizeable cross section (⇡ �LO), primarily due to the large
gluon flux at LHC energies and the fact that this contribution sums over different quark
flavors in the loop. In this section, we focus on nF = 5 light quark loops. Since this
contribution is clearly important for phenomenology it is interesting to try to isolate and
compute higher order corrections to it. We illustrate typical component pieces of these
NLO corrections in the remaining diagrams in Figure 2. They comprise two-loop gg ! ��

amplitudes, and one-loop ggg�� and gqq�� amplitudes. A NLO calculation of gg ! ��

including the two-loop and one-loop ggg�� amplitudes was presented in refs. [20, 21]. An
infrared-finite calculation can be obtained from the gg ! �� two loop amplitudes and the
ggg�� one-loop amplitudes, provided that a suitable modification to the quark PDFs is used
(essentially using a LO evolution for the quark PDFs and a NLO evolution for the gluon
PDFs). On the other hand if the qqg�� amplitudes are included then the corresponding
collinear singularity can be absorbed into the quark PDFs as normal at NLO, allowing
for a fully consistent treatment. In the original calculation [20, 21] (and the corresponding
implementation in MCFM [46]) the first approach was taken. Here we will follow the second
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�[fb] LO NLO NNLO
µF = µR = m��/2 5045 ± 1 26581 ± 23 45588 ± 97
µF = µR = m�� 5712 ± 2 26402 ± 25 43315 ± 54
µF = µR = 2m�� 6319 ± 2 26045 ± 24 41794 ± 77

Table 1. Cross sections reported in ref. [? ].

pieces always as �NNLO
+ ��N3LO

gg,nF
. Our default scale choice for the renormalization and

factorization scales will be µ = m�� .

3 Validation

In this section we compare our results for pp ! �� with those presented in ref. [? ]. A
summary of cross-sections that have been computed in that work is shown in Table ??.
To emulate their calculation we impose a series of phase space selection cuts. The cuts on
the transverse momenta of the photons depend on their relative size, phardT > 40 GeV and
psoftT > 25 GeV. The photons are also required to be central, |⌘� | < 2.5 and in addition we
require that the invariant mass of the photon-photon system lies in the interval 20  m�� 
250 GeV. Finally at NLO and NNLO we impose the following isolation requirement [? ]

Ehad
T (r)  ✏�p

T
�

✓
1� cos r

1� cosR

◆n

, (3.1)

with n = 1, ✏� = 0.5 and R = 0.4. We use ↵ = 1/137 and the remaining EW parameters
are set to the default values in MCFM. The PDFs are taken from MSTW2008 [? ] and
are matched to the appropriate order in perturbation theory. The renormalization and
factorization scales are mostly set to the invariant mass of the photon pair µF = µF = m�� ,
although we will also present results for µF = µR = m��/2 and µF = µR = 2m�� .

The results that we obtain from our implementation in MCFM are presented in Table ??
and should be compared with the results from ref. [? ] that are shown in Table ??. Whilst
our LO and NLO predictions are in good accord, we find no such agreement for the NNLO
cross sections, for any of the choices of scale. The discrepancy is approximately 3pb, or
around 8% of the total NNLO prediction. However we do note that the size of the scale
variation, i.e. the departures from the central choice, is the same for both calculations.

Since we therefore do not agree with the essential results of the existing literature we
now describe the further checks that we have performed on our calculation. Several of
the ingredients for the below-cut contribution have been reused from previous calculations
where good agreement with the literature results was obtained. Specifically, the soft and
beam functions have already been used to compute the Drell-Yan and associated Higgs
production processes [? ? ]. The MCFM predictions for these cross sections agree perfectly
with the known results from the literature. The remaining below-cut contribution, the
hard function, has been implemented in two independent codes that check both the SCET
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are set to the default values in MCFM. The PDFs are taken from MSTW2008 [? ] and
are matched to the appropriate order in perturbation theory. The renormalization and
factorization scales are mostly set to the invariant mass of the photon pair µF = µF = m�� ,
although we will also present results for µF = µR = m��/2 and µF = µR = 2m�� .

The results that we obtain from our implementation in MCFM are presented in Table ??
and should be compared with the results from ref. [? ] that are shown in Table ??. Whilst
our LO and NLO predictions are in good accord, we find no such agreement for the NNLO
cross sections, for any of the choices of scale. The discrepancy is approximately 3pb, or
around 8% of the total NNLO prediction. However we do note that the size of the scale
variation, i.e. the departures from the central choice, is the same for both calculations.

Since we therefore do not agree with the essential results of the existing literature we
now describe the further checks that we have performed on our calculation. Several of
the ingredients for the below-cut contribution have been reused from previous calculations
where good agreement with the literature results was obtained. Specifically, the soft and
beam functions have already been used to compute the Drell-Yan and associated Higgs
production processes [? ? ]. The MCFM predictions for these cross sections agree perfectly
with the known results from the literature. The remaining below-cut contribution, the
hard function, has been implemented in two independent codes that check both the SCET
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�[fb] LO NLO NNLO
µF = µR = m��/2 5043 ± 1 26578 ± 13 42685 ± 35
µF = µR = m�� 5710 ± 1 26444 ± 12 40453 ± 30
µF = µR = 2m�� 6315 ± 2 26110 ± 13 38842 ± 27

Table 2. Cross section results obtained using MCFM. The NLO contribution is always computed
using Catani-Seymour dipole subtraction; the NNLO coefficient corresponds to the ⌧ ! 0 limit of
a calculation using N -jettiness regularization (c.f. Figure ??). In the NNLO calculation the errors
are obtained by adding the fitting and NLO Monte Carlo uncertainties in quadrature.

matching and the proper inclusion of the double-virtual results of ref. [? ]1. Additionally
we have checked that by setting µ2

= s, and implementing the hard function for a specific
scale, we can reproduce the full result by application of the renormalization group equations.
This test is extremely non-trivial since the µ2 dependence occurs both in the finite functions
taken from ref. [? ] (in their notation, a dependence on S) and also in the matching to the
SCET formalism. This check therefore ensures that no mistakes are made in the relative
normalization between the two parts of the hard function calculation. For the gg ! ��

pieces we have reproduced the results of refs. [? ? ], which were implemented previously in
MCFM [? ]. For the above-cut pieces we have compared our NLO prediction for ��j with
the results presented in ref. [? ], finding agreement for the isolation procedure used here
(“smooth-cone”). We have also checked the analytic calculation of the helicity amplitudes
for the real and virtual contributions to ��j production against an in-house implementation
of the numerical D-dimensional algorithm [? ].

In order to eliminate the N -jettiness slicing procedure as a cause of the difference, we
have also implemented QT -slicing in MCFM.2 This implementation has been additionally
checked, for large values of Qcut

T , with a calculation using a completely different setup. The
alternate QT -slicing calculation is implemented using the Sherpa framework [? ] and uses
the OpenLoops [? ] and BlackHat [? ? ] programs to evaluate the above-cut matrix
elements. An obvious cause for concern in either of these slicing-based methods is the
dependence on the regulating parameter. When comparing our predictions it is therefore
crucial to investigate the dependence of them on this unphysical slicing parameter, either
⌧ cut or Qcut

T as appropriate.
As a point of reference, we first study the dependence of the total NLO cross section

on the slicing parameter in Figure ??. To assess the agreement with the known result,
we divide the results of these calculations with the one obtained from the existing NLO
calculation of MCFM. This implementation of the pp ! �� process [? ] uses Catani-
Seymour dipoles [? ] to regulate the infrared divergences and thus contains no dependence
on a slicing parameter. The figure indicates that the slicing results approach the correct

1
We have adjusted the results of ref. [? ] to account for small typos in the manuscript, as detailed in

Appendix ??.

2
The QT -slicing method is based on the same factorization and ingredients that were used in the previous

QT -subtraction calculation [? ].
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Figure 4. The dependence of the NLO cross section on the slicing parameter �cut. Results are
presented using the N -jettiness (�cut ⌘ ⌧ cut) and QT -slicing (�cut ⌘ Qcut

T ) methods. In both cases
the results are normalized to the standard MCFM prediction obtained with Catani-Seymour dipole
subtraction, which does not have a slicing parameter dependence.

cross section, with deviations in the cross section that are O(0.1)% and smaller for ⌧ cut .
0.002 GeV or Qcut

T . 0.04 GeV. This agreement is an additional check of the correctness of
the NNLO calculation since the one-loop hard function is also used there.

Although the effect of power corrections appears to be milder for QT -slicing than N -
jettiness regularization, by around a factor of 20, we note that the computational resources
required to perform the calculations at these two points is similar. The resources needed
for a computation of a given accuracy is dominated by the calculation of the above-cut
contribution, which scales as [? ? ],

��NnLO
(⌧ > ⌧ cut)/�LO ⇠ 1

n!

✓
↵sCF

⇡

◆n

log

2n ⌧ cut

Q
+ . . . (3.2)

for the N -jettiness calculation. In this equation Q is an appropriate hard scale that is given
here by the transverse momentum of the photons. A similar analysis for QT -slicing yields
the result [? ],

��NnLO
(QT > Qcut

T )/�LO ⇠ 1

n!

✓
2↵sCF

⇡

◆n

log

2n Qcut
T

Q
+ . . . (3.3)

Therefore one expects similar computational effort for the two methods when the values of
⌧ cut and Qcut

T are related by [? ],

⌧ cut

Q
'

✓
Qcut

T

Q

◆p
2

, (3.4)

For Q = 40 GeV one therefore expects the NLO calculation using Qcut
T = 0.04 GeV to be

as expensive as the one with ⌧ cut = 0.0023 GeV.
Figure ?? shows the �cut dependence for the NNLO coefficient, ��NNLO (c.f. Eq. ??).

It is clear that the dependence is much more pronounced than at NLO. To achieve a 1%
accuracy for ��NNLO requires a value of ⌧ cut around 0.002 GeV or Qcut

T smaller than
about 0.02 GeV. Once again power corrections are less significant for QT -slicing, but the
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Figure 5. The dependence of the NNLO coefficient ��NNLO on the slicing parameter �cut. Results
are presented using the N -jettiness (�cut ⌘ ⌧ cut) and QT -slicing (�cut ⌘ Qcut

T ) methods. The dashed
lines correspond to the errors associated with the fitting procedure.

computing time to achieve equivalent accuracy is comparable in both methods. This is in
line with the scaling expected from Eq. (??). The NNLO results reported in Table ?? are
obtained from the asymptotic ⌧ ! 0 results obtained by a fit to the ⌧ cut dependence that
is represented by the solid red line in figure ??. We observe that for values of Qcut

T around
1 GeV there is a a local maximum in the NNLO coefficient, which could be mistaken for
the onset of asymptotic behavior.

We have communicated our findings with the authors of ref. [? ], who have acknowl-
edged a problem with their existing calculation. Although unable to explicitly confirm at
this time, after suitable modifications to their code their preliminary results appear to be
consistent with our calculation.

4 LHC Phenomenology

In this section we present results that are relevant for current LHC phenomenology. We
first investigate the comparison of our calculation with existing data taken by the CMS
experiment with the LHC operating at

p
s = 7 TeV. Although such comparisons have

already been performed, we believe that this is especially important given the disagreement
with the previous NNLO calculation noted in section ??. Additionally, we are able to
make the first comparison of the data to a theory prediction that includes both NNLO
and ��N3LO

gg,nF
. We then turn our attention to more recent data taken at

p
s = 13 TeV and

concentrate on the region of high invariant mass of the diphoton pair, which is relevant for
searches for new physics. This region of phase space is particularly interesting given the
recent observations of excesses in the data at around 750 GeV [? ? ]. For the remainder of
this paper we will use the NNLO CT14 PDF set [? ] for all predictions (NNLO, NLO, and
��N3LO

gg,nF
). The NLO (and ��N3LO

gg,nF
) contributions are computed using dipole subtraction

and the NNLO coefficients use jettiness regularization with a value of ⌧ cut = 0.002 GeV.
From the studies of section ?? we expect this to give us control of the power corrections
at the few per-mille level in the total cross-section. We maintain the EW parameters from
the previous section, namely ↵ = 1/137.
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Figure 6. The pp ! �� cross section at various orders in perturbation theory, as a function of
the LHC operating energy,

p
s. Acceptance cuts have been applied, as described in the text. Also

shown is the CMS measurement, under the same set of cuts, at 7 TeV [? ].

This improves the agreement somewhat, in that the central value and error bands now
completely overlap. Since we do not include the full N3LO prediction we do not obtain any
improvement in the scale variation when including the gg box contributions at NLO.

As a brief aside, in Figure ?? we show the cross section computed at higher center of
mass energies, from the 7 TeV result discussed above to the highest design energy of the
LHC, 14 TeV. In the figure we include the cross sections computed at LO, NLO, NNLO
and NNLO+gg boxes at NLO. As the order in perturbation theory increases there are
sizeable corrections. Going from LO to NLO the cross section increases by around a factor
of 4. The corrections going from NLO to NNLO are around 1.5. Including the additional
gg contributions at NLO increases the cross section by about a further 10%. At the 13
TeV LHC the difference between �NNLO and �NNLO

+��N3LO
gg,nF

is more apparent and it is
entirely possible that a measurement will prefer one value over the other. Note that it is
not trivially true that �NNLO

+��N3LO
gg,nF

is a better prediction than �NNLO since the former
is not a complete N3LO calculation. The missing pieces are not positive definite, and may
reduce the cross section such that �N3LO lies completely within the uncertainty bands of
the NNLO calculation. It will be interesting to compare the measured cross sections at
13 TeV and 14 TeV to the two predictions to see if indeed �NNLO

+��N3LO
gg,nF

does a better
job of describing the data than �NNLO alone.

We now turn our attention to more differential quantities, namely the invariant mass
of the photon pair, m�� (Figure ??), the transverse momentum of the �� system, p��T
(Figure ??), and the azimuthal angle between the two photons, ���� (Figure ??). We note
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Figure 7. The invariant mass of the photon pair m�� at NLO and NNLO, compared with the CMS
data from ref. [? ]. The pure NNLO prediction is shown in the left panel, while the result that also
includes gg nF contributions that enter at N3LO is depicted in the right panel. The lower panels
present the ratio of the data and NNLO scale variations to the NNLO theory prediction obtained
with the central scale.

that, of these predictions, only m�� is non-trivial at LO since the back-to-back nature of
the kinematics at LO means that p��T = 0 and ��� = ⇡. Such distributions that are trivial
at LO are particularly sensitive to higher order corrections. In the bulk of the phase space
they first appear at one order higher in ↵s than the total inclusive cross section. Sadly,
most of the distributions made publicly available by the experimental collaborations suffer
from this problem. It would be interesting to additionally compare true NNLO observables,
such as the transverse momenta and rapidities of the photons, in future analyses at higher
energies.

We now examine the predictions for the invariant mass of the photon pair shown in
Figure ?? in more detail. Note that the transverse momentum cuts on the photons requires
m�� > 80 GeV at LO, so that the region of this distribution below that value is particularly
sensitive to higher order corrections. For all of the figures described here, the plots on
the left hand side are obtained using a pure NNLO prediction, while those on the right
represent the prediction obtained with the inclusion of the ��N3LO

gg,nF
contributions. The

NNLO prediction does a good job of describing the data obtained by CMS, although the
central values are typically a little on the low side compared to data. The situation is
improved in the right hand plot, after inclusion of the ��N3LO

gg,nF
pieces. In particular in the

region around 80 . m�� . 150 GeV the prediction follows the shape of the data a little
more closely.
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Figure 8. As for figure ??, but for the transverse momentum of the photon pair, p��T .

In Figure ?? we turn our attention to the p��T spectrum, using the same style as for
the m�� plots. The pure NNLO prediction again describes the data very well, even in the
very soft p��T < 10 GeV region of phase space. Including the gg pieces at NLO improves the
agreement with data in the region 10 . p��T . 100 GeV. In the soft region of phase space
it is difficult to argue that the inclusion of the additional pieces improves the agreement
with data. This is understandable since the softest bins are described only after a delicate
cancellation between the various real and virtual pieces of the calculation. By only including
a subset of the N3LO calculation we are unlikely to improve this bin. However in the bulk
of the phase space we are typically interested in the types of correction that are sensitive to
the staggered phase space cuts. This is exactly the places where we expect the gg ! ��g

contribution to be important. By including these pieces we therefore do a better job of
describing the data.

The situation with the ���� distribution is similar. The NLO prediction for this
observable does a very bad job of describing the CMS data. However by including the NNLO
corrections we get much closer to the data, whilst still observing large (⇠ 1.5�) deviations
from the experimental data towards the middle of the distribution. This observable clearly
requires at least a full N3LO prediction to match the experimental data. However, our
partial prediction does not do much better. Again we are exposed to the LO phase space
sensitivity in the bins around ⇡ where it is entirely possible that reasonably large corrections
from the three-loop triple virtual and real-double virtual may drive the theoretical prediction
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Bump hunting in the diphoton system assume a smooth function which 
can be fitted to the data.

Figure 2. Representative Feynman diagrams for the calculation of gg ! �� at LO (top left) and
NLO (the remainder). The virtual two-loop corrections are shown in the top right, while the bottom
row corresponds to real radiation contributions.

soft [51, 52] and beam [53] functions, together with the process-dependent hard function.
Various component pieces of this calculation, including explicit results for the hard function,
are given in Appendix A

2.2 gg initiated loops at LO and NLO

The NNLO calculation of �� production represents the first order in perturbation theory
that is sensitive to gg initial states. One class of gg configurations corresponds to real-real
corrections, i.e. the gg ! qq�� matrix element that is related to the contribution shown in
figure 1 (right) by crossing. These pieces are combined with contributions from the DGLAP
evolution of the parton distribution functions in the real-virtual and double-virtual terms
to ensure an IR-finite result. The second type of contribution is due to nF “box” loops, for
which a representative Feynman diagram is shown in the top left corner of Figure 2. This
contribution has no tree-level analogue and is thus separately finite.

The box diagrams result in a sizeable cross section (⇡ �LO), primarily due to the large
gluon flux at LHC energies and the fact that this contribution sums over different quark
flavors in the loop. In this section, we focus on nF = 5 light quark loops. Since this
contribution is clearly important for phenomenology it is interesting to try to isolate and
compute higher order corrections to it. We illustrate typical component pieces of these
NLO corrections in the remaining diagrams in Figure 2. They comprise two-loop gg ! ��

amplitudes, and one-loop ggg�� and gqq�� amplitudes. A NLO calculation of gg ! ��

including the two-loop and one-loop ggg�� amplitudes was presented in refs. [20, 21]. An
infrared-finite calculation can be obtained from the gg ! �� two loop amplitudes and the
ggg�� one-loop amplitudes, provided that a suitable modification to the quark PDFs is used
(essentially using a LO evolution for the quark PDFs and a NLO evolution for the gluon
PDFs). On the other hand if the qqg�� amplitudes are included then the corresponding
collinear singularity can be absorbed into the quark PDFs as normal at NLO, allowing
for a fully consistent treatment. In the original calculation [20, 21] (and the corresponding
implementation in MCFM [46]) the first approach was taken. Here we will follow the second
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Figure 10. The ratio of various different theoretical predictions to the NNLO nF = 5 differential
cross section. The different predictions correspond to: the inclusion of the top quark gg ! ��

box diagrams (green), the ��N3LO
gg,nF

correction (red) and the ��N3LO
gg,nF

and the top boxes with the
��N3LO

gg,nF
correction re-scaled by the ratio K(mt) described in the text (blue).

analyses the Standard Model background is accounted for by using a data-driven approach
that fits a smooth polynomial function to the data across the entire m�� spectrum. A
resonance might then be observed as a local excess in this spectrum, deviating from the
fitted form. Although well-motivated, one might be concerned that the spectrum may not
be correctly modeled at high energies, where there is little data, and that small fluctuations
could unduly influence the form of the fit and result in misinterpretation of the data. Such
worries could be lessened by using a first-principles theoretical prediction for the spectrum
and it is this issue that we aim to address in this section.

As a concrete example, we will produce NNLO predictions for the invariant mass spec-
trum at high energies using cuts that are inspired by the recent ATLAS analysis [16].
Specifically, these are:

p�,hardT > 0.4m�� p�,softT > 0.3m��

|⌘� | < 2.37, excluding the region, 1.37 < |⌘� | < 1.52 (4.6)

We will only be interested in the region m�� > 150 GeV, so these represent hard cuts on the
photon momenta. The small region of rapidity that is removed corresponds to the transition
from barrel to end-cap calorimeters. We maintain the same isolation requirements as the
previous section, which again differs slightly from the treatment in the ATLAS paper.

Our first concern is to address the impact of the gg pieces at NLO, represented by
the contribution ��N3LO

gg,nF
defined previously, and the contribution of the top quark loop.

We summarize our results in Figure 10, in which we present several different theoretical
predictions, each normalized to the the default NNLO prediction with 5 light flavors. The
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A natural concern is that the fit, while good in the region of lots of data, 
may not correctly describe tails with limited data. 
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Figure 1: Invariant mass distribution of the selected diphoton events. Residual number of events with respect to the
fit result are shown in the bottom pane. The first two bins in the lower pane are outside the vertical plot range.

The events in this region are scrutinized. No detector or reconstruction e�ect that could explain the larger
rate is found, nor any indication of anomalous background contamination. The kinematic properties of
these events are studied with respect to those of events populating the invariant mass regions above and
below the excess, and no significant di�erence is observed.

The Run-1 analysis presented in Ref. [13] is extended to invariant masses larger than 600 GeV by using the
new background modeling techniques presented in this note (cf. Section 7). The compatibility between
the results obtained with the 8 TeV and 13 TeV datasets is estimated under the NWA hypothesis and
assuming a large-width resonance with ↵ = 6%, using the best fit value of the ratio of cross sections. For
an s-channel gluon-initiated process, the parton-luminosity ratio is expected to be 4.7 [43]. Under those
assumptions, the results obtained with the two datasets are found to be compatible within 2.2 and 1.4
standard deviations for the two width hypotheses respectively.

The 95% CL expected and observed upper limits on �fiducial⇥BR(X ! ��), corresponding to the fiducial
volume defined in Section 6, are computed using the CLs technique [39, 44] for a scalar resonance with
narrow width as a function of the mass hypothesis mX , and are presented in Figure 3. The larger diphoton
rate in the mass region around 750 GeV is translated to a higher-than-expected cross section limit at the
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Figure 11. The rate-normalized shapes of the m�� distribution from the ATLAS collaboration
and the MCFM NNLO prediction for µ = m�� . The lower panel indicates the ratio of the data to
the NNLO prediction.

As we found in the previous section the effects of the NLO corrections to the gg pieces
are larger, however their effects are much more pronounced at lower invariant masses. By
the time invariant masses of order 500 GeV are probed, the corrections are 2% or smaller.
The attempt to model the combined effect of corrections to both the light-quark and top
quark loops shows, as expected, the largest deviations from the NNLO(5`f ) prediction.
However the deviations are still of order 3% or smaller in the high invariant mass region.
Therefore, although the corrections to the gg loops and the effect of the finite top quark
mass can have about a 6% effect at invariant masses around 200 GeV, the effect at higher
masses is somewhat smaller. Since we aim to compare the ATLAS data, which is not
corrected for fakes or identification efficiencies, to our parton-level prediction we are not
concerned about effects at this level. As a result we will simply use the most consistent
prediction3, corresponding to NNLO(5`f ), for comparison with the fitting function used by
ATLAS.

We compare our NNLO prediction to the ATLAS data in Figure ??. We note that
to properly compare our prediction to the data requires knowledge of both the fake rate

3
This is because a consistent inclusion of the effect of top quark loops would require alterations to the

running of ↵s and additional top quark loops in the qqg�� one-loop amplitude.
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Can check with a first principles calculation of the shape of the SM 
prediction and compare the shape to the data. 

Diphoton invariant mass



Lots of work by many people upgrading MCFM to NNLO version, including MPI 
on top of OMP (Campbell, Giele, Ellis 14) version. We will release code very soon. 

. Boughezal,  Campbell,  Ellis, Focke,  Giele, Liu, Petriello and Williams (in prep), 

[1] Boughezal et al, 1512.01291 

[2] Boughezal et al,1504.02131

[3]  Boughezal et al,  1505. 03893
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MCFM 8.0



Conclusions
We have validated the jettiness slicing method by 
reproducing known results for colour singlet final 
states. 

A new result for 𝛾𝛾  production corrects the 
published result in the literature.

The observed 𝛾𝛾 mass distribution is well predicted 
by a theoretical calculation.

MCFM-8.0 will have a suite of NNLO processes. 


