PDF, α_s , and quark masses from global fits

S.Alekhin (Univ. of Hamburg & IHEP Protvino) (in collaboration with J.Blümlein, S.Moch, and R.Plačakytė)

Loops and Legs in Quantum Field Theory, Leipzig, 27 Apr 2016

Vacuum stability is quite sensitive to the t-quark mass

The ABMP16 ingredients

DATA: DIS NC/CC inclusive (HERA I+II added, no deuteron data included) **DIS NC charm production (HERA)** DIS CC charm production (HERA, NOMAD, CHORUS, NuTeV/CCFR) fixed-target DY sa, et al. hep-ph/1404.6469 LHC DY distributions (ATLAS, CMS, LHCb) t-quark data from the LHC and Tevatron OCD: NNLO evolution NNLO massless DIS and DY coefficient functions NLO+ massive DIS coefficient functions (**FFN scheme**) – NLO + NNLO threshold corrections for NC - NNLO CC at Q>> m - running mass NNLO exclusive DY (FEWZ 3.1) NNLO inclusive ttbar production (pole / running mass) Relaxed form of (dbar-ubar) at small x sa, Blümlein, Moch. Plačakytė hep-ph/1508.07923 Power corrections in DIS: target mass effects dynamical twist-4 terms

Collider W&Z data used in the fit

In the forward region $x_2 >> x_1$ $\sigma(W^+) \sim u(x_2) \text{ dbar } (x_1)$ $\sigma(W^-) \sim d(x_2) \text{ ubar } (x_1)$ $\sigma(Z) \sim Q_u^{-2}u(x_2) \text{ ubar } (x_1) + Q_D^{-2}d(x_2) \text{ dbar}(x_1)$ $\sigma(DIS) \sim q_u^{-2}u(x_2) + q_d^{-2}d(x_2)$

Forward W&Z production probes small/large x and is complementary to the DIS \rightarrow constraint on the quark iso-spin asymmetry

Experiment		ATLAS	CI	MS	D0		LHCb		
\sqrt{s} (TeV)		7	7	8	1.96		7	8	8
Final states		$W^+ \rightarrow l^+ \nu$	$W^+ \rightarrow \mu^+ \nu$	$W^+ \rightarrow \mu^+ \nu$	$W^+ \rightarrow \mu^+ \nu$	$W^+ \rightarrow e^+ \nu$	$W^+ \rightarrow \mu^+ \nu$	$Z \rightarrow e^+ e^-$	$W^+ \rightarrow \mu^+ \nu$
		$W^- \rightarrow l^- \nu$	$W^- \rightarrow \mu^- \nu$	$W^- \rightarrow \mu^- \nu$	$W^- \rightarrow \mu^- \nu$	$W^- \rightarrow e^- \nu$	$W^- \rightarrow \mu^- \nu$		$W^- \rightarrow \mu^- \nu$
		$Z \rightarrow l^+ l^-$					$Z \rightarrow \mu^+ \mu^-$		$Z \rightarrow \mu^+ \mu^-$
Cut on	the lepton P_T	$P_T^l > 20 \mathrm{GeV}$	$P_T^{\mu} > 25 \text{ GeV}$	$P_T^{\mu} > 25 \text{ GeV}$	$P_T^{\mu} > 25 \text{ GeV}$	$P_T^e > 25 \text{ GeV}$	$P_T^{\mu} > 20 \text{ GeV}$	$P_T^e > 20 \text{ GeV}$	$P_T^e > 20 \text{ GeV}$
	NDP	30	11	22	10	13	31	17	32
	ABMP16	30.0	22.0	16.8	18.2	19.6	45.4	21.5	45.4
	CJ15	-	_	_	20	29	-	_	-
	CT14	42	_ a	_	-	34.7	-	-	-
<i>x</i> ²	JR14	-	-	_	_	_	-	-	-
	HERAFitter	-	-	_	13	19	-	-	-
	MMHT14	39	-	_	21	-	-	-	-
	NNPDF3.0	35.4	18.9	-	-	-	-	-	-

^aStatistically less significant data with the cut of $P_T^{\mu} > 35$ GeV are used.

Obsolete/superseded/low-accuracy Tevatron and LHC data are not used

Most recent DY inputs

cf. earlier data in sa, Blümlein, Moch, Plačakytė, hep-ph/1508.07923

Impact of the forward Drell-Yan data

sa, Blümlein, Moch, Plačakytė, hep-ph/1508.07923

- Relaxed form of the sea iso-spin asymmetry I(x) at small x; Regge-like behaviour is recovered only at $x \sim 10^{-6}$; at large x it is still defined by the phase-space constraint
- Good constraint on the d/u ratio w/o deuteron data \rightarrow independent extraction of the deuteron corrections Accardi, Brady, Melnitchouk, Owens, Sato hep-ph/1602.03154; talks by Accardi and Petti at DIS2016
- Big spread between different PDF sets, up to factor of 30 at large $x \rightarrow$ PDF4LHC averaging is misleading in this part

DY at large rapidity

The data can be evidently used for consolidation of the PDFs, however, unification of the theoretical accuracy is also needed

ABM	СТ	MMHT	NNPDF
Interpolation of accurate NNLO grid (a la FASTNLO)	NNLL (ResBos)	NLO + NNLO K-factor	NLO + NNLO C-factors (y-dependent K-factors)

Implication for(of) the single-top production

ATLAS and CMS data on the ratio t/tbar are in a good agreement

• The predictions driven by the froward DY data are in a good agreement with the single-top data (N.B.: ABM12 is based on the deuteron data \rightarrow consistent deuteron correction was used talk by Petti at DIS2016)

Single-top production discriminate available PDF sets and can serve as a standard candle process

Heavy-quark electro-production in the FFNS

- Only 3 light flavors appear in the initial state
- The dominant mechanism is photon-gluon fusion
- The coefficient functions are known up to the NLO Witten NPB 104, 445 (1976)
 Laenen, Riemersma, Smith, van Neerven NPB 392, 162 (1993)
- Involved high-order calculations:

 NNLO terms due to threshold resummation Laenen, Moch PRD 59, 034027 (1999) Lo Presti, Kawamura, Moch, Vogt [hep-ph 1008.0951] Kawamura, Lo Presi, Moch, Vogt NPB 864, 399 (2012)
 limited set of the NNLO Mellin moments Ablinger at al. NPB 844, 26 (2011) Bierenbaum, Blümlein, Klein NPB 829, 417 (2009)

• At large Q the leading-order coefficient $\rightarrow ln(Q/m_{h})$ and may be quite big despite the suppression by factor of α_{s} and should be resummed

Shifman, Vainstein, Zakharov NPB 136, 157 (1978)

→ a motivation to derive the VFN scheme matched to the FFNS (ACOT...., RT..., FONLL....)

HERA charm data and $m_{c}(m_{c})$

m_c(m_c)=1.275±0.025 GeV PDG2016

m_c(m_c)=1.246±0.023 (h.o.) GeV NNLO Kiyo, Mishima, Sumino hep-ph/1510.07072

H1/ZEUS PLB 718, 550 (2012)

 Approximate NNLO massive Wilson coefficients (combination of the threshold corrections, high-energy limit, and the NNLO massive OMEs)
 Kawamura, Lo Presti, Moch, Vogt NPB 864, 399 (2012)

Running-mass definition of m_c
 X²/NDP=61/52

 $m_c(m_c)=1.250\pm0.020(exp.) \text{ GeV}$ ABMP16 $m_c(m_c)=1.24\pm0.03(exp.) \text{ GeV}$ ABM12

Good agreement with the e+e- determinations \rightarrow the FFN scheme nicely works for the existing data

 RT optimal X²/NDP=82/52 m_c(pole)=1.25 GeV

m_(pole)=1.275 GeV

X²/NDP=60/47

X²/NDP=59/47

m_(pole)=1.3 GeV

S-ACOT-χ

NNLO

MMHT14 EPJC 75, 204 (2015)

NNLO

NNPDF3.0 JHEP 1504, 040 (2015)

NNLO

CT14 hep-ph 1506.07443

PDF sets	<i>m</i> _c [GeV]	<i>m_c</i> renorm. scheme	n_c renorm. theory method (F_2^c scheme) theory accuracy for heavy quark DIS Wilson coeff		χ^2 /NDP for HERA data [127] with xFitter [128, 129]	
ABM12 [2] a	$1.24 \begin{array}{c} + 0.05 \\ - 0.03 \end{array}$	$\overline{\text{MS}} \ m_c(m_c)$	FFNS $(n_f = 3)$	NNLO _{approx}	65/52	66/52
СЛ5 [1]	1.3	m_c^{pole}	SACOT [122]	NLO	117/52	117/52
CT14 [3] ^b						
(NLO)	1.3	m_c^{pole}	SACOT(x) [123]	NLO	51/47	70/47
(NNLO)	1.3	m_c^{pole}	SACOT(x) [123]	NLO	64/47	130/47
HERAPDF2.0 [4] (NLO) (NNLO)	1.47	m_c^{pole} m^{pole}	RT optimal [125] RT optimal [125]	NLO NLO	67/52	67/52
JR14 [5] ^c	1.3	$\overline{\text{MS}} m_c(m_c)$	FFNS $(n_f = 3)$	NNLO _{approx}	62/52	62/52
MMHT14 [6] (NLO) (NNLO)	1.4 1.4	$m_c^{ m pole}$ $m_c^{ m pole}$	RT optimal [125] RT optimal [125]	NLO NLO	72/52 71/52	78/52 83/52
NNPDF3.0 [7] (NLO) (NNLO)	1.275 1.275	m_c^{pole} m_c^{pole}	FONLL-B [<u>124</u>] FONLL-C [<u>124</u>]	NLO NLO	58/52 67/52	60/52 69/52
PDF4LHC15 [8] d	-	-	FONLL-B [124]	-	58/52	64/52
	-	-	RT optimal [125]	-	71/52	75/52
	-	-	SACOT() [123]	-	51/47	76/47

No advantage of the GMVFN schemes: the VFN χ^2 values are systematically bigger than the FFN ones

Accardi, et al. hep-ph/1603.08906

Quark mass renormalization

Pole mass

Based on (unphysical) concept of heavy-quark being a free parton

$$\not p - m_q - \Sigma(p, m_q) \Big|_{p^2 = m_q^2}$$

- heavy-quark self-energy $\Sigma(p, m_q)$ receives contributions from regions of all loop momenta – also from momenta of $\mathcal{O}(\Lambda_{QCD})$
- Renormalon ambiguity in definition of pole mass of $\mathcal{O}(\Lambda_{QCD})$ Bigi, Shifman, Uraltsev, Vainshtein '94; Beneke, Braun '94; Smith, Willenbrock '97

\overline{MS} mass

- Free of infrared renormalon ambiguity
- Conversion between m_{pole} and \overline{MS} mass $m(\mu_R)$ in perturbation theory known to four loops in QCD Marquard, Smirnov, Smirnov, Steinhauser '15
 - does not converge in case of charm quark

 $m_c(m_c) = 1.27 \text{ GeV} \longrightarrow m_c^{\text{pole}} = 1.47 \text{ GeV} \text{ (one loop)}$ $\longrightarrow m_c^{\text{pole}} = 1.67 \text{ GeV} \text{ (two loops)}$ $\longrightarrow m_c^{\text{pole}} = 1.93 \text{ GeV} \text{ (three loops)}$ $\longrightarrow m_c^{\text{pole}} = 2.39 \text{ GeV} \text{ (four loops)}$

c-quark mass in the CMVFN schemes

The values of pole mass m_c used by different groups and preferred by the PDF fits are systematically lower than the PDG value

Wide spread of the m_c obtained in different version of the GMVFN schemes \rightarrow quantitative illustration of the GMVFNS uncertainties

Charm quark mass and the Higgs cross section

MMHT

- "Tuning" Charm mass m_c parameter effects the Higgs cross section
 - linear rise in $\sigma(H) = 40.5 \dots 42.6$ pb for $m_c = 1.15 \dots 1.55$ GeV with MMHT14 PDFs Martin, Motylinski, Harland-Lang, Thorne '15

m_c^{pole} [GeV]	$\alpha_s(M_Z)$	χ^2/NDP	$\sigma(H)^{ m NNLO}$ [pb]	$\sigma(H)^{ m NNLO}$ [pb]
	(best fit)	(HERA data on $\sigma^{c\bar{c}}$)	best fit $\alpha_s(M_Z)$	$\alpha_s(M_Z) = 0.118$
1.15	0.1164	78/52	40.48	(42.05)
1.2	0.1166	76/52	40.74	(42.11)
1.25	0.1167	75/52	40.89	(42.17)
1.3	0.1169	76/52	41.16	(42.25)
1.35	0.1171	78/52	41.41	(42.30)
1.4	0.1172	82/52	41.56	(42.36)
1.45	0.1173	88/52	41.75	(42.45)
1.5	0.1173	96/52	41.81	(42.51)
1.55	0.1175	105/52	42.08	(42.58)

A spread of 41.0 42.3 pb was obtained by R.Thorne with α_s varied; the same trend is observed for MSTW08 and NNPDF 2.3 Accardi, et al. hep-ph/1603.08906

ZEUS JHEP 1409, 127 (2014)

 $\chi^{2}/NDP=16 / 17$ $m_{b}(m_{b})=3.91\pm0.14(exp.) GeV$ ABMP16 $m_{b}(m_{b})=4.07\pm0.17(exp.) GeV$

ZEUS bottom data and $m_{h}(m_{h})$

ZEUS hep-ex/1405.6915

ttbar production with pole and Msbar mass

Running mass definition provides nice perturbative stability

t-quark data from the LHC and Tevatron

-15 -3 10 -3 10 -2

10 -1

х

T-channel (tq): NNLO Brucherseifer, Caola, Melnikov PLB 736, 58 (2014)

S-channel (tb): NLO + NNLO(threshold) sa, Moch, Thier in preparation

Inclusive HERA I+II data

H1 and ZEUS hep-ex/1506.06042

HERA I+II (e⁻p)

The value of χ^2 /NDP is bigger than 1, however still comparable to the pull distribution width

α_{s} updated

- Combination of the DY data (disentangle PDFs) and the DIS ones (constrain α_{c})
- \bullet the value of $\alpha_{_S}$ is still lower than the PDG one: pulled up by the SLAC and NMC data; pulled down by the BCDMS and HERA ones
- only SLAC determination overlap with the PDG band provided the high-twist terms are taken into account

Summary

 The FFN scheme provides a nice description of the existing DIS data with a consistent determination of the heavy-quark masses

> $m_{c}(m_{c})=1.250\pm0.020 \text{ GeV}$ $m_{b}(m_{b})=3.91\pm0.14 \text{ GeV}$

In constrast to the GMVFN schemes suffering from the uncertainties due to missing NNLO corrections to the OMEs and requiring tuning of m_c (pole)~1.3 GeV

- The value of m_t(m_t)=160.9±1.2 GeV form the ttbar and single-top data at the LHC and Tevatron
- Updated value of

 $\alpha_{s}(M_{z})=0.1145(9)$ DIS $\alpha_{s}(M_{z})=0.1149(9)$ DIS+t-quark

- Updated PDFs (bulk of DY data, HERA I+II, t-quark included, deuteron excluded):
 - reduced theoretical uncertainties in PDFs, in particular in d/u at large x; the small-x iso-spin sea asymmetry is relaxed and turns negative at $x\sim 10^{-3}$ with onset of the Regge-like asymptotics at $x<10^{-5}$; moderate increase in the large-x gluon distribution due to impact of the ttbar data

Computation accuracy

• Accuracy of O(1 ppm) is required to meet uncertainties in the experimental data \rightarrow O(10⁴ h) of running FEWZ 3.1 in NNLO

An interpolation grid a la FASTNLO is used

NNLO DY corrections in the fit

The existing NNLO codes (DYNNLO, FEWZ) are quite time-consuming \rightarrow fast tools are employed (FASTNLO, Applgrid,.....)

- the corrections for certain basis of PDFs are stored in the grid
- the fitted PDFs are expanded over the basis
- the NNLO c.s. in the PDF fit is calculated as a combination of expansion coefficients with the pre-prepared grids

The general PDF basis is not necessary since the PDFs are already constrained by the data, which do not require involved computations \rightarrow use as a PDF basis the eigenvalue PDF sets obtained in the earlier version of the fit

- $\mathbf{P}_{0} \pm \Delta \mathbf{P}_{0}$ vector of PDF parameters with errors obtained in the earlier fit
- **E** error matrix
- ${\bf P}$ current value of the PDF parameters in the fit
- store the DY NNLO c.s. for all PDF sets defined by the eigenvectors of E
- the variation of the fitted PDF parameters $(\mathbf{P} \mathbf{P}_0)$ is transformed into this eigenvector basis
- the NNLO c.s. in the PDF fit is calculated as a combination of transformed ($\mathbf{P} \mathbf{P}_0$) with the stored eigenvector values

Sea quark iso-spin asymmetry

• At x~0.1 the sea quark iso-spin asymmetry is controlled by the fixed-target DY data (E-866), weak constraint from the DIS (NMC)

• At x<0.01 Regge-like constraint like $x^{(a-1)}$, with a close to the meson trajectory intercept; the "unbiased" NNPDF fit follows the same trend

Onset of the Regge asymptotics is out of control

Factorization scheme benchmarking

Data allow to discriminate factorization schemes

• FFN scheme works very well in case of correct setting (running mass definition and correct value of m_c) \rightarrow no traces of big logs due to resummation

x_{\min}	$x_{\rm max}$	Q_{\min}^2 (GeV)	$Q_{\rm max}^2 ~({\rm GeV})$	$\Delta \chi^2$ (DIS)	$N_{\rm dat}^{\rm DIS}$	$\Delta \chi^2$ (HERA-I)	$N_{\rm dat}^{\rm hera-1}$
$4 \cdot 10^{-5}$	1	3	10^{6}	72.2	2936	77.1	592
$4 \cdot 10^{-5}$	0.1	3	10^{6}	87.1	1055	67.8	405
$4 \cdot 10^{-5}$	0.01	3	10^{6}	40.9	422	17.8	202
$4 \cdot 10^{-5}$	1	10	10^{6}	53.6	2109	76.4	537
$4 \cdot 10^{-5}$	1	100	10^{6}	91.4	620	97.7	412
$4 \cdot 10^{-5}$	0.1	10	10^{6}	84.9	583	67.4	350
$4 \cdot 10^{-5}$	0.1	100	10^{6}	87.7	321	87.1	227

We conclude that the FFN fit is actually based on a less precise theory, in that it does not include full
resummation of the contribution of heavy quarks to perturbative PDF evolution, and thus provides a less
accurate description of the dataNNPDF PLB 723, 330 (2013)E4

Statistical check of big-log impact in ABM12 fit

HERA-I e⁺p

Q ² _{min} (GeV ²)	χ²/NDP
10	366 / 324
100	193 / 201
1000	95 / 83

High twists at small x

• $H_{T}(x)$ continues a trend observed at larger x; $H_{2}(x)$ is comparable to 0 at small x

- $h_{\tau}=0.05\pm0.07 \rightarrow \text{slow vanishing at } x \rightarrow 0$
- $\Delta \chi^2 \sim -40$

Harland-Lang, Martin, Motylinski, Thorne hep-ph/1601.03413

