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Overview

Will discuss method recently used to compute                  at NLO 
(2-loop) with full top mass dependence

2

gg ! HH

Our result was presented 
on Tuesday by M. Kerner

1. What extent can these methods be automated: GoSam-XLoop 

2. Some details of numerical integration: SecDec



We follow a fairly traditional method: 

1. Decompose into Form Factors & Construct Projectors 

2. Generate Feynman Diagrams 

3. Apply Projectors & Compute Bare Amplitude 

4. Renormalize 

5. Integral Reduction 

6. Apply Subtraction & Compute Real Radiation 

7. Numerically Compute Master Integrals 

8. Generate Events & Compute (Differential) Cross-Section

Method
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Note:                  is a loop induced process, real radiation & 
subtraction is a solved problem (Huge simplification)

gg ! HH

Catani, Seymour 96

Not currently 
known analytically



Form Factor Decomposition

Decompose:
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Expose tensor structure:

Form Factor decomposition is a standard 
procedure for loop amplitudes
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Form Factor Decomposition (II)

Projectors constructed/ input by hand

Same Basis as 
amplitude

Construct Projectors (we use CDR                   ):
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Form Factors (Contain integrals)
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QGRAF

SecDec

GoSam-XLoop

using QGRAF & FORM

Virtual MEs: Tool Chain
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Nogueira 93

Vermaseren et al. 12

Borowka, Heinrich, Jahn, SJ, Kerner, Schlenk, Zirke

Cullen et al. 14 + Jahn, SJ, Kerner, Zirke

REDUZE 2

REDUZE 2/LiteRed/FIRE

Mathematica GoSam-XLoop

Partial cross-check: 2 Implementations

Amplitude Generation

Integral 
Reduction Lee 13; Smirnov, Smirnov 13

von Manteuffel, Studerus 12

Code 
Generation



Generate & Compute Diagrams
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Integral Reduction
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Integrals 1-loop 2-loop

Direct 63 9865

+ Symmetries 21 1601

+ IBPs 8 ~260-270 
(currently 327)

S =
l(l + 1)

2
+ lm

l = 2

m = 3
S = 9

# Loops
# L.I External momenta

Choose 8 Integral families with 9 propagators each

Reduction with REDUZE 2

Scalar products:

Non-planar integrals can be 
computed without reduction

(r = 8, s = 4)

Integral Families input by hand:  
Very easy to generate some integral family 
Seems harder to generate a good integral family

from # inverse propagators 
appearing in problem



To evaluate Master Integrals we use SecDec which implements Sector 
Decomposition 

Completely automated procedure 

Sector Decomposition 
1) Feynman Parametrise integral and compute momentum integrals 

Here          are 1st, 2nd Symanzik Polynomials 

We have exchanged    momentum integrals for     parameter integrals

Numerical Master Integrals
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Collaboration: Borowka, Heinrich, Jahn, SJ, Kerner, Schlenk, Zirke



Sector Decomposition
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2) After integrating out    we are faced with integrals of the form: 

Which may contain overlapping singularities which appear when 
several              simultaneously (corresponding to UV/IR singularities) 

Sector decomposition maps each integral into integrals of the form: 

Polynomials in F.P
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Gi =

Z
1

0

0

@
N�1Y

j=1

dxjx
⌫j�1

j

1

A Ui(~x)expoU(✏)

Fi(~x, sij)expoF(✏)

Gik =

Z
1

0

0

@
N�1Y

j=1

dxjx
aj�bj✏
j

1

A Uik(~x)expoU(✏)

Fik(~x, sij)expoF(✏)

Uik(~x) = 1 + u(~x)

Fik(~x) = �s0 + f(~x)  have no constant termu(~x), f(~x)

Hepp 66; Denner, Roth 96; Binoth, Heinrich 00

xj ! 0

Singularity structure can be read off

�



Sector Decomposition (II)
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3) Expand in   (simple case             ): 

By Definition:                       finite 

4) Numerically integrate 

SecDec supports: numerators, inverse propagators, ``dots’’, physical 
kinematics, arbitrary loops & legs (within reason)

Key Point: Sector Decomposed integrals can be expanded in   
and numerically integrated✏

a = �1

Finite

Poles

✏

g(0) 6= 0, g(0)
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g(x)� g(0)

x

�

Soper 00; Nagy, Soper 06; 
Borowka 14



Generating vector    precomputed for a fixed number of lattice 
points, chosen to minimise worst-case error

Rank 1 Shifted Lattices
             algorithm for numerical integration:

~�k

{}

Is[f ] ⌘
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dsxf(~x)

- Random shift vec.

- Fractional part
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f : Rs ! C
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- # Random shiftsm
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Review: Dick, Kuo, Sloan 13O(n�1)

~z - Generating vec.

~z

n

~z

Nuyens 07



Rank 1 Shifted Lattices
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Unbiased error estimate computed from random shifts:

Var[Q̄s,n,m[f ]] ⇡ 1

m(m� 1)

mX

k=1

(Qs,n,k � Q̄s,n,m)2

4 Shifts

Typically 10-50 shifts, production run: 20 shifts

~�1

~z

n

1 Shift



m = 64
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Example: Rel. Err. of one sector of sector decomposed loop integral

``Guaranteed” 
Lattice Scaling

Monte Carlo Scaling
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See Also: Li, Wang, Yan, Zhao 15

6 dimensional 
numerical 
integral



R1SL: Implementation Performance

Accuracy limited primarily by number of function evaluations 
Implemented in OpenCL 1.1 for CPU & GPU, generate points on GPU/
CPU core, sum blocks of points (reduce memory usage/transfers)

n CPU (s) GPU(s) C/G

655357 6.63 1.60 4.1

7208951 72.3 16.4 4.4
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Integral Reduction & Finite Basis

One important extra step: (Partly) transform to (Quasi-) Finite basis, 
also handled by REDUZE 2
• (elegantly) Extracts subdivergences into coefficient of integrals 
• May require integrals in shifted dimension or with propagators 

raised to higher powers
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See talk of A. von Manteuffel

Panzer 14; von Manteuffel, Panzer, Schabinger 15

Finite basis is a sensible basis choice for numerical evaluation 
• (Quasi-) Finite integrals need no `subtraction’ as singularities 

already resolved 
• Practically; can choose basis such that relatively few orders of    are 

required for most complicated integrals 
✏



Amplitude Structure
Writing integrals with    propagators and   inverse propagators as 

Renormalized form factors for                  with       scheme strong 
coupling    and      scheme gluon field, top-quark mass: 

Scale variations do not require any re-computation of red terms 

Arbitrary scale

MS

OS

1-loop

Mass Counter-Terms

2-loop

a

r s
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gg ! HH



Amplitude Structure (II)

Form factors are sums of rational functions multiplied by integrals that 
depend on ratios of the scales                    and the arbitrary scale     

Additionally, all   -loop form factors are computed simultaneously 
without re-evaluating common integrals
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Note:                  is a loop induced process, real subtraction and mass 
factorisation contained in             operators (not discussed here)

gg ! HH

Catani, Seymour 96
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SecDec as a Library

19

Single program to compute all coefficients & integrals to obtain amplitude to given 
accuracy



SecDec as a Library

19

Single program to compute all coefficients & integrals to obtain amplitude to given 
accuracy

desired precision list of GPUs & CPUs



SecDec as a Library
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Single program to compute all coefficients & integrals to obtain amplitude to given 
accuracy

desired precision list of GPUs & CPUs

name & reference to 
integrand to integrate

vector of coefficients  
                         for all Form 
Factors, evaluated at this 
phase-space point

C1,�2, C1,�1, ...

(ŝ, t̂,m2
t ,m

2
h)



SecDec as a Library
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Single program to compute all coefficients & integrals to obtain amplitude to given 
accuracy

desired precision list of GPUs & CPUs

name & reference to 
integrand to integrate

vector of coefficients  
                         for all Form 
Factors, evaluated at this 
phase-space point

C1,�2, C1,�1, ...

(ŝ, t̂,m2
t ,m

2
h)

Find contour 
deformation 
(physical region) in 
parallel for all 
integrals in 
amplitude

Computes integrals in parallel on GPUs 
& CPUs. Dynamically adjusts # points 
per sector to reduce amplitude error



Phase-Space Sampling

Phase-space implemented by hand  
limited to 2-3 w/ 2 massive particles 

Events for virtual: 

1) VEGAS algorithm applied to LO 
matrix element               events 
computed  

2) Using LO events unweighted 
events generated using accept/reject 
method             events remain 

3) Randomly select 666 Events 
(woops), compute at NLO, exclude 1

20

O(100k)

O(30k)

Note: No grids used either for integrals or phase-space
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Timings

Hardware (numerics): ~16 Dual Nvidia Tesla K20X GPGPU Nodes 

Median GPU time per PS point: 2 hours 

Total compute time used: 4680 GPU Hours 

Wall time: 6 days

21

Key Point: Even after the advances discussed here numerical 
integration is slow but our setup can scale to use the available 

compute resources 

Bottleneck: Integral reduction, tried Fire, Litered, Reduze 2

Note: Not a criticism, we are not using these tools smartly or on 
ideal hardware, this problem is HARD for these tools

Smirnov, Smirnov 13; Lee 13; von Manteuffel, Studerus 12

Thanks: MPCDF



Matthias Kerner — Higgs boson pair production in gluon fusion at NLO  — Loops and Legs, April 26, 2016 22

Results - Cross Section
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Result presented 
on Tuesday by 
M. Kerner

gg ! HH @ NLO

Preliminary



Conclusion

GoSam-XLoop
• Aims to be a flexible framework for generating amplitudes (mostly) 

relevant for massive/multi-scale problems 
• Tightly coupled to integral reduction programs 
• In lieu of a general `master’ integral library beyond one-loop, interfaced 

to SecDec for automatic numeric evaluation of amplitudes 

Ongoing/Future 
• More details of our method and our calculation will be discussed in an 

upcoming paper 
• Implement obvious code improvements 
• (Future) Fully exploit analytically known master integrals, needs 

searchable database: Loopedia (?) 

Thank you for listening
23

https://loopedia.wikidot.com/


Backup



Master Integrals (Numerical)
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SecDec (https://secdec.hepforge.org)

Evaluate Dimensionally regulated parameter integrals numerically

(s/m2
T )Top Threshold

✏rel = 10�2

✏abs = 10�4



G.H.S Top Mass Expansion
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Grigo, Hoff, Steinhauser 15
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HEFT NNLO + NNLL
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 de Florian, Mazzitelli 15
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Figure 1: The Higgs pair invariant mass distribution for Ecm = 14 TeV and the central scale µ0 = Q, for
the fixed order (left) and resummed (right) predictions. In the left (right) we show the LO (LL), NLO
(NLL) and NNLO (NNLL) curves, with blue dotted, red dashed and black solid lines respectively.
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Figure 2: The Higgs pair invariant mass distribution for Ecm = 14 TeV and the central scale µ0 = Q/2,
for the fixed order (left) and resummed (right) predictions. The color coding is the same of Figure 1.

3 NNLL phenomenology

We present in this section the phenomenological results. For the computation we take the Higgs
mass to be MH = 125 GeV. All the results are normalized by the exact LO top mass dependence,
with Mt = 173.21 GeV. For the parton luminosities and strong coupling we use the MSTW2008
sets, consistently at each perturbative order (i.e. LO PDFs and one-loop ↵S evolution for LO
and LL cross sections, etc.). The scale uncertainty was evaluated by varying independently the
renormalization and factorization scales in the range µ0/2  µR, µF  2µ0 with the constraint
1/2  µR/µF < 2, where µ0 is the central scale. The analysis was performed for two choices of
the central scale: µ0 = Q and µ0 = Q/2, being Q the invariant mass of the Higgs pair system.

The contributions from all the relevant partonic channels are always included in our numerical
results. As described in the previous section, the threshold resummation only applies for the gg
channel. With the corresponding matching we also account for the other partonic subprocesses at
the corresponding fixed order accuracy.

We start by showing the Higgs pair invariant mass distribution for a collider center of mass
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Figure 3: The K-factors for the fixed order and resummed cross sections as a function of the Higgs pair
invariant mass, for Ecm = 14 TeV. The left (right) panel shows the results for µ0 = Q (µ0 = Q/2). The
color coding is the same of Figure 1.

energy Ecm = 14 TeV. In Figure 1 we present the results corresponding to the central scale
µ0 = Q, while in Figure 2 the ones corresponding to µ0 = Q/2 are shown. For both figures, in the
left plot we present the fixed order prediction (at LO, NLO and NNLO) while in the right one we
show the resummed cross section (at LL, NLL and NNLL). ‡

In the first place we can observe that, with the exception of the µ0 = Q/2 resummed distribu-
tions, there is no overlap between the LO (LL) and NLO (NLL) bands, and it is only at second
order that a sensible superposition of the bands occurs. We can also see from the plots that at
every order the inclusion of the resummed contributions results in an increase of the cross section.
Also, we can observe that the size of the uncertainty band at NNLL is always smaller than the
corresponding NNLO one. This e↵ect is more clear with the choice µ0 = Q, for which also a better
overlap between the NNLL and NLL bands is observed, with respect to the NNLO and NLO ones.
The fixed order and resummed distributions have less di↵erences for µ0 = Q/2, as was already
observed for single Higgs production, where the choice µ0 = MH/2 partially mimics some of the
threshold resummation e↵ects. Regarding the shape of the distributions, we observe very small
di↵erences after the resummation is performed. This is due to the fact that the relative size of
the resummed contributions has a rather small dependence on the Higgs pair invariant mass.

In Figure 3 we present the K-factors, defined as the ratio between a given prediction and the
LO one. For the denominator we fix µR = µF = µ0. We observe, in more detail, the same features
described above at the level of the cross section. In particular, it is visible that the resummed
series has a better convergence than the fixed order one, exhibiting a larger overlap between the

‡For simplicity, we always label our resummed predictions as LL, NLL and NNLL. As explained before, these
results include the matching to the fixed order cross section, so they should be interpreted as LL+LO, NLL+NLO
and NNLL+NNLO respectively.
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Figure 4: The ratio between the NNLL and the NNLO predictions as a function of the Higgs pair
invariant mass, for the scales µ = Q (left) and µ = Q/2 (right). Results are shown for center of mass
energies of 8 TeV (orange solid), 14 TeV (magenta dashed), 33 TeV (purple dot-dashed) and 100 TeV
(black dotted).

µ0 = Q NNLO (fb) scale unc. (%) NNLL (fb) scale unc. (%) PDF unc. (%) PDF+↵S unc. (%)
8 TeV 9.92 +9.3� 10 10.8 +5.4� 5.9 +5.6� 6.0 +9.3� 9.2

13 TeV 34.3 +8.3� 8.9 36.8 +5.1� 6.0 +4.0� 4.3 +7.7� 7.5
14 TeV 40.9 +8.2� 8.8 43.7 +5.1� 6.0 +3.8� 4.0 +7.5� 7.3
33 TeV 247 +7.1� 7.4 259 +5.0� 6.1 +2.2� 2.8 +6.1� 6.1
100 TeV 1660 +6.8� 7.1 1723 +5.2� 6.1 +2.1� 3.0 +5.7� 5.8

µ0 = Q/2 NNLO (fb) scale unc. (%) NNLL (fb) scale unc. (%) PDF unc. (%) PDF+↵S unc. (%)
8 TeV 10.8 +5.7� 8.5 11.0 +4.0� 5.6 +5.8� 6.1 +9.6� 9.3

13 TeV 37.2 +5.5� 7.6 37.4 +4.2� 5.8 +4.1� 4.3 +7.8� 7.6
14 TeV 44.2 +5.5� 7.6 44.5 +4.2� 5.9 +3.9� 4.1 +7.6� 7.4
33 TeV 264 +5.3� 6.6 265 +4.6� 6.1 +2.4� 2.7 +6.3� 6.1
100 TeV 1760 +5.3� 6.7 1762 +4.9� 6.4 +2.2� 3.1 +6.2� 7.0

Table 1: The total cross section and theoretical uncertainties for di↵erent center of mass energies, at
NNLO and NNLL, for µ0 = Q and µ0 = Q/2. PDF and PDF+↵S uncertainties correspond to the
resummed predictions, and are estimated using the sets of MSTW2008 at 90% confidence level.

first and second order bands.

In Figure 4 we show the ratio between the NNLL and the NNLO predictions, again as a
function of the Higgs pair invariant mass, for di↵erent collider energies. The ratio shows an
almost linear dependence on Q, increasing for higher invariant masses. Actually, this is expected
because resummation contributions are enhanced when the process becomes closer to the partonic
threshold. The same feature is reflected by the fact that the resummation contributions are
relatively smaller for larger collider energies. We can also observe, as it was already clear from
Figures 1 and 2, that the ratio between NNLL and NNLO is significantly smaller for the scale
choice µR = µF = µ = Q/2. At the total cross section level, for example, we find that the increase
in the NNLL result with respect to the NNLO prediction is of 6.8% for Ecm = 14 TeV and µ = Q,
while it drops down to 0.65% for µ = Q/2.

We focus now on the theoretical uncertainty arising from the missing higher order contributions,
which is estimated by the scale variation indicated above. In Table 1 we present the total cross
section predictions at NNLO and NNLL, together with the scale uncertainty. We can observe

7
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Uncertainties
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Scale 15-20%

PDF + als 6-7%

EFT (NLO) ~10%

Total 30-40%

Total Cross Section: 
Born Improved NLO HEFT 
Scale                                     ,      Variation: 

↵s

See: Eg… Baglio, Djouadi et al. 12

µ0 = µR = µF = MHH [
µ0

2
, 2µ0]

Some arguments for switching to                       (account for NNLL?) µ0 = MHH/2



Production Channels

Gluon Fusion
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Production Channels

Gluon Fusion1
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qq/gg → tt̄HH

qq̄ → ZHH
qq̄′ → WHH

qq′ → HHqq′

gg → HHMH = 125 GeV
σ(pp → HH+X) [fb]

√
s [TeV]

1007550258

1000

100

10

1

0.1

VBF2

Associated Top3

Higgs-strahlung4

Baglio, Djouadi et al. 12

1 NLO QCD HEFT, HPAIR

2 NLO QCD, VBFNLO

4 NNLO QCD

3 LO QCD (NLO, aMC@NLO)

�(pp ! HH +X) ⇠ 1

1000
�(pp ! H +X)

Baglio, Djouadi et al. 12

Plehn, Spira, Zerwas 96, 98;

Baglio, Djouadi et al. 12

Frederix, Frixione et al. 14

Dawson et al. 98



Gluon Fusion

1. LO (1-loop), Dominated by top                  
(bottom contributes ~1%) 

2. Born Improved NLO H(iggs)EFT                 K≈ 2 

A. Including       in Real radiation -10% 

B. Including                  terms in Virtual MEs ±10% 

3. Born Improved NNLO HEFT +20% 

Including matching coefficients 

Including terms                 in Virtual MEs 

NNLL + NNLO Matching +9%

32

Glover, van der Bij 88

Plehn, Spira, Zerwas 96, 98; Dawson, Dittmaier, Spira 98

Maltoni, Vryonidou, Zaro 14

Grigo, Hoff, Melnikov, Steinhauser 13; Grigo, Hoff 14; Grigo, Hoff, Steinhauser 15

De Florian, Mazzitelli 13

Grigo, Melnikov, Steinhauser 14

de Florian, Mazzitelli 15

Grigo, Hoff, Steinhauser 15

mT ! 1

mT

O(1/m12
T )

O(1/m12
T )



B. Grigo, Hoff, Steinhauser 15

±10%

A.

Born Improved NLO QCD HEFT

Gluon Fusion (NLO HEFT)
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Shopping List
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Virtual MEs (HH): Diagrams

Tree 0

1-loop 8

2-loop 122

Real Radiation (HH + j…):

Channels:
gg ! HH qq̄ ! HH

1-j Channels:
Diagrams

Tree ⊗ Double 0

1-loop ⊗ Single 54+8+8+8

gg ! HH + g

gq ! HH + q gq̄ ! HH + q̄

qq̄ ! HH + g

GoSam for MEs  + Catani-Seymour Dipole Subtraction

Huge simplification!

Contributes at NNLO

Catani, Seymour 96
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Master Integrals
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3-point, 1 off-shell leg 
HPLs

Up to 4-point, 
4 scales   ,  ,      ,    
SecDec

Spira, Djouadi et al. 93, 95; 
Bonciani, P. Mastrolia 03,04; 
Anastasiou, Beerli et al. 06;

Gehrmann, Guns, Kara 15

3-point, 2 off-shell legs 
Generalized HPLs, 12 Letters

Known Analytically:

Numeric Evaluation:

m2
Hm2

Tts



Master Integrals

Double Higgs Production Master Integrals are tough! 
• Massive propagators 
• Off-shell legs
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Backup: Graph Polynomials



Graph Polynomials

39

Properties: 
• Homogenous polynomials in the Feynman Parameters  

            is degree  

                  is degree 

•          and                 are linear in each Feynman Parameter

F(~x, sij)

U(~x) L

L+ 1

U(~x)

                and          can be constructed graphicallyF0(~x, sij) U(~x)

F(~x, sij) = F0(~x, sij) + U(~x)
PN

i=1 xim
2
i

F0(~x, sij)

Internal masses

We will follow: Bogner, Weinzierl 10



Divergences

40

From the master formula, 3 possibilities for poles in    to arise: 

1. Overall                          diverges (single UV pole) 

2.          vanishes for some           and has negative exponent (UV sub-
divergences) 

3.                vanishes on the boundary and has negative exponent (IR 
divergences) 

Outside the Euclidean region (              ) there is a further possibility:  

4.                vanishes inside the integration region (May give: Landau 
singularity which is either a normal or anomalous threshold) 

Aside: If only condition 1 leads to a divergence the integral is Quasi-finite

�(N⌫ � LD/2)

U(~x) x = 0

F(~x, sij)

F(~x, sij)

✏

8sij < 0

Can be handled by SecDec: contourdef=True)
See: Soper 00; Borowka 14



Constructing U

41

Draw graph, label edges with Feynman Parameters 

Rules for         : 
1. Delete    edges all possible ways 

2. Throw away disconnected graphs or graphs with 

3. Sum monomials of Feynman parameters of deleted edges

U(~x)
L

p

q1 q2

q4 q3

q5

Figure 4: A two-loop two-point graph.

Figure 5: The set of spanning trees for the two-loop two-point graph of fig. 4.

Since we have to remove l edges from G to obtain a spanning tree and (l+ 1) edges to obtain
a spanning 2-forest, it follows that U and F are homogeneous in the Feynman parameters of
degree l and (l+ 1), respectively. From the fact, that an internal edge can be removed at most
once, it follows that U and F0 are linear in each Feynman parameter. Finally it is obvious from
eq. (27) that each monomial in the expanded form of U has coefficient +1.

Let us look at an example. Fig. 4 shows the graph of a two-loop two-point integral. We take
again all internal masses to be zero. The set of all spanning trees for this graph is shown in fig. 5.
There are eight spanning trees. Fig. 6 shows the set of spanning 2-forests for this graph. There
are ten spanning 2-forests. The last example in each row of fig. 6 does not contribute to the graph
polynomial F , since the momentum sum flowing through all cut lines is zero. Therefore we have
in this case s(T1,T2) = 0. In all other cases we have s(T1,T2) = p2. We arrive therefore at the graph
polynomials

U = (x1+ x4)(x2+ x3)+(x1+ x2+ x3+ x4)x5,

F = [(x1+ x2)(x3+ x4)x5+ x1x4(x2+ x3)+ x2x3(x1+ x4)]
(

−p2

µ2

)

. (32)

5 The matrix-tree theorem
In this section we introduce the Laplacian of a graph. The Laplacian is a matrix constructed
from the topology of the graph. The determinant of a minor of this matrix where the i-th row
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Figure 5: The set of spanning trees for the two-loop two-point graph of fig. 4.

Since we have to remove l edges from G to obtain a spanning tree and (l+ 1) edges to obtain
a spanning 2-forest, it follows that U and F are homogeneous in the Feynman parameters of
degree l and (l+ 1), respectively. From the fact, that an internal edge can be removed at most
once, it follows that U and F0 are linear in each Feynman parameter. Finally it is obvious from
eq. (27) that each monomial in the expanded form of U has coefficient +1.

Let us look at an example. Fig. 4 shows the graph of a two-loop two-point integral. We take
again all internal masses to be zero. The set of all spanning trees for this graph is shown in fig. 5.
There are eight spanning trees. Fig. 6 shows the set of spanning 2-forests for this graph. There
are ten spanning 2-forests. The last example in each row of fig. 6 does not contribute to the graph
polynomial F , since the momentum sum flowing through all cut lines is zero. Therefore we have
in this case s(T1,T2) = 0. In all other cases we have s(T1,T2) = p2. We arrive therefore at the graph
polynomials

U = (x1+ x4)(x2+ x3)+(x1+ x2+ x3+ x4)x5,

F = [(x1+ x2)(x3+ x4)x5+ x1x4(x2+ x3)+ x2x3(x1+ x4)]
(

−p2

µ2

)

. (32)

5 The matrix-tree theorem
In this section we introduce the Laplacian of a graph. The Laplacian is a matrix constructed
from the topology of the graph. The determinant of a minor of this matrix where the i-th row
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U(~x) =

L 6= 0
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Since we have to remove l edges from G to obtain a spanning tree and (l+ 1) edges to obtain
a spanning 2-forest, it follows that U and F are homogeneous in the Feynman parameters of
degree l and (l+ 1), respectively. From the fact, that an internal edge can be removed at most
once, it follows that U and F0 are linear in each Feynman parameter. Finally it is obvious from
eq. (27) that each monomial in the expanded form of U has coefficient +1.

Let us look at an example. Fig. 4 shows the graph of a two-loop two-point integral. We take
again all internal masses to be zero. The set of all spanning trees for this graph is shown in fig. 5.
There are eight spanning trees. Fig. 6 shows the set of spanning 2-forests for this graph. There
are ten spanning 2-forests. The last example in each row of fig. 6 does not contribute to the graph
polynomial F , since the momentum sum flowing through all cut lines is zero. Therefore we have
in this case s(T1,T2) = 0. In all other cases we have s(T1,T2) = p2. We arrive therefore at the graph
polynomials

U = (x1+ x4)(x2+ x3)+(x1+ x2+ x3+ x4)x5,

F = [(x1+ x2)(x3+ x4)x5+ x1x4(x2+ x3)+ x2x3(x1+ x4)]
(
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. (32)

5 The matrix-tree theorem
In this section we introduce the Laplacian of a graph. The Laplacian is a matrix constructed
from the topology of the graph. The determinant of a minor of this matrix where the i-th row
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Figure 5: The set of spanning trees for the two-loop two-point graph of fig. 4.

Since we have to remove l edges from G to obtain a spanning tree and (l+ 1) edges to obtain
a spanning 2-forest, it follows that U and F are homogeneous in the Feynman parameters of
degree l and (l+ 1), respectively. From the fact, that an internal edge can be removed at most
once, it follows that U and F0 are linear in each Feynman parameter. Finally it is obvious from
eq. (27) that each monomial in the expanded form of U has coefficient +1.

Let us look at an example. Fig. 4 shows the graph of a two-loop two-point integral. We take
again all internal masses to be zero. The set of all spanning trees for this graph is shown in fig. 5.
There are eight spanning trees. Fig. 6 shows the set of spanning 2-forests for this graph. There
are ten spanning 2-forests. The last example in each row of fig. 6 does not contribute to the graph
polynomial F , since the momentum sum flowing through all cut lines is zero. Therefore we have
in this case s(T1,T2) = 0. In all other cases we have s(T1,T2) = p2. We arrive therefore at the graph
polynomials

U = (x1+ x4)(x2+ x3)+(x1+ x2+ x3+ x4)x5,

F = [(x1+ x2)(x3+ x4)x5+ x1x4(x2+ x3)+ x2x3(x1+ x4)]
(
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5 The matrix-tree theorem
In this section we introduce the Laplacian of a graph. The Laplacian is a matrix constructed
from the topology of the graph. The determinant of a minor of this matrix where the i-th row
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Since we have to remove l edges from G to obtain a spanning tree and (l+ 1) edges to obtain
a spanning 2-forest, it follows that U and F are homogeneous in the Feynman parameters of
degree l and (l+ 1), respectively. From the fact, that an internal edge can be removed at most
once, it follows that U and F0 are linear in each Feynman parameter. Finally it is obvious from
eq. (27) that each monomial in the expanded form of U has coefficient +1.

Let us look at an example. Fig. 4 shows the graph of a two-loop two-point integral. We take
again all internal masses to be zero. The set of all spanning trees for this graph is shown in fig. 5.
There are eight spanning trees. Fig. 6 shows the set of spanning 2-forests for this graph. There
are ten spanning 2-forests. The last example in each row of fig. 6 does not contribute to the graph
polynomial F , since the momentum sum flowing through all cut lines is zero. Therefore we have
in this case s(T1,T2) = 0. In all other cases we have s(T1,T2) = p2. We arrive therefore at the graph
polynomials
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Since we have to remove l edges from G to obtain a spanning tree and (l+ 1) edges to obtain
a spanning 2-forest, it follows that U and F are homogeneous in the Feynman parameters of
degree l and (l+ 1), respectively. From the fact, that an internal edge can be removed at most
once, it follows that U and F0 are linear in each Feynman parameter. Finally it is obvious from
eq. (27) that each monomial in the expanded form of U has coefficient +1.

Let us look at an example. Fig. 4 shows the graph of a two-loop two-point integral. We take
again all internal masses to be zero. The set of all spanning trees for this graph is shown in fig. 5.
There are eight spanning trees. Fig. 6 shows the set of spanning 2-forests for this graph. There
are ten spanning 2-forests. The last example in each row of fig. 6 does not contribute to the graph
polynomial F , since the momentum sum flowing through all cut lines is zero. Therefore we have
in this case s(T1,T2) = 0. In all other cases we have s(T1,T2) = p2. We arrive therefore at the graph
polynomials

U = (x1+ x4)(x2+ x3)+(x1+ x2+ x3+ x4)x5,

F = [(x1+ x2)(x3+ x4)x5+ x1x4(x2+ x3)+ x2x3(x1+ x4)]
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5 The matrix-tree theorem
In this section we introduce the Laplacian of a graph. The Laplacian is a matrix constructed
from the topology of the graph. The determinant of a minor of this matrix where the i-th row
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Since we have to remove l edges from G to obtain a spanning tree and (l+ 1) edges to obtain
a spanning 2-forest, it follows that U and F are homogeneous in the Feynman parameters of
degree l and (l+ 1), respectively. From the fact, that an internal edge can be removed at most
once, it follows that U and F0 are linear in each Feynman parameter. Finally it is obvious from
eq. (27) that each monomial in the expanded form of U has coefficient +1.

Let us look at an example. Fig. 4 shows the graph of a two-loop two-point integral. We take
again all internal masses to be zero. The set of all spanning trees for this graph is shown in fig. 5.
There are eight spanning trees. Fig. 6 shows the set of spanning 2-forests for this graph. There
are ten spanning 2-forests. The last example in each row of fig. 6 does not contribute to the graph
polynomial F , since the momentum sum flowing through all cut lines is zero. Therefore we have
in this case s(T1,T2) = 0. In all other cases we have s(T1,T2) = p2. We arrive therefore at the graph
polynomials
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Since we have to remove l edges from G to obtain a spanning tree and (l+ 1) edges to obtain
a spanning 2-forest, it follows that U and F are homogeneous in the Feynman parameters of
degree l and (l+ 1), respectively. From the fact, that an internal edge can be removed at most
once, it follows that U and F0 are linear in each Feynman parameter. Finally it is obvious from
eq. (27) that each monomial in the expanded form of U has coefficient +1.

Let us look at an example. Fig. 4 shows the graph of a two-loop two-point integral. We take
again all internal masses to be zero. The set of all spanning trees for this graph is shown in fig. 5.
There are eight spanning trees. Fig. 6 shows the set of spanning 2-forests for this graph. There
are ten spanning 2-forests. The last example in each row of fig. 6 does not contribute to the graph
polynomial F , since the momentum sum flowing through all cut lines is zero. Therefore we have
in this case s(T1,T2) = 0. In all other cases we have s(T1,T2) = p2. We arrive therefore at the graph
polynomials

U = (x1+ x4)(x2+ x3)+(x1+ x2+ x3+ x4)x5,
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5 The matrix-tree theorem
In this section we introduce the Laplacian of a graph. The Laplacian is a matrix constructed
from the topology of the graph. The determinant of a minor of this matrix where the i-th row
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Figure 5: The set of spanning trees for the two-loop two-point graph of fig. 4.

Since we have to remove l edges from G to obtain a spanning tree and (l+ 1) edges to obtain
a spanning 2-forest, it follows that U and F are homogeneous in the Feynman parameters of
degree l and (l+ 1), respectively. From the fact, that an internal edge can be removed at most
once, it follows that U and F0 are linear in each Feynman parameter. Finally it is obvious from
eq. (27) that each monomial in the expanded form of U has coefficient +1.

Let us look at an example. Fig. 4 shows the graph of a two-loop two-point integral. We take
again all internal masses to be zero. The set of all spanning trees for this graph is shown in fig. 5.
There are eight spanning trees. Fig. 6 shows the set of spanning 2-forests for this graph. There
are ten spanning 2-forests. The last example in each row of fig. 6 does not contribute to the graph
polynomial F , since the momentum sum flowing through all cut lines is zero. Therefore we have
in this case s(T1,T2) = 0. In all other cases we have s(T1,T2) = p2. We arrive therefore at the graph
polynomials

U = (x1+ x4)(x2+ x3)+(x1+ x2+ x3+ x4)x5,

F = [(x1+ x2)(x3+ x4)x5+ x1x4(x2+ x3)+ x2x3(x1+ x4)]
(

−p2

µ2

)

. (32)

5 The matrix-tree theorem
In this section we introduce the Laplacian of a graph. The Laplacian is a matrix constructed
from the topology of the graph. The determinant of a minor of this matrix where the i-th row
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2. Throw away disconnected graphs or graphs with 

3. Sum monomials of Feynman parameters of deleted edges
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Figure 4: A two-loop two-point graph.

Figure 5: The set of spanning trees for the two-loop two-point graph of fig. 4.

Since we have to remove l edges from G to obtain a spanning tree and (l+ 1) edges to obtain
a spanning 2-forest, it follows that U and F are homogeneous in the Feynman parameters of
degree l and (l+ 1), respectively. From the fact, that an internal edge can be removed at most
once, it follows that U and F0 are linear in each Feynman parameter. Finally it is obvious from
eq. (27) that each monomial in the expanded form of U has coefficient +1.

Let us look at an example. Fig. 4 shows the graph of a two-loop two-point integral. We take
again all internal masses to be zero. The set of all spanning trees for this graph is shown in fig. 5.
There are eight spanning trees. Fig. 6 shows the set of spanning 2-forests for this graph. There
are ten spanning 2-forests. The last example in each row of fig. 6 does not contribute to the graph
polynomial F , since the momentum sum flowing through all cut lines is zero. Therefore we have
in this case s(T1,T2) = 0. In all other cases we have s(T1,T2) = p2. We arrive therefore at the graph
polynomials

U = (x1+ x4)(x2+ x3)+(x1+ x2+ x3+ x4)x5,

F = [(x1+ x2)(x3+ x4)x5+ x1x4(x2+ x3)+ x2x3(x1+ x4)]
(

−p2

µ2

)

. (32)

5 The matrix-tree theorem
In this section we introduce the Laplacian of a graph. The Laplacian is a matrix constructed
from the topology of the graph. The determinant of a minor of this matrix where the i-th row
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Figure 5: The set of spanning trees for the two-loop two-point graph of fig. 4.

Since we have to remove l edges from G to obtain a spanning tree and (l+ 1) edges to obtain
a spanning 2-forest, it follows that U and F are homogeneous in the Feynman parameters of
degree l and (l+ 1), respectively. From the fact, that an internal edge can be removed at most
once, it follows that U and F0 are linear in each Feynman parameter. Finally it is obvious from
eq. (27) that each monomial in the expanded form of U has coefficient +1.

Let us look at an example. Fig. 4 shows the graph of a two-loop two-point integral. We take
again all internal masses to be zero. The set of all spanning trees for this graph is shown in fig. 5.
There are eight spanning trees. Fig. 6 shows the set of spanning 2-forests for this graph. There
are ten spanning 2-forests. The last example in each row of fig. 6 does not contribute to the graph
polynomial F , since the momentum sum flowing through all cut lines is zero. Therefore we have
in this case s(T1,T2) = 0. In all other cases we have s(T1,T2) = p2. We arrive therefore at the graph
polynomials

U = (x1+ x4)(x2+ x3)+(x1+ x2+ x3+ x4)x5,

F = [(x1+ x2)(x3+ x4)x5+ x1x4(x2+ x3)+ x2x3(x1+ x4)]
(

−p2

µ2

)

. (32)

5 The matrix-tree theorem
In this section we introduce the Laplacian of a graph. The Laplacian is a matrix constructed
from the topology of the graph. The determinant of a minor of this matrix where the i-th row
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Figure 5: The set of spanning trees for the two-loop two-point graph of fig. 4.

Since we have to remove l edges from G to obtain a spanning tree and (l+ 1) edges to obtain
a spanning 2-forest, it follows that U and F are homogeneous in the Feynman parameters of
degree l and (l+ 1), respectively. From the fact, that an internal edge can be removed at most
once, it follows that U and F0 are linear in each Feynman parameter. Finally it is obvious from
eq. (27) that each monomial in the expanded form of U has coefficient +1.

Let us look at an example. Fig. 4 shows the graph of a two-loop two-point integral. We take
again all internal masses to be zero. The set of all spanning trees for this graph is shown in fig. 5.
There are eight spanning trees. Fig. 6 shows the set of spanning 2-forests for this graph. There
are ten spanning 2-forests. The last example in each row of fig. 6 does not contribute to the graph
polynomial F , since the momentum sum flowing through all cut lines is zero. Therefore we have
in this case s(T1,T2) = 0. In all other cases we have s(T1,T2) = p2. We arrive therefore at the graph
polynomials

U = (x1+ x4)(x2+ x3)+(x1+ x2+ x3+ x4)x5,

F = [(x1+ x2)(x3+ x4)x5+ x1x4(x2+ x3)+ x2x3(x1+ x4)]
(

−p2

µ2

)

. (32)

5 The matrix-tree theorem
In this section we introduce the Laplacian of a graph. The Laplacian is a matrix constructed
from the topology of the graph. The determinant of a minor of this matrix where the i-th row
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Figure 5: The set of spanning trees for the two-loop two-point graph of fig. 4.

Since we have to remove l edges from G to obtain a spanning tree and (l+ 1) edges to obtain
a spanning 2-forest, it follows that U and F are homogeneous in the Feynman parameters of
degree l and (l+ 1), respectively. From the fact, that an internal edge can be removed at most
once, it follows that U and F0 are linear in each Feynman parameter. Finally it is obvious from
eq. (27) that each monomial in the expanded form of U has coefficient +1.

Let us look at an example. Fig. 4 shows the graph of a two-loop two-point integral. We take
again all internal masses to be zero. The set of all spanning trees for this graph is shown in fig. 5.
There are eight spanning trees. Fig. 6 shows the set of spanning 2-forests for this graph. There
are ten spanning 2-forests. The last example in each row of fig. 6 does not contribute to the graph
polynomial F , since the momentum sum flowing through all cut lines is zero. Therefore we have
in this case s(T1,T2) = 0. In all other cases we have s(T1,T2) = p2. We arrive therefore at the graph
polynomials

U = (x1+ x4)(x2+ x3)+(x1+ x2+ x3+ x4)x5,

F = [(x1+ x2)(x3+ x4)x5+ x1x4(x2+ x3)+ x2x3(x1+ x4)]
(

−p2

µ2

)

. (32)

5 The matrix-tree theorem
In this section we introduce the Laplacian of a graph. The Laplacian is a matrix constructed
from the topology of the graph. The determinant of a minor of this matrix where the i-th row
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Figure 4: A two-loop two-point graph.

Figure 5: The set of spanning trees for the two-loop two-point graph of fig. 4.

Since we have to remove l edges from G to obtain a spanning tree and (l+ 1) edges to obtain
a spanning 2-forest, it follows that U and F are homogeneous in the Feynman parameters of
degree l and (l+ 1), respectively. From the fact, that an internal edge can be removed at most
once, it follows that U and F0 are linear in each Feynman parameter. Finally it is obvious from
eq. (27) that each monomial in the expanded form of U has coefficient +1.

Let us look at an example. Fig. 4 shows the graph of a two-loop two-point integral. We take
again all internal masses to be zero. The set of all spanning trees for this graph is shown in fig. 5.
There are eight spanning trees. Fig. 6 shows the set of spanning 2-forests for this graph. There
are ten spanning 2-forests. The last example in each row of fig. 6 does not contribute to the graph
polynomial F , since the momentum sum flowing through all cut lines is zero. Therefore we have
in this case s(T1,T2) = 0. In all other cases we have s(T1,T2) = p2. We arrive therefore at the graph
polynomials

U = (x1+ x4)(x2+ x3)+(x1+ x2+ x3+ x4)x5,

F = [(x1+ x2)(x3+ x4)x5+ x1x4(x2+ x3)+ x2x3(x1+ x4)]
(

−p2

µ2

)

. (32)

5 The matrix-tree theorem
In this section we introduce the Laplacian of a graph. The Laplacian is a matrix constructed
from the topology of the graph. The determinant of a minor of this matrix where the i-th row
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Figure 5: The set of spanning trees for the two-loop two-point graph of fig. 4.

Since we have to remove l edges from G to obtain a spanning tree and (l+ 1) edges to obtain
a spanning 2-forest, it follows that U and F are homogeneous in the Feynman parameters of
degree l and (l+ 1), respectively. From the fact, that an internal edge can be removed at most
once, it follows that U and F0 are linear in each Feynman parameter. Finally it is obvious from
eq. (27) that each monomial in the expanded form of U has coefficient +1.

Let us look at an example. Fig. 4 shows the graph of a two-loop two-point integral. We take
again all internal masses to be zero. The set of all spanning trees for this graph is shown in fig. 5.
There are eight spanning trees. Fig. 6 shows the set of spanning 2-forests for this graph. There
are ten spanning 2-forests. The last example in each row of fig. 6 does not contribute to the graph
polynomial F , since the momentum sum flowing through all cut lines is zero. Therefore we have
in this case s(T1,T2) = 0. In all other cases we have s(T1,T2) = p2. We arrive therefore at the graph
polynomials

U = (x1+ x4)(x2+ x3)+(x1+ x2+ x3+ x4)x5,

F = [(x1+ x2)(x3+ x4)x5+ x1x4(x2+ x3)+ x2x3(x1+ x4)]
(

−p2

µ2

)

. (32)

5 The matrix-tree theorem
In this section we introduce the Laplacian of a graph. The Laplacian is a matrix constructed
from the topology of the graph. The determinant of a minor of this matrix where the i-th row
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Figure 5: The set of spanning trees for the two-loop two-point graph of fig. 4.

Since we have to remove l edges from G to obtain a spanning tree and (l+ 1) edges to obtain
a spanning 2-forest, it follows that U and F are homogeneous in the Feynman parameters of
degree l and (l+ 1), respectively. From the fact, that an internal edge can be removed at most
once, it follows that U and F0 are linear in each Feynman parameter. Finally it is obvious from
eq. (27) that each monomial in the expanded form of U has coefficient +1.

Let us look at an example. Fig. 4 shows the graph of a two-loop two-point integral. We take
again all internal masses to be zero. The set of all spanning trees for this graph is shown in fig. 5.
There are eight spanning trees. Fig. 6 shows the set of spanning 2-forests for this graph. There
are ten spanning 2-forests. The last example in each row of fig. 6 does not contribute to the graph
polynomial F , since the momentum sum flowing through all cut lines is zero. Therefore we have
in this case s(T1,T2) = 0. In all other cases we have s(T1,T2) = p2. We arrive therefore at the graph
polynomials

U = (x1+ x4)(x2+ x3)+(x1+ x2+ x3+ x4)x5,

F = [(x1+ x2)(x3+ x4)x5+ x1x4(x2+ x3)+ x2x3(x1+ x4)]
(

−p2

µ2

)

. (32)

5 The matrix-tree theorem
In this section we introduce the Laplacian of a graph. The Laplacian is a matrix constructed
from the topology of the graph. The determinant of a minor of this matrix where the i-th row
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Figure 5: The set of spanning trees for the two-loop two-point graph of fig. 4.

Since we have to remove l edges from G to obtain a spanning tree and (l+ 1) edges to obtain
a spanning 2-forest, it follows that U and F are homogeneous in the Feynman parameters of
degree l and (l+ 1), respectively. From the fact, that an internal edge can be removed at most
once, it follows that U and F0 are linear in each Feynman parameter. Finally it is obvious from
eq. (27) that each monomial in the expanded form of U has coefficient +1.

Let us look at an example. Fig. 4 shows the graph of a two-loop two-point integral. We take
again all internal masses to be zero. The set of all spanning trees for this graph is shown in fig. 5.
There are eight spanning trees. Fig. 6 shows the set of spanning 2-forests for this graph. There
are ten spanning 2-forests. The last example in each row of fig. 6 does not contribute to the graph
polynomial F , since the momentum sum flowing through all cut lines is zero. Therefore we have
in this case s(T1,T2) = 0. In all other cases we have s(T1,T2) = p2. We arrive therefore at the graph
polynomials

U = (x1+ x4)(x2+ x3)+(x1+ x2+ x3+ x4)x5,

F = [(x1+ x2)(x3+ x4)x5+ x1x4(x2+ x3)+ x2x3(x1+ x4)]
(

−p2

µ2

)

. (32)

5 The matrix-tree theorem
In this section we introduce the Laplacian of a graph. The Laplacian is a matrix constructed
from the topology of the graph. The determinant of a minor of this matrix where the i-th row
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Figure 5: The set of spanning trees for the two-loop two-point graph of fig. 4.

Since we have to remove l edges from G to obtain a spanning tree and (l+ 1) edges to obtain
a spanning 2-forest, it follows that U and F are homogeneous in the Feynman parameters of
degree l and (l+ 1), respectively. From the fact, that an internal edge can be removed at most
once, it follows that U and F0 are linear in each Feynman parameter. Finally it is obvious from
eq. (27) that each monomial in the expanded form of U has coefficient +1.

Let us look at an example. Fig. 4 shows the graph of a two-loop two-point integral. We take
again all internal masses to be zero. The set of all spanning trees for this graph is shown in fig. 5.
There are eight spanning trees. Fig. 6 shows the set of spanning 2-forests for this graph. There
are ten spanning 2-forests. The last example in each row of fig. 6 does not contribute to the graph
polynomial F , since the momentum sum flowing through all cut lines is zero. Therefore we have
in this case s(T1,T2) = 0. In all other cases we have s(T1,T2) = p2. We arrive therefore at the graph
polynomials

U = (x1+ x4)(x2+ x3)+(x1+ x2+ x3+ x4)x5,

F = [(x1+ x2)(x3+ x4)x5+ x1x4(x2+ x3)+ x2x3(x1+ x4)]
(

−p2

µ2

)

. (32)

5 The matrix-tree theorem
In this section we introduce the Laplacian of a graph. The Laplacian is a matrix constructed
from the topology of the graph. The determinant of a minor of this matrix where the i-th row
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Figure 5: The set of spanning trees for the two-loop two-point graph of fig. 4.

Since we have to remove l edges from G to obtain a spanning tree and (l+ 1) edges to obtain
a spanning 2-forest, it follows that U and F are homogeneous in the Feynman parameters of
degree l and (l+ 1), respectively. From the fact, that an internal edge can be removed at most
once, it follows that U and F0 are linear in each Feynman parameter. Finally it is obvious from
eq. (27) that each monomial in the expanded form of U has coefficient +1.

Let us look at an example. Fig. 4 shows the graph of a two-loop two-point integral. We take
again all internal masses to be zero. The set of all spanning trees for this graph is shown in fig. 5.
There are eight spanning trees. Fig. 6 shows the set of spanning 2-forests for this graph. There
are ten spanning 2-forests. The last example in each row of fig. 6 does not contribute to the graph
polynomial F , since the momentum sum flowing through all cut lines is zero. Therefore we have
in this case s(T1,T2) = 0. In all other cases we have s(T1,T2) = p2. We arrive therefore at the graph
polynomials

U = (x1+ x4)(x2+ x3)+(x1+ x2+ x3+ x4)x5,

F = [(x1+ x2)(x3+ x4)x5+ x1x4(x2+ x3)+ x2x3(x1+ x4)]
(

−p2

µ2

)

. (32)

5 The matrix-tree theorem
In this section we introduce the Laplacian of a graph. The Laplacian is a matrix constructed
from the topology of the graph. The determinant of a minor of this matrix where the i-th row

11

p

q1 q2

q4 q3

q5

Figure 4: A two-loop two-point graph.

Figure 5: The set of spanning trees for the two-loop two-point graph of fig. 4.

Since we have to remove l edges from G to obtain a spanning tree and (l+ 1) edges to obtain
a spanning 2-forest, it follows that U and F are homogeneous in the Feynman parameters of
degree l and (l+ 1), respectively. From the fact, that an internal edge can be removed at most
once, it follows that U and F0 are linear in each Feynman parameter. Finally it is obvious from
eq. (27) that each monomial in the expanded form of U has coefficient +1.

Let us look at an example. Fig. 4 shows the graph of a two-loop two-point integral. We take
again all internal masses to be zero. The set of all spanning trees for this graph is shown in fig. 5.
There are eight spanning trees. Fig. 6 shows the set of spanning 2-forests for this graph. There
are ten spanning 2-forests. The last example in each row of fig. 6 does not contribute to the graph
polynomial F , since the momentum sum flowing through all cut lines is zero. Therefore we have
in this case s(T1,T2) = 0. In all other cases we have s(T1,T2) = p2. We arrive therefore at the graph
polynomials

U = (x1+ x4)(x2+ x3)+(x1+ x2+ x3+ x4)x5,

F = [(x1+ x2)(x3+ x4)x5+ x1x4(x2+ x3)+ x2x3(x1+ x4)]
(

−p2

µ2

)

. (32)

5 The matrix-tree theorem
In this section we introduce the Laplacian of a graph. The Laplacian is a matrix constructed
from the topology of the graph. The determinant of a minor of this matrix where the i-th row

11

p

q1 q2

q4 q3

q5
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Figure 5: The set of spanning trees for the two-loop two-point graph of fig. 4.

Since we have to remove l edges from G to obtain a spanning tree and (l+ 1) edges to obtain
a spanning 2-forest, it follows that U and F are homogeneous in the Feynman parameters of
degree l and (l+ 1), respectively. From the fact, that an internal edge can be removed at most
once, it follows that U and F0 are linear in each Feynman parameter. Finally it is obvious from
eq. (27) that each monomial in the expanded form of U has coefficient +1.

Let us look at an example. Fig. 4 shows the graph of a two-loop two-point integral. We take
again all internal masses to be zero. The set of all spanning trees for this graph is shown in fig. 5.
There are eight spanning trees. Fig. 6 shows the set of spanning 2-forests for this graph. There
are ten spanning 2-forests. The last example in each row of fig. 6 does not contribute to the graph
polynomial F , since the momentum sum flowing through all cut lines is zero. Therefore we have
in this case s(T1,T2) = 0. In all other cases we have s(T1,T2) = p2. We arrive therefore at the graph
polynomials

U = (x1+ x4)(x2+ x3)+(x1+ x2+ x3+ x4)x5,

F = [(x1+ x2)(x3+ x4)x5+ x1x4(x2+ x3)+ x2x3(x1+ x4)]
(

−p2

µ2

)

. (32)

5 The matrix-tree theorem
In this section we introduce the Laplacian of a graph. The Laplacian is a matrix constructed
from the topology of the graph. The determinant of a minor of this matrix where the i-th row
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Figure 5: The set of spanning trees for the two-loop two-point graph of fig. 4.

Since we have to remove l edges from G to obtain a spanning tree and (l+ 1) edges to obtain
a spanning 2-forest, it follows that U and F are homogeneous in the Feynman parameters of
degree l and (l+ 1), respectively. From the fact, that an internal edge can be removed at most
once, it follows that U and F0 are linear in each Feynman parameter. Finally it is obvious from
eq. (27) that each monomial in the expanded form of U has coefficient +1.

Let us look at an example. Fig. 4 shows the graph of a two-loop two-point integral. We take
again all internal masses to be zero. The set of all spanning trees for this graph is shown in fig. 5.
There are eight spanning trees. Fig. 6 shows the set of spanning 2-forests for this graph. There
are ten spanning 2-forests. The last example in each row of fig. 6 does not contribute to the graph
polynomial F , since the momentum sum flowing through all cut lines is zero. Therefore we have
in this case s(T1,T2) = 0. In all other cases we have s(T1,T2) = p2. We arrive therefore at the graph
polynomials

U = (x1+ x4)(x2+ x3)+(x1+ x2+ x3+ x4)x5,

F = [(x1+ x2)(x3+ x4)x5+ x1x4(x2+ x3)+ x2x3(x1+ x4)]
(

−p2

µ2

)

. (32)

5 The matrix-tree theorem
In this section we introduce the Laplacian of a graph. The Laplacian is a matrix constructed
from the topology of the graph. The determinant of a minor of this matrix where the i-th row
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Figure 5: The set of spanning trees for the two-loop two-point graph of fig. 4.

Since we have to remove l edges from G to obtain a spanning tree and (l+ 1) edges to obtain
a spanning 2-forest, it follows that U and F are homogeneous in the Feynman parameters of
degree l and (l+ 1), respectively. From the fact, that an internal edge can be removed at most
once, it follows that U and F0 are linear in each Feynman parameter. Finally it is obvious from
eq. (27) that each monomial in the expanded form of U has coefficient +1.

Let us look at an example. Fig. 4 shows the graph of a two-loop two-point integral. We take
again all internal masses to be zero. The set of all spanning trees for this graph is shown in fig. 5.
There are eight spanning trees. Fig. 6 shows the set of spanning 2-forests for this graph. There
are ten spanning 2-forests. The last example in each row of fig. 6 does not contribute to the graph
polynomial F , since the momentum sum flowing through all cut lines is zero. Therefore we have
in this case s(T1,T2) = 0. In all other cases we have s(T1,T2) = p2. We arrive therefore at the graph
polynomials

U = (x1+ x4)(x2+ x3)+(x1+ x2+ x3+ x4)x5,

F = [(x1+ x2)(x3+ x4)x5+ x1x4(x2+ x3)+ x2x3(x1+ x4)]
(

−p2

µ2

)

. (32)

5 The matrix-tree theorem
In this section we introduce the Laplacian of a graph. The Laplacian is a matrix constructed
from the topology of the graph. The determinant of a minor of this matrix where the i-th row

11

p

q1 q2

q4 q3

q5
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Figure 5: The set of spanning trees for the two-loop two-point graph of fig. 4.

Since we have to remove l edges from G to obtain a spanning tree and (l+ 1) edges to obtain
a spanning 2-forest, it follows that U and F are homogeneous in the Feynman parameters of
degree l and (l+ 1), respectively. From the fact, that an internal edge can be removed at most
once, it follows that U and F0 are linear in each Feynman parameter. Finally it is obvious from
eq. (27) that each monomial in the expanded form of U has coefficient +1.

Let us look at an example. Fig. 4 shows the graph of a two-loop two-point integral. We take
again all internal masses to be zero. The set of all spanning trees for this graph is shown in fig. 5.
There are eight spanning trees. Fig. 6 shows the set of spanning 2-forests for this graph. There
are ten spanning 2-forests. The last example in each row of fig. 6 does not contribute to the graph
polynomial F , since the momentum sum flowing through all cut lines is zero. Therefore we have
in this case s(T1,T2) = 0. In all other cases we have s(T1,T2) = p2. We arrive therefore at the graph
polynomials

U = (x1+ x4)(x2+ x3)+(x1+ x2+ x3+ x4)x5,

F = [(x1+ x2)(x3+ x4)x5+ x1x4(x2+ x3)+ x2x3(x1+ x4)]
(

−p2

µ2

)

. (32)

5 The matrix-tree theorem
In this section we introduce the Laplacian of a graph. The Laplacian is a matrix constructed
from the topology of the graph. The determinant of a minor of this matrix where the i-th row
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1. Delete          edges all possible ways 
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3. Sum F.P. monomials multiplied by:  
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Figure 4: A two-loop two-point graph.

Figure 5: The set of spanning trees for the two-loop two-point graph of fig. 4.

Since we have to remove l edges from G to obtain a spanning tree and (l+ 1) edges to obtain
a spanning 2-forest, it follows that U and F are homogeneous in the Feynman parameters of
degree l and (l+ 1), respectively. From the fact, that an internal edge can be removed at most
once, it follows that U and F0 are linear in each Feynman parameter. Finally it is obvious from
eq. (27) that each monomial in the expanded form of U has coefficient +1.

Let us look at an example. Fig. 4 shows the graph of a two-loop two-point integral. We take
again all internal masses to be zero. The set of all spanning trees for this graph is shown in fig. 5.
There are eight spanning trees. Fig. 6 shows the set of spanning 2-forests for this graph. There
are ten spanning 2-forests. The last example in each row of fig. 6 does not contribute to the graph
polynomial F , since the momentum sum flowing through all cut lines is zero. Therefore we have
in this case s(T1,T2) = 0. In all other cases we have s(T1,T2) = p2. We arrive therefore at the graph
polynomials

U = (x1+ x4)(x2+ x3)+(x1+ x2+ x3+ x4)x5,

F = [(x1+ x2)(x3+ x4)x5+ x1x4(x2+ x3)+ x2x3(x1+ x4)]
(

−p2

µ2

)

. (32)

5 The matrix-tree theorem
In this section we introduce the Laplacian of a graph. The Laplacian is a matrix constructed
from the topology of the graph. The determinant of a minor of this matrix where the i-th row
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Figure 5: The set of spanning trees for the two-loop two-point graph of fig. 4.

Since we have to remove l edges from G to obtain a spanning tree and (l+ 1) edges to obtain
a spanning 2-forest, it follows that U and F are homogeneous in the Feynman parameters of
degree l and (l+ 1), respectively. From the fact, that an internal edge can be removed at most
once, it follows that U and F0 are linear in each Feynman parameter. Finally it is obvious from
eq. (27) that each monomial in the expanded form of U has coefficient +1.

Let us look at an example. Fig. 4 shows the graph of a two-loop two-point integral. We take
again all internal masses to be zero. The set of all spanning trees for this graph is shown in fig. 5.
There are eight spanning trees. Fig. 6 shows the set of spanning 2-forests for this graph. There
are ten spanning 2-forests. The last example in each row of fig. 6 does not contribute to the graph
polynomial F , since the momentum sum flowing through all cut lines is zero. Therefore we have
in this case s(T1,T2) = 0. In all other cases we have s(T1,T2) = p2. We arrive therefore at the graph
polynomials

U = (x1+ x4)(x2+ x3)+(x1+ x2+ x3+ x4)x5,

F = [(x1+ x2)(x3+ x4)x5+ x1x4(x2+ x3)+ x2x3(x1+ x4)]
(

−p2

µ2

)

. (32)

5 The matrix-tree theorem
In this section we introduce the Laplacian of a graph. The Laplacian is a matrix constructed
from the topology of the graph. The determinant of a minor of this matrix where the i-th row
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Figure 5: The set of spanning trees for the two-loop two-point graph of fig. 4.

Since we have to remove l edges from G to obtain a spanning tree and (l+ 1) edges to obtain
a spanning 2-forest, it follows that U and F are homogeneous in the Feynman parameters of
degree l and (l+ 1), respectively. From the fact, that an internal edge can be removed at most
once, it follows that U and F0 are linear in each Feynman parameter. Finally it is obvious from
eq. (27) that each monomial in the expanded form of U has coefficient +1.

Let us look at an example. Fig. 4 shows the graph of a two-loop two-point integral. We take
again all internal masses to be zero. The set of all spanning trees for this graph is shown in fig. 5.
There are eight spanning trees. Fig. 6 shows the set of spanning 2-forests for this graph. There
are ten spanning 2-forests. The last example in each row of fig. 6 does not contribute to the graph
polynomial F , since the momentum sum flowing through all cut lines is zero. Therefore we have
in this case s(T1,T2) = 0. In all other cases we have s(T1,T2) = p2. We arrive therefore at the graph
polynomials

U = (x1+ x4)(x2+ x3)+(x1+ x2+ x3+ x4)x5,

F = [(x1+ x2)(x3+ x4)x5+ x1x4(x2+ x3)+ x2x3(x1+ x4)]
(

−p2

µ2

)

. (32)

5 The matrix-tree theorem
In this section we introduce the Laplacian of a graph. The Laplacian is a matrix constructed
from the topology of the graph. The determinant of a minor of this matrix where the i-th row
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Figure 5: The set of spanning trees for the two-loop two-point graph of fig. 4.

Since we have to remove l edges from G to obtain a spanning tree and (l+ 1) edges to obtain
a spanning 2-forest, it follows that U and F are homogeneous in the Feynman parameters of
degree l and (l+ 1), respectively. From the fact, that an internal edge can be removed at most
once, it follows that U and F0 are linear in each Feynman parameter. Finally it is obvious from
eq. (27) that each monomial in the expanded form of U has coefficient +1.

Let us look at an example. Fig. 4 shows the graph of a two-loop two-point integral. We take
again all internal masses to be zero. The set of all spanning trees for this graph is shown in fig. 5.
There are eight spanning trees. Fig. 6 shows the set of spanning 2-forests for this graph. There
are ten spanning 2-forests. The last example in each row of fig. 6 does not contribute to the graph
polynomial F , since the momentum sum flowing through all cut lines is zero. Therefore we have
in this case s(T1,T2) = 0. In all other cases we have s(T1,T2) = p2. We arrive therefore at the graph
polynomials

U = (x1+ x4)(x2+ x3)+(x1+ x2+ x3+ x4)x5,

F = [(x1+ x2)(x3+ x4)x5+ x1x4(x2+ x3)+ x2x3(x1+ x4)]
(

−p2

µ2

)

. (32)

5 The matrix-tree theorem
In this section we introduce the Laplacian of a graph. The Laplacian is a matrix constructed
from the topology of the graph. The determinant of a minor of this matrix where the i-th row
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Figure 5: The set of spanning trees for the two-loop two-point graph of fig. 4.

Since we have to remove l edges from G to obtain a spanning tree and (l+ 1) edges to obtain
a spanning 2-forest, it follows that U and F are homogeneous in the Feynman parameters of
degree l and (l+ 1), respectively. From the fact, that an internal edge can be removed at most
once, it follows that U and F0 are linear in each Feynman parameter. Finally it is obvious from
eq. (27) that each monomial in the expanded form of U has coefficient +1.

Let us look at an example. Fig. 4 shows the graph of a two-loop two-point integral. We take
again all internal masses to be zero. The set of all spanning trees for this graph is shown in fig. 5.
There are eight spanning trees. Fig. 6 shows the set of spanning 2-forests for this graph. There
are ten spanning 2-forests. The last example in each row of fig. 6 does not contribute to the graph
polynomial F , since the momentum sum flowing through all cut lines is zero. Therefore we have
in this case s(T1,T2) = 0. In all other cases we have s(T1,T2) = p2. We arrive therefore at the graph
polynomials

U = (x1+ x4)(x2+ x3)+(x1+ x2+ x3+ x4)x5,

F = [(x1+ x2)(x3+ x4)x5+ x1x4(x2+ x3)+ x2x3(x1+ x4)]
(

−p2

µ2

)

. (32)

5 The matrix-tree theorem
In this section we introduce the Laplacian of a graph. The Laplacian is a matrix constructed
from the topology of the graph. The determinant of a minor of this matrix where the i-th row
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Figure 5: The set of spanning trees for the two-loop two-point graph of fig. 4.

Since we have to remove l edges from G to obtain a spanning tree and (l+ 1) edges to obtain
a spanning 2-forest, it follows that U and F are homogeneous in the Feynman parameters of
degree l and (l+ 1), respectively. From the fact, that an internal edge can be removed at most
once, it follows that U and F0 are linear in each Feynman parameter. Finally it is obvious from
eq. (27) that each monomial in the expanded form of U has coefficient +1.

Let us look at an example. Fig. 4 shows the graph of a two-loop two-point integral. We take
again all internal masses to be zero. The set of all spanning trees for this graph is shown in fig. 5.
There are eight spanning trees. Fig. 6 shows the set of spanning 2-forests for this graph. There
are ten spanning 2-forests. The last example in each row of fig. 6 does not contribute to the graph
polynomial F , since the momentum sum flowing through all cut lines is zero. Therefore we have
in this case s(T1,T2) = 0. In all other cases we have s(T1,T2) = p2. We arrive therefore at the graph
polynomials

U = (x1+ x4)(x2+ x3)+(x1+ x2+ x3+ x4)x5,

F = [(x1+ x2)(x3+ x4)x5+ x1x4(x2+ x3)+ x2x3(x1+ x4)]
(

−p2

µ2

)

. (32)

5 The matrix-tree theorem
In this section we introduce the Laplacian of a graph. The Laplacian is a matrix constructed
from the topology of the graph. The determinant of a minor of this matrix where the i-th row
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Figure 5: The set of spanning trees for the two-loop two-point graph of fig. 4.

Since we have to remove l edges from G to obtain a spanning tree and (l+ 1) edges to obtain
a spanning 2-forest, it follows that U and F are homogeneous in the Feynman parameters of
degree l and (l+ 1), respectively. From the fact, that an internal edge can be removed at most
once, it follows that U and F0 are linear in each Feynman parameter. Finally it is obvious from
eq. (27) that each monomial in the expanded form of U has coefficient +1.

Let us look at an example. Fig. 4 shows the graph of a two-loop two-point integral. We take
again all internal masses to be zero. The set of all spanning trees for this graph is shown in fig. 5.
There are eight spanning trees. Fig. 6 shows the set of spanning 2-forests for this graph. There
are ten spanning 2-forests. The last example in each row of fig. 6 does not contribute to the graph
polynomial F , since the momentum sum flowing through all cut lines is zero. Therefore we have
in this case s(T1,T2) = 0. In all other cases we have s(T1,T2) = p2. We arrive therefore at the graph
polynomials

U = (x1+ x4)(x2+ x3)+(x1+ x2+ x3+ x4)x5,

F = [(x1+ x2)(x3+ x4)x5+ x1x4(x2+ x3)+ x2x3(x1+ x4)]
(

−p2

µ2

)

. (32)

5 The matrix-tree theorem
In this section we introduce the Laplacian of a graph. The Laplacian is a matrix constructed
from the topology of the graph. The determinant of a minor of this matrix where the i-th row
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Figure 5: The set of spanning trees for the two-loop two-point graph of fig. 4.

Since we have to remove l edges from G to obtain a spanning tree and (l+ 1) edges to obtain
a spanning 2-forest, it follows that U and F are homogeneous in the Feynman parameters of
degree l and (l+ 1), respectively. From the fact, that an internal edge can be removed at most
once, it follows that U and F0 are linear in each Feynman parameter. Finally it is obvious from
eq. (27) that each monomial in the expanded form of U has coefficient +1.

Let us look at an example. Fig. 4 shows the graph of a two-loop two-point integral. We take
again all internal masses to be zero. The set of all spanning trees for this graph is shown in fig. 5.
There are eight spanning trees. Fig. 6 shows the set of spanning 2-forests for this graph. There
are ten spanning 2-forests. The last example in each row of fig. 6 does not contribute to the graph
polynomial F , since the momentum sum flowing through all cut lines is zero. Therefore we have
in this case s(T1,T2) = 0. In all other cases we have s(T1,T2) = p2. We arrive therefore at the graph
polynomials

U = (x1+ x4)(x2+ x3)+(x1+ x2+ x3+ x4)x5,

F = [(x1+ x2)(x3+ x4)x5+ x1x4(x2+ x3)+ x2x3(x1+ x4)]
(

−p2

µ2

)

. (32)

5 The matrix-tree theorem
In this section we introduce the Laplacian of a graph. The Laplacian is a matrix constructed
from the topology of the graph. The determinant of a minor of this matrix where the i-th row
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Figure 5: The set of spanning trees for the two-loop two-point graph of fig. 4.

Since we have to remove l edges from G to obtain a spanning tree and (l+ 1) edges to obtain
a spanning 2-forest, it follows that U and F are homogeneous in the Feynman parameters of
degree l and (l+ 1), respectively. From the fact, that an internal edge can be removed at most
once, it follows that U and F0 are linear in each Feynman parameter. Finally it is obvious from
eq. (27) that each monomial in the expanded form of U has coefficient +1.

Let us look at an example. Fig. 4 shows the graph of a two-loop two-point integral. We take
again all internal masses to be zero. The set of all spanning trees for this graph is shown in fig. 5.
There are eight spanning trees. Fig. 6 shows the set of spanning 2-forests for this graph. There
are ten spanning 2-forests. The last example in each row of fig. 6 does not contribute to the graph
polynomial F , since the momentum sum flowing through all cut lines is zero. Therefore we have
in this case s(T1,T2) = 0. In all other cases we have s(T1,T2) = p2. We arrive therefore at the graph
polynomials

U = (x1+ x4)(x2+ x3)+(x1+ x2+ x3+ x4)x5,

F = [(x1+ x2)(x3+ x4)x5+ x1x4(x2+ x3)+ x2x3(x1+ x4)]
(

−p2

µ2

)

. (32)

5 The matrix-tree theorem
In this section we introduce the Laplacian of a graph. The Laplacian is a matrix constructed
from the topology of the graph. The determinant of a minor of this matrix where the i-th row
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Figure 5: The set of spanning trees for the two-loop two-point graph of fig. 4.

Since we have to remove l edges from G to obtain a spanning tree and (l+ 1) edges to obtain
a spanning 2-forest, it follows that U and F are homogeneous in the Feynman parameters of
degree l and (l+ 1), respectively. From the fact, that an internal edge can be removed at most
once, it follows that U and F0 are linear in each Feynman parameter. Finally it is obvious from
eq. (27) that each monomial in the expanded form of U has coefficient +1.

Let us look at an example. Fig. 4 shows the graph of a two-loop two-point integral. We take
again all internal masses to be zero. The set of all spanning trees for this graph is shown in fig. 5.
There are eight spanning trees. Fig. 6 shows the set of spanning 2-forests for this graph. There
are ten spanning 2-forests. The last example in each row of fig. 6 does not contribute to the graph
polynomial F , since the momentum sum flowing through all cut lines is zero. Therefore we have
in this case s(T1,T2) = 0. In all other cases we have s(T1,T2) = p2. We arrive therefore at the graph
polynomials

U = (x1+ x4)(x2+ x3)+(x1+ x2+ x3+ x4)x5,

F = [(x1+ x2)(x3+ x4)x5+ x1x4(x2+ x3)+ x2x3(x1+ x4)]
(

−p2

µ2

)

. (32)

5 The matrix-tree theorem
In this section we introduce the Laplacian of a graph. The Laplacian is a matrix constructed
from the topology of the graph. The determinant of a minor of this matrix where the i-th row
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Figure 5: The set of spanning trees for the two-loop two-point graph of fig. 4.

Since we have to remove l edges from G to obtain a spanning tree and (l+ 1) edges to obtain
a spanning 2-forest, it follows that U and F are homogeneous in the Feynman parameters of
degree l and (l+ 1), respectively. From the fact, that an internal edge can be removed at most
once, it follows that U and F0 are linear in each Feynman parameter. Finally it is obvious from
eq. (27) that each monomial in the expanded form of U has coefficient +1.

Let us look at an example. Fig. 4 shows the graph of a two-loop two-point integral. We take
again all internal masses to be zero. The set of all spanning trees for this graph is shown in fig. 5.
There are eight spanning trees. Fig. 6 shows the set of spanning 2-forests for this graph. There
are ten spanning 2-forests. The last example in each row of fig. 6 does not contribute to the graph
polynomial F , since the momentum sum flowing through all cut lines is zero. Therefore we have
in this case s(T1,T2) = 0. In all other cases we have s(T1,T2) = p2. We arrive therefore at the graph
polynomials

U = (x1+ x4)(x2+ x3)+(x1+ x2+ x3+ x4)x5,

F = [(x1+ x2)(x3+ x4)x5+ x1x4(x2+ x3)+ x2x3(x1+ x4)]
(

−p2

µ2

)
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5 The matrix-tree theorem
In this section we introduce the Laplacian of a graph. The Laplacian is a matrix constructed
from the topology of the graph. The determinant of a minor of this matrix where the i-th row
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Figure 5: The set of spanning trees for the two-loop two-point graph of fig. 4.

Since we have to remove l edges from G to obtain a spanning tree and (l+ 1) edges to obtain
a spanning 2-forest, it follows that U and F are homogeneous in the Feynman parameters of
degree l and (l+ 1), respectively. From the fact, that an internal edge can be removed at most
once, it follows that U and F0 are linear in each Feynman parameter. Finally it is obvious from
eq. (27) that each monomial in the expanded form of U has coefficient +1.

Let us look at an example. Fig. 4 shows the graph of a two-loop two-point integral. We take
again all internal masses to be zero. The set of all spanning trees for this graph is shown in fig. 5.
There are eight spanning trees. Fig. 6 shows the set of spanning 2-forests for this graph. There
are ten spanning 2-forests. The last example in each row of fig. 6 does not contribute to the graph
polynomial F , since the momentum sum flowing through all cut lines is zero. Therefore we have
in this case s(T1,T2) = 0. In all other cases we have s(T1,T2) = p2. We arrive therefore at the graph
polynomials

U = (x1+ x4)(x2+ x3)+(x1+ x2+ x3+ x4)x5,

F = [(x1+ x2)(x3+ x4)x5+ x1x4(x2+ x3)+ x2x3(x1+ x4)]
(

−p2

µ2

)
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5 The matrix-tree theorem
In this section we introduce the Laplacian of a graph. The Laplacian is a matrix constructed
from the topology of the graph. The determinant of a minor of this matrix where the i-th row
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Figure 5: The set of spanning trees for the two-loop two-point graph of fig. 4.

Since we have to remove l edges from G to obtain a spanning tree and (l+ 1) edges to obtain
a spanning 2-forest, it follows that U and F are homogeneous in the Feynman parameters of
degree l and (l+ 1), respectively. From the fact, that an internal edge can be removed at most
once, it follows that U and F0 are linear in each Feynman parameter. Finally it is obvious from
eq. (27) that each monomial in the expanded form of U has coefficient +1.

Let us look at an example. Fig. 4 shows the graph of a two-loop two-point integral. We take
again all internal masses to be zero. The set of all spanning trees for this graph is shown in fig. 5.
There are eight spanning trees. Fig. 6 shows the set of spanning 2-forests for this graph. There
are ten spanning 2-forests. The last example in each row of fig. 6 does not contribute to the graph
polynomial F , since the momentum sum flowing through all cut lines is zero. Therefore we have
in this case s(T1,T2) = 0. In all other cases we have s(T1,T2) = p2. We arrive therefore at the graph
polynomials

U = (x1+ x4)(x2+ x3)+(x1+ x2+ x3+ x4)x5,

F = [(x1+ x2)(x3+ x4)x5+ x1x4(x2+ x3)+ x2x3(x1+ x4)]
(

−p2

µ2

)

. (32)

5 The matrix-tree theorem
In this section we introduce the Laplacian of a graph. The Laplacian is a matrix constructed
from the topology of the graph. The determinant of a minor of this matrix where the i-th row
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Figure 5: The set of spanning trees for the two-loop two-point graph of fig. 4.

Since we have to remove l edges from G to obtain a spanning tree and (l+ 1) edges to obtain
a spanning 2-forest, it follows that U and F are homogeneous in the Feynman parameters of
degree l and (l+ 1), respectively. From the fact, that an internal edge can be removed at most
once, it follows that U and F0 are linear in each Feynman parameter. Finally it is obvious from
eq. (27) that each monomial in the expanded form of U has coefficient +1.

Let us look at an example. Fig. 4 shows the graph of a two-loop two-point integral. We take
again all internal masses to be zero. The set of all spanning trees for this graph is shown in fig. 5.
There are eight spanning trees. Fig. 6 shows the set of spanning 2-forests for this graph. There
are ten spanning 2-forests. The last example in each row of fig. 6 does not contribute to the graph
polynomial F , since the momentum sum flowing through all cut lines is zero. Therefore we have
in this case s(T1,T2) = 0. In all other cases we have s(T1,T2) = p2. We arrive therefore at the graph
polynomials

U = (x1+ x4)(x2+ x3)+(x1+ x2+ x3+ x4)x5,

F = [(x1+ x2)(x3+ x4)x5+ x1x4(x2+ x3)+ x2x3(x1+ x4)]
(

−p2

µ2

)
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5 The matrix-tree theorem
In this section we introduce the Laplacian of a graph. The Laplacian is a matrix constructed
from the topology of the graph. The determinant of a minor of this matrix where the i-th row
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Figure 5: The set of spanning trees for the two-loop two-point graph of fig. 4.

Since we have to remove l edges from G to obtain a spanning tree and (l+ 1) edges to obtain
a spanning 2-forest, it follows that U and F are homogeneous in the Feynman parameters of
degree l and (l+ 1), respectively. From the fact, that an internal edge can be removed at most
once, it follows that U and F0 are linear in each Feynman parameter. Finally it is obvious from
eq. (27) that each monomial in the expanded form of U has coefficient +1.

Let us look at an example. Fig. 4 shows the graph of a two-loop two-point integral. We take
again all internal masses to be zero. The set of all spanning trees for this graph is shown in fig. 5.
There are eight spanning trees. Fig. 6 shows the set of spanning 2-forests for this graph. There
are ten spanning 2-forests. The last example in each row of fig. 6 does not contribute to the graph
polynomial F , since the momentum sum flowing through all cut lines is zero. Therefore we have
in this case s(T1,T2) = 0. In all other cases we have s(T1,T2) = p2. We arrive therefore at the graph
polynomials

U = (x1+ x4)(x2+ x3)+(x1+ x2+ x3+ x4)x5,

F = [(x1+ x2)(x3+ x4)x5+ x1x4(x2+ x3)+ x2x3(x1+ x4)]
(

−p2

µ2

)
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5 The matrix-tree theorem
In this section we introduce the Laplacian of a graph. The Laplacian is a matrix constructed
from the topology of the graph. The determinant of a minor of this matrix where the i-th row
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Figure 4: A two-loop two-point graph.

Figure 5: The set of spanning trees for the two-loop two-point graph of fig. 4.

Since we have to remove l edges from G to obtain a spanning tree and (l+ 1) edges to obtain
a spanning 2-forest, it follows that U and F are homogeneous in the Feynman parameters of
degree l and (l+ 1), respectively. From the fact, that an internal edge can be removed at most
once, it follows that U and F0 are linear in each Feynman parameter. Finally it is obvious from
eq. (27) that each monomial in the expanded form of U has coefficient +1.

Let us look at an example. Fig. 4 shows the graph of a two-loop two-point integral. We take
again all internal masses to be zero. The set of all spanning trees for this graph is shown in fig. 5.
There are eight spanning trees. Fig. 6 shows the set of spanning 2-forests for this graph. There
are ten spanning 2-forests. The last example in each row of fig. 6 does not contribute to the graph
polynomial F , since the momentum sum flowing through all cut lines is zero. Therefore we have
in this case s(T1,T2) = 0. In all other cases we have s(T1,T2) = p2. We arrive therefore at the graph
polynomials

U = (x1+ x4)(x2+ x3)+(x1+ x2+ x3+ x4)x5,

F = [(x1+ x2)(x3+ x4)x5+ x1x4(x2+ x3)+ x2x3(x1+ x4)]
(

−p2

µ2

)

. (32)

5 The matrix-tree theorem
In this section we introduce the Laplacian of a graph. The Laplacian is a matrix constructed
from the topology of the graph. The determinant of a minor of this matrix where the i-th row
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Figure 5: The set of spanning trees for the two-loop two-point graph of fig. 4.

Since we have to remove l edges from G to obtain a spanning tree and (l+ 1) edges to obtain
a spanning 2-forest, it follows that U and F are homogeneous in the Feynman parameters of
degree l and (l+ 1), respectively. From the fact, that an internal edge can be removed at most
once, it follows that U and F0 are linear in each Feynman parameter. Finally it is obvious from
eq. (27) that each monomial in the expanded form of U has coefficient +1.

Let us look at an example. Fig. 4 shows the graph of a two-loop two-point integral. We take
again all internal masses to be zero. The set of all spanning trees for this graph is shown in fig. 5.
There are eight spanning trees. Fig. 6 shows the set of spanning 2-forests for this graph. There
are ten spanning 2-forests. The last example in each row of fig. 6 does not contribute to the graph
polynomial F , since the momentum sum flowing through all cut lines is zero. Therefore we have
in this case s(T1,T2) = 0. In all other cases we have s(T1,T2) = p2. We arrive therefore at the graph
polynomials

U = (x1+ x4)(x2+ x3)+(x1+ x2+ x3+ x4)x5,

F = [(x1+ x2)(x3+ x4)x5+ x1x4(x2+ x3)+ x2x3(x1+ x4)]
(

−p2

µ2

)

. (32)

5 The matrix-tree theorem
In this section we introduce the Laplacian of a graph. The Laplacian is a matrix constructed
from the topology of the graph. The determinant of a minor of this matrix where the i-th row

11

p

q1 q2

q4 q3

q5

Figure 4: A two-loop two-point graph.

Figure 5: The set of spanning trees for the two-loop two-point graph of fig. 4.

Since we have to remove l edges from G to obtain a spanning tree and (l+ 1) edges to obtain
a spanning 2-forest, it follows that U and F are homogeneous in the Feynman parameters of
degree l and (l+ 1), respectively. From the fact, that an internal edge can be removed at most
once, it follows that U and F0 are linear in each Feynman parameter. Finally it is obvious from
eq. (27) that each monomial in the expanded form of U has coefficient +1.

Let us look at an example. Fig. 4 shows the graph of a two-loop two-point integral. We take
again all internal masses to be zero. The set of all spanning trees for this graph is shown in fig. 5.
There are eight spanning trees. Fig. 6 shows the set of spanning 2-forests for this graph. There
are ten spanning 2-forests. The last example in each row of fig. 6 does not contribute to the graph
polynomial F , since the momentum sum flowing through all cut lines is zero. Therefore we have
in this case s(T1,T2) = 0. In all other cases we have s(T1,T2) = p2. We arrive therefore at the graph
polynomials

U = (x1+ x4)(x2+ x3)+(x1+ x2+ x3+ x4)x5,

F = [(x1+ x2)(x3+ x4)x5+ x1x4(x2+ x3)+ x2x3(x1+ x4)]
(

−p2

µ2

)

. (32)

5 The matrix-tree theorem
In this section we introduce the Laplacian of a graph. The Laplacian is a matrix constructed
from the topology of the graph. The determinant of a minor of this matrix where the i-th row
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Figure 5: The set of spanning trees for the two-loop two-point graph of fig. 4.

Since we have to remove l edges from G to obtain a spanning tree and (l+ 1) edges to obtain
a spanning 2-forest, it follows that U and F are homogeneous in the Feynman parameters of
degree l and (l+ 1), respectively. From the fact, that an internal edge can be removed at most
once, it follows that U and F0 are linear in each Feynman parameter. Finally it is obvious from
eq. (27) that each monomial in the expanded form of U has coefficient +1.

Let us look at an example. Fig. 4 shows the graph of a two-loop two-point integral. We take
again all internal masses to be zero. The set of all spanning trees for this graph is shown in fig. 5.
There are eight spanning trees. Fig. 6 shows the set of spanning 2-forests for this graph. There
are ten spanning 2-forests. The last example in each row of fig. 6 does not contribute to the graph
polynomial F , since the momentum sum flowing through all cut lines is zero. Therefore we have
in this case s(T1,T2) = 0. In all other cases we have s(T1,T2) = p2. We arrive therefore at the graph
polynomials

U = (x1+ x4)(x2+ x3)+(x1+ x2+ x3+ x4)x5,

F = [(x1+ x2)(x3+ x4)x5+ x1x4(x2+ x3)+ x2x3(x1+ x4)]
(

−p2

µ2

)

. (32)

5 The matrix-tree theorem
In this section we introduce the Laplacian of a graph. The Laplacian is a matrix constructed
from the topology of the graph. The determinant of a minor of this matrix where the i-th row
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Figure 5: The set of spanning trees for the two-loop two-point graph of fig. 4.

Since we have to remove l edges from G to obtain a spanning tree and (l+ 1) edges to obtain
a spanning 2-forest, it follows that U and F are homogeneous in the Feynman parameters of
degree l and (l+ 1), respectively. From the fact, that an internal edge can be removed at most
once, it follows that U and F0 are linear in each Feynman parameter. Finally it is obvious from
eq. (27) that each monomial in the expanded form of U has coefficient +1.

Let us look at an example. Fig. 4 shows the graph of a two-loop two-point integral. We take
again all internal masses to be zero. The set of all spanning trees for this graph is shown in fig. 5.
There are eight spanning trees. Fig. 6 shows the set of spanning 2-forests for this graph. There
are ten spanning 2-forests. The last example in each row of fig. 6 does not contribute to the graph
polynomial F , since the momentum sum flowing through all cut lines is zero. Therefore we have
in this case s(T1,T2) = 0. In all other cases we have s(T1,T2) = p2. We arrive therefore at the graph
polynomials

U = (x1+ x4)(x2+ x3)+(x1+ x2+ x3+ x4)x5,

F = [(x1+ x2)(x3+ x4)x5+ x1x4(x2+ x3)+ x2x3(x1+ x4)]
(

−p2

µ2

)

. (32)

5 The matrix-tree theorem
In this section we introduce the Laplacian of a graph. The Laplacian is a matrix constructed
from the topology of the graph. The determinant of a minor of this matrix where the i-th row
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Figure 5: The set of spanning trees for the two-loop two-point graph of fig. 4.

Since we have to remove l edges from G to obtain a spanning tree and (l+ 1) edges to obtain
a spanning 2-forest, it follows that U and F are homogeneous in the Feynman parameters of
degree l and (l+ 1), respectively. From the fact, that an internal edge can be removed at most
once, it follows that U and F0 are linear in each Feynman parameter. Finally it is obvious from
eq. (27) that each monomial in the expanded form of U has coefficient +1.

Let us look at an example. Fig. 4 shows the graph of a two-loop two-point integral. We take
again all internal masses to be zero. The set of all spanning trees for this graph is shown in fig. 5.
There are eight spanning trees. Fig. 6 shows the set of spanning 2-forests for this graph. There
are ten spanning 2-forests. The last example in each row of fig. 6 does not contribute to the graph
polynomial F , since the momentum sum flowing through all cut lines is zero. Therefore we have
in this case s(T1,T2) = 0. In all other cases we have s(T1,T2) = p2. We arrive therefore at the graph
polynomials

U = (x1+ x4)(x2+ x3)+(x1+ x2+ x3+ x4)x5,

F = [(x1+ x2)(x3+ x4)x5+ x1x4(x2+ x3)+ x2x3(x1+ x4)]
(

−p2

µ2

)

. (32)

5 The matrix-tree theorem
In this section we introduce the Laplacian of a graph. The Laplacian is a matrix constructed
from the topology of the graph. The determinant of a minor of this matrix where the i-th row
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Figure 5: The set of spanning trees for the two-loop two-point graph of fig. 4.

Since we have to remove l edges from G to obtain a spanning tree and (l+ 1) edges to obtain
a spanning 2-forest, it follows that U and F are homogeneous in the Feynman parameters of
degree l and (l+ 1), respectively. From the fact, that an internal edge can be removed at most
once, it follows that U and F0 are linear in each Feynman parameter. Finally it is obvious from
eq. (27) that each monomial in the expanded form of U has coefficient +1.

Let us look at an example. Fig. 4 shows the graph of a two-loop two-point integral. We take
again all internal masses to be zero. The set of all spanning trees for this graph is shown in fig. 5.
There are eight spanning trees. Fig. 6 shows the set of spanning 2-forests for this graph. There
are ten spanning 2-forests. The last example in each row of fig. 6 does not contribute to the graph
polynomial F , since the momentum sum flowing through all cut lines is zero. Therefore we have
in this case s(T1,T2) = 0. In all other cases we have s(T1,T2) = p2. We arrive therefore at the graph
polynomials

U = (x1+ x4)(x2+ x3)+(x1+ x2+ x3+ x4)x5,

F = [(x1+ x2)(x3+ x4)x5+ x1x4(x2+ x3)+ x2x3(x1+ x4)]
(

−p2

µ2

)

. (32)

5 The matrix-tree theorem
In this section we introduce the Laplacian of a graph. The Laplacian is a matrix constructed
from the topology of the graph. The determinant of a minor of this matrix where the i-th row
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Figure 5: The set of spanning trees for the two-loop two-point graph of fig. 4.

Since we have to remove l edges from G to obtain a spanning tree and (l+ 1) edges to obtain
a spanning 2-forest, it follows that U and F are homogeneous in the Feynman parameters of
degree l and (l+ 1), respectively. From the fact, that an internal edge can be removed at most
once, it follows that U and F0 are linear in each Feynman parameter. Finally it is obvious from
eq. (27) that each monomial in the expanded form of U has coefficient +1.

Let us look at an example. Fig. 4 shows the graph of a two-loop two-point integral. We take
again all internal masses to be zero. The set of all spanning trees for this graph is shown in fig. 5.
There are eight spanning trees. Fig. 6 shows the set of spanning 2-forests for this graph. There
are ten spanning 2-forests. The last example in each row of fig. 6 does not contribute to the graph
polynomial F , since the momentum sum flowing through all cut lines is zero. Therefore we have
in this case s(T1,T2) = 0. In all other cases we have s(T1,T2) = p2. We arrive therefore at the graph
polynomials

U = (x1+ x4)(x2+ x3)+(x1+ x2+ x3+ x4)x5,

F = [(x1+ x2)(x3+ x4)x5+ x1x4(x2+ x3)+ x2x3(x1+ x4)]
(

−p2

µ2

)

. (32)

5 The matrix-tree theorem
In this section we introduce the Laplacian of a graph. The Laplacian is a matrix constructed
from the topology of the graph. The determinant of a minor of this matrix where the i-th row
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Rules for                : 
1. Delete          edges all possible ways 

2. Take only graphs with 2 connected components (T1, T2) and  

3. Sum F.P. monomials multiplied by:  

4. (For               add the internal mass terms)

F0(~x, sij)

L+ 1

L = 0

�sij = �(
X

k

qk)
2

Momenta flowing 
through cut lines 
from T1 → T2

F(~x, sij)

p

q1 q2

q4 q3

q5

Figure 4: A two-loop two-point graph.

Figure 5: The set of spanning trees for the two-loop two-point graph of fig. 4.

Since we have to remove l edges from G to obtain a spanning tree and (l+ 1) edges to obtain
a spanning 2-forest, it follows that U and F are homogeneous in the Feynman parameters of
degree l and (l+ 1), respectively. From the fact, that an internal edge can be removed at most
once, it follows that U and F0 are linear in each Feynman parameter. Finally it is obvious from
eq. (27) that each monomial in the expanded form of U has coefficient +1.

Let us look at an example. Fig. 4 shows the graph of a two-loop two-point integral. We take
again all internal masses to be zero. The set of all spanning trees for this graph is shown in fig. 5.
There are eight spanning trees. Fig. 6 shows the set of spanning 2-forests for this graph. There
are ten spanning 2-forests. The last example in each row of fig. 6 does not contribute to the graph
polynomial F , since the momentum sum flowing through all cut lines is zero. Therefore we have
in this case s(T1,T2) = 0. In all other cases we have s(T1,T2) = p2. We arrive therefore at the graph
polynomials

U = (x1+ x4)(x2+ x3)+(x1+ x2+ x3+ x4)x5,

F = [(x1+ x2)(x3+ x4)x5+ x1x4(x2+ x3)+ x2x3(x1+ x4)]
(

−p2

µ2

)

. (32)

5 The matrix-tree theorem
In this section we introduce the Laplacian of a graph. The Laplacian is a matrix constructed
from the topology of the graph. The determinant of a minor of this matrix where the i-th row
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Figure 5: The set of spanning trees for the two-loop two-point graph of fig. 4.

Since we have to remove l edges from G to obtain a spanning tree and (l+ 1) edges to obtain
a spanning 2-forest, it follows that U and F are homogeneous in the Feynman parameters of
degree l and (l+ 1), respectively. From the fact, that an internal edge can be removed at most
once, it follows that U and F0 are linear in each Feynman parameter. Finally it is obvious from
eq. (27) that each monomial in the expanded form of U has coefficient +1.

Let us look at an example. Fig. 4 shows the graph of a two-loop two-point integral. We take
again all internal masses to be zero. The set of all spanning trees for this graph is shown in fig. 5.
There are eight spanning trees. Fig. 6 shows the set of spanning 2-forests for this graph. There
are ten spanning 2-forests. The last example in each row of fig. 6 does not contribute to the graph
polynomial F , since the momentum sum flowing through all cut lines is zero. Therefore we have
in this case s(T1,T2) = 0. In all other cases we have s(T1,T2) = p2. We arrive therefore at the graph
polynomials

U = (x1+ x4)(x2+ x3)+(x1+ x2+ x3+ x4)x5,

F = [(x1+ x2)(x3+ x4)x5+ x1x4(x2+ x3)+ x2x3(x1+ x4)]
(

−p2

µ2

)

. (32)

5 The matrix-tree theorem
In this section we introduce the Laplacian of a graph. The Laplacian is a matrix constructed
from the topology of the graph. The determinant of a minor of this matrix where the i-th row
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Sector Decomposition
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One technique Iterated Sector Decomposition repeat: 

If this procedure terminates depends on order of decomposition steps 

An alternative strategy Geometric Sector Decomposition always 
terminates; both strategies are implemented in SecDec.
Kaneko, Ueda 10; See also: Bogner, Weinzierl 08; Smirnov, Tentyukov 09

Binoth, Heinrich 00 

Overlapping singularity for x1, x2 ! 0
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