

On a four loop form factor in N=4

arXiv:1301.4165 with B. Kniehl, O. Tarasov and G. Yang arXiv:1508.03717 with B. Kniehl and G. Yang and in progress

Rutger Boels University of Hamburg

The wrong way to compute something interesting

arXiv:1301.4165 with B. Kniehl, O. Tarasov and G. Yang arXiv:1508.03717 with B. Kniehl and G. Yang and in progress

Rutger Boels University of Hamburg

(see Smirnov / Von Manteuffel talks for better ideas...)

The wrong way to compute something interesting

arXiv:1301.4165 with B. Kniehl, O. Tarasov and G. Yang arXiv:1508.03717 with B. Kniehl and G. Yang and in progress

> Rutger Boels University of Hamburg

Workshop motivation

Workshop motivation

• its a four loop computation

Workshop motivation

• its a four loop computation

• N=4 is 'hardest part' of QCD

Personal motivation

• formulation of gauge theory through Lagrangians \rightarrow in principle calculable quantities in perturbation theory

- formulation of gauge theory through Lagrangians \rightarrow in principle calculable quantities in perturbation theory
- (unreasonable effectiveness of loop corrections)

- formulation of gauge theory through Lagrangians \rightarrow in principle calculable quantities in perturbation theory
- (unreasonable effectiveness of loop corrections)
- much interesting physics beyond perturbation theory

- formulation of gauge theory through Lagrangians \rightarrow in principle calculable quantities in perturbation theory
- (unreasonable effectiveness of loop corrections)
- much interesting physics beyond perturbation theory
- "resum perturbation theory" \rightarrow more than a dream in planar N=4 SYM (a.k.a. harmonic oscillator of 21st century)

• "resum perturbation theory" \rightarrow more than a dream in planar N=4 SYM (a.k.a. harmonic oscillator of 21st century)

• "resum perturbation theory" \rightarrow more than a dream in planar N=4 SYM (a.k.a. harmonic oscillator of 21st century)

unique maximal supersymmetric gauge theory in D=4 $\mathcal{L} = \mathcal{L}(A_{\mu}, \psi^{I}, \phi^{[IJ]})$

IIB superstring on AdS5 x S5 background

• "resum perturbation theory" \rightarrow more than a dream in planar N=4 SYM (a.k.a. harmonic oscillator of 21st century)

• mostly explored in planar limit, for (BPS-)operator dims

• "resum perturbation theory" \rightarrow more than a dream in planar N=4 SYM (a.k.a. harmonic oscillator of 21st century)

• mostly explored in planar limit, for (BPS-)operator dims

• most prominent result: exact BES equation [Beisert-Eden-Staudacher, 04] for planar lightlike cusp anomalous dimension

• "resum perturbation theory" \rightarrow more than a dream in planar N=4 SYM (a.k.a. harmonic oscillator of 21st century)

• mostly explored in planar limit, for (BPS-)operator dims

• most prominent result: exact BES equation [Beisert-Eden-Staudacher, 04] for planar lightlike cusp anomalous dimension

universal function in IR divergences

Is this the real life? Is this just fantasy?

Is this the real life? Is this just fantasy?

 \rightarrow no escape from reality!

Is this the real life? Is this just fantasy?

 \rightarrow no escape from reality!

? what about the non-planar corrections to the cusp?

HH Ë

Cusp anomalous dimension: color dependence

- Sudakov form factor
 is the cusp, basically
 - $\sim \langle \operatorname{tr}(\Phi) | g_1 g_2 \rangle$

Cusp anomalous dimension: color dependence

Sudakov form factor
 is the cusp, basically

 $\sim \langle \operatorname{tr}(\Phi) | g_1 g_2 \rangle$

• color dependence = "trivial"

JHH iiii

Cusp anomalous dimension: color dependence

Sudakov form factor
 is the cusp, basically

 $\sim \langle \operatorname{tr}(\Phi) | g_1 g_2 \rangle$

• color dependence = "trivial"

loops	color structures
1	C_A
2	C_A^2
3	C_A^3
4	$C_A^4 ilde d_{44}$
5	$C_A^5 ilde{d}_{44} C_A$
6	$C^6_A ilde{d}_{44} C^2_A ilde{d}_{444}$
7	$C_{A}^{7} ~~ ilde{d}_{44} C_{A}^{3} ~~ ilde{d}_{444} C_{A} ~~ ilde{d}_{644}$
8	$\left\{\begin{array}{ccccc} C_A^8 & \tilde{d}_{44}C_A^4 & \tilde{d}_{444}C_A^2 & \tilde{d}_{644}C_A \\ \tilde{d}_{664} & \tilde{d}_{844} & \tilde{d}_{4444a} & \tilde{d}_{4444b} & N_A \tilde{d}_{44}^2 \end{array}\right\}$

Cusp anomalous dimension: color dependence

- Sudakov form factor
 is the cusp, basically
 - $\sim \langle \operatorname{tr}(\Phi) | g_1 g_2 \rangle$
- color dependence =
 "trivial"

loops	color structures
1	C_A
2	C_A^2
3	C_A^3
4	$C^4_A ~~ ilde{d}_{44}$
5	$C_A^5 ~~~ ilde{d}_{44} C_A$
6	$C^6_A ilde{d}_{44} C^2_A ilde{d}_{444}$
7	$C_{A}^{7} ~~ ilde{d}_{44}^{3} C_{A}^{3} ~~ ilde{d}_{444}^{4} C_{A} ~~ ilde{d}_{644}$
8	$ \left\{ \begin{array}{cccc} C_A^8 & \tilde{d}_{44} C_A^4 & \tilde{d}_{444} C_A^2 & \tilde{d}_{644} C_A \\ \tilde{d}_{664} & \tilde{d}_{844} & \tilde{d}_{4444a} & \tilde{d}_{4444b} & N_A \tilde{d}_{44}^2 \end{array} \right\} $

- DiaGen to generate graphs,
- COLOR to compute color factors
- counting?

Cusp anomalous dimension: color dependence

lo

- Sudakov form factor
 is the cusp, basically
 - $\sim \langle \operatorname{tr}(\Phi) | g_1 g_2 \rangle$
- color dependence = "trivial"

ons	color structures
ops	
1	C_A
2	C_A^2
3	C_A^3
4	$C_A^4 ~~ ilde{d}_{44}$
5	$C_A^5 ~~~ ilde{d}_{44} C_A$
6	$C_{A}^{6} ~~~ ilde{d}_{44}C_{A}^{2} ~~~ ilde{d}_{444}$
7	$C_{A}^{7} ~~ ilde{d}_{44}C_{A}^{3} ~~ ilde{d}_{444}C_{A} ~~ ilde{d}_{644}$
8	$\left\{\begin{array}{cccc} C_A^8 & \tilde{d}_{44}C_A^4 & \tilde{d}_{444}C_A^2 & \tilde{d}_{644}C_A \\ \tilde{d}_{664} & \tilde{d}_{844} & \tilde{d}_{4444a} & \tilde{d}_{4444b} & N_A \tilde{d}_{44}^2 \end{array}\right\}$

- DiaGen to generate graphs,
- COLOR to compute color factors
- counting?

$$\gamma_{\text{cusp}} = \sum_{l} g^{2l} \gamma_{\text{cusp}}^{(l)} = a_1 g^2 C_A + a_2 g^4 C_A^2 + a_3 g^6 C_A^3 + g^8 \left(a_4^P C_A^4 + a_4^{NP} d_{44} \right) + \mathcal{O}(g^9) ,$$

$$C_A = N_c \qquad d_{44} = N_c^4 + 36 N_c^2$$

• cusp is universal \rightarrow can be computed in multiple ways

- cusp is universal \rightarrow can be computed in multiple ways
- here form factor of the stress tensor multiplet in N=4 SYM

- cusp is universal \rightarrow can be computed in multiple ways
- here form factor of the stress tensor multiplet in N=4 SYM

cf electromagnetic form factors in basic QFT

- cusp is universal \rightarrow can be computed in multiple ways
- here form factor of the stress tensor multiplet in N=4 SYM

cf electromagnetic form factors in basic QFT

(simplicity: single scale problem)

- cusp is universal \rightarrow can be computed in multiple ways
- here form factor of the stress tensor multiplet in N=4 SYM

cf electromagnetic form factors in basic QFT

(simplicity: single scale problem)

 $p_1^2 = p_2^2 = 0$

• arises in IR divergences: two internal/external momenta collinear or one momentum soft

- cusp is universal \rightarrow can be computed in multiple ways
- here form factor of the stress tensor multiplet in N=4 SYM

cf electromagnetic form factors in basic QFT

(simplicity: single scale problem)

- $p_1^2 = p_2^2 = 0$
- arises in IR divergences: two internal/external momenta collinear or one momentum soft
- must cancel out in total cross-sections: imposes severe restrictions on observables (long story)

 $F = \langle g_1 g_2 | T(q) \rangle$

IR divergences 'exponentiate', roughly:

dim reg

 $A_l \propto e^{\frac{g_{\rm ym}^{2l}}{\epsilon^{2l}}h(g_{\rm ym},N_c,\epsilon)}\tilde{A}$

 $F = \langle g_1 g_2 | T(q) \rangle$

 $p_1^2 = p_2^2 = 0$

involves universal functions, e.g $\gamma_{\rm cusp}$

IR divergences 'exponentiate', roughly:

 $A_l \propto e^{\frac{g_{\rm ym}^{2l}}{\epsilon^{2l}}h(g_{\rm ym},N_c,\epsilon)}\tilde{A}$

 $F = \langle g_1 g_2 | T(q) \rangle$

 $p_1^2 = p_2^2 = 0$

involves universal functions, e.g $\gamma_{\rm cusp}$

• N=4 form factor factorises off a tree by SUSY,

dim reg

 $F^{\mathcal{N}=4} = F^{(0)} \tilde{F}(g_{\rm ym}, N_c)$

IR divergences 'exponentiate', roughly:

 $A_l \propto e^{\frac{g_{\rm ym}^{2l}}{\epsilon^{2l}}h(g_{\rm ym},N_c,\epsilon)}\tilde{A}$

 $F = \langle g_1 g_2 | T(q) \rangle$

involves universal functions, e.g $\gamma_{\rm cusp}$

• N=4 form factor factorises off a tree by SUSY,

dim reg

 $F^{\mathcal{N}=4} = F^{(0)} \tilde{F}(g_{\rm ym}, N_c)$

and exponentiates very easily

$$\operatorname{Log}[\tilde{F}] \propto \sum_{l} (-q^2)^{-l\epsilon} \frac{-g^{2l} \gamma_{\operatorname{cusp}}^{(l)}}{4(l\epsilon)^2} + \mathcal{O}(\epsilon^{-1}).$$

IR divergences 'exponentiate', roughly:

 $A_l \propto e^{\frac{g_{\rm ym}^{2l}}{\epsilon^{2l}}h(g_{\rm ym},N_c,\epsilon)}\tilde{A}$

 $F = \langle g_1 g_2 | T(q) \rangle$

 $p_1^2 = p_2^2 = 0$

involves universal functions, e.g $\gamma_{\rm cusp}$

• N=4 form factor factorises off a tree by SUSY,

dim reg

Sudakov form factor at four loops

Conjecture based on a variety of inputs on IR divergences:

Conjecture based on a variety of inputs on IR divergences:

non-planar correction to our cusp at four loops

- vanishes [Becher-Neubert, 09]
- probably [Ahrens-Neubert-Vernazza, 12]

Conjecture based on a variety of inputs on IR divergences:

non-planar correction to our cusp at four loops

- vanishes [Becher-Neubert, 09]
- probably [Ahrens-Neubert-Vernazza, 12]

"when in doubt, compute"

Conjecture based on a variety of inputs on IR divergences:

non-planar correction to our cusp at four loops

- vanishes [Becher-Neubert, 09]
- probably [Ahrens-Neubert-Vernazza, 12]

"when in doubt, compute"

- integrand generation
- IBP reduction
- (numerical) integration

Conjecture based on a variety of inputs on IR divergences:

non-planar correction to our cusp at four loops

- vanishes [Becher-Neubert, 09]
- probably [Ahrens-Neubert-Vernazza, 12]

"when in doubt, compute"

- integrand generation
- IBP reduction
- (numerical) integration

[RB-Kniehl-Tarasov-Yang, 12]

[this talk, with caveats]

[this talk, partly]

Conjecture based on a variety of inputs on IR divergences:

non-planar correction to our cusp at four loops

- vanishes [Becher-Neubert, 09]
- probably [Ahrens-Neubert-Vernazza, 12]

"when in doubt, compute"

- integrand generation [RB-Kniehl-Tarasov-Yang, 12]
- IBP reduction
- (numerical) integration

[this talk, with caveats]

[this talk, partly]

(see also Gardi's talk!)

- draw all trivalent graphs, dress with color &
- kinematics, relate numerators by color-kinematic duality
- feed in expectations about answer: UV divergences, absence of one-loop triangle graphs, symmetries
 check Ansatz using multicuts

- draw all trivalent graphs, dress with color &
- kinematics, relate numerators by color-kinematic duality
- feed in expectations about answer: UV divergences, absence of one-loop triangle graphs, symmetries
- check Ansatz using multicuts

- draw all trivalent graphs, dress with color &
- kinematics, relate numerators by color-kinematic duality
- feed in expectations about answer: UV divergences, absence of one-loop triangle graphs, symmetries
- check Ansatz using multicuts

- 2 'no-triangle' graphs
- no loop momenta in numerators allowed
- duality relates the 2 graphs

- draw all trivalent graphs, dress with color &
- kinematics, relate numerators by color-kinematic duality
- feed in expectations about answer: UV divergences, absence of one-loop triangle graphs, symmetries
- check Ansatz using multicuts

- draw all trivalent graphs, dress with color &
- kinematics, relate numerators by color-kinematic duality
- feed in expectations about answer: UV divergences, absence of one-loop triangle graphs, symmetries
- check Ansatz using multicuts

- checked 3 loop-2 point, 2 loop-3 point results (simple!)
- result for 4 loop-2 point:

[RB-Kniehl-Tarasov-Yang]

- checked 3 loop-2 point, 2 loop-3 point results (simple!)
- result for 4 loop-2 point:

[RB-Kniehl-Tarasov-Yang]

- checked 3 loop-2 point, 2 loop-3 point results (simple!)
- result for 4 loop-2 point:

[RB-Kniehl-Tarasov-Yang]

- checked 3 loop-2 point, 2 loop-3 point results (simple!)
- result for 4 loop-2 point:

- checked 3 loop-2 point, 2 loop-3 point results (simple!)
- result for 4 loop-2 point:

$$\mathcal{F}_2^{(4)} = s_{12}^2 \mathcal{F}_2^{(0)} \sum_{\sigma_2} \sum_{i=1}^{34} \frac{1}{S_i} C_i I_i .$$

- checked 3 loop-2 point, 2 loop-3 point results (simple!)
- result for 4 loop-2 point:

$$\mathcal{F}_2^{(4)} = s_{12}^2 \mathcal{F}_2^{(0)} \sum_{\sigma_2} \sum_{i=1}^{34} \frac{1}{S_i} C_i I_i .$$

- 34 graphs, 2 "master" graphs.
- Ansatz constructed, most 4D unitarity cuts checked
- I free parameter left in result (has natural guess).

- checked 3 loop-2 point, 2 loop-3 point results (simple!)
- result for 4 loop-2 point:

$$\mathcal{F}_2^{(4)} = s_{12}^2 \mathcal{F}_2^{(0)} \sum_{\sigma_2} \sum_{i=1}^{34} \frac{1}{S_i} C_i I_i .$$

- 34 graphs, 2 "master" graphs.
- Ansatz constructed, most 4D unitarity cuts checked
- I free parameter left in result (has natural guess).

by product \rightarrow color-kinematic duality exists up to four loops for (some) form factors

Integrand for N=4 cusp, published so far

Integral statistics after generation:

- 34 integrals, non-planar topologies rampant
- 14 have a non-planar color part
- 10 are purely non-planar color

HH. iiii

Integrand for N=4 cusp, published so far

Integral statistics after generation:

- 34 integrals, non-planar topologies rampant
- 14 have a non-planar color part
- 10 are purely non-planar color
- many up to quadratic in irreducible numerators
- topology 26: no internal boxes

Integrand for N=4 cusp, published so far

Integral statistics after generation:

- 34 integrals, non-planar topologies rampant
- 14 have a non-planar color part
- 10 are purely non-planar color ullet
- many up to quadratic in irreducible numerators ℓ_4

 ℓ_5

 ℓ_6

(26)

 ℓ_3

q

 p_1

 p_2

topology 26: no internal boxes

several have one or more graph symmetries

HH. iiii

Integrand for N=4 cusp, published so far

Integral statistics after generation:

- 34 integrals, non-planar topologies rampant
- 14 have a non-planar color part
- 10 are purely non-planar color
- many up to quadratic in irreducible numerators ℓ_4

 ℓ_5

 ℓ_6

(26)

 ℓ_3

q

 p_1

 p_2

• topology 26: no internal boxes

- several have one or more graph symmetries
- generically, 18 independent propagators, 6 irreducible numerators / graph topology

non-planar topology integrals with up-to quadratic numerators are still hard to integrate \rightarrow need simpler integrals

IBPs implemented in many ways. Public:

- AIR [Anastasiou, Lazopoulos, 04],
- FIRE [Smirnov(s), 06, 13, 14, 15]
- Reduze [Studerus, 09], [Von Manteuffel-Studerus, 12]
- LiteRed [Lee, 12,13]

non-planar topology integrals with up-to quadratic numerators are still hard to integrate \rightarrow need simpler integrals

IBPs implemented in many ways. Public:

- AIR [Anastasiou, Lazopoulos, 04],
- FIRE [Smirnov(s), 06, 13, 14, 15]
- Reduze [Studerus, 09], [Von Manteuffel-Studerus, 12]
- LiteRed [Lee, 12,13]

→ none work out of the box for all integrals (try 26)

non-planar topology integrals with up-to quadratic numerators are still hard to integrate \rightarrow need simpler integrals

IBPs implemented in many ways. Public:

- AIR [Anastasiou, Lazopoulos, 04],
- FIRE [Smirnov(s), 06, 13, 14, 15]
- Reduze [Studerus, 09], [Von Manteuffel-Studerus, 12]
- LiteRed [Lee, 12,13]

→ none work out of the box for all integrals (try 26)

Reduze works (fix disk access pile-up problem / "nonstandard" system requirements / choice of numerator)

non-planar topology integrals with up-to quadratic numerators are still hard to integrate \rightarrow need simpler integrals

IBPs implemented in many ways. Public:

- AIR [Anastasiou, Lazopoulos, 04],
- FIRE [Smirnov(s), 06, 13, 14, 15]
- Reduze [Studerus, 09], [Von Manteuffel-Studerus, 12]
- LiteRed [Lee, 12,13]

→ none work out of the box for all integrals (try 26)

Reduze works (fix disk access pile-up problem / "nonstandard" system requirements / choice of numerator)

Reduze doesn't scale well for beyond N=4, e.g. for QCD

IBP reduction

Large memory use on single machine:

	11031	boels	20	0	18.9g	18g	16m	R	64.2	1.9	6147:50 reduze
	11024	boels	20	0	16.6g	16g	16m	R	53.4	1.6	5864:25 reduze
	11032	boels	20	0	15.7g	15g	20m	R	63.2	1.6	6058:05 reduze
	11093	boels	20	0	15.3g	15g	25m	R	99.3	1.5	5997:52 reduze
	11038	boels	20	0	14.5g	14g	24m	R	100.0	1.4	6444:40 reduze
	11044	boels	20	0	14.5g	14g	12m	R	100.0	1.4	5258:38 reduze
	11087	boels	20	0	14.5g	14g	16m	R	98.3	1.4	5519:41 reduze
	11035	boels	20	0	14.4g	14g	13m	R	100.0	1.4	5660:43 reduze
	11091	boels	20	0	14.4g	14g	22m	R	75.7	1.4	6635:26 reduze
	11036	boels	20	0	14.3g	14g	14m	R	62.3	1.4	6230:30 reduze
	11085	boels	20	0	14.3g	14g	13m	R	69.5	1.4	6133:47 reduze
	11030	boels	20	0	13.7g	13g	21m	R	93.7	1.4	5396:21 reduze
	11041	boels	20	0	13.6g	13g	12m	R	100.0	1.3	6550:45 reduze
	11027	boels	20	0	13.5g	13g	15m	R	60.3	1.3	5835:31 reduze
	11088	boels	20	0	13.2g	13g	10m	R	100.0	1.3	5135:12 reduze
	11025	boels	20	0	12.7g	12g	23m	R	67.8	1.3	5784:08 reduze
	11028	boels	20	0	12.6g	12g	12m	R	51.4	1.2	6609:43 reduze
	11042	boels	20	0	12.3g	12g	14m	R	51.4	1.2	5718:09 reduze
	11090	boels	20	0	12.3g	12g	12m	R	100.0	1.2	6565:02 reduze
	11095	boels	20	0	11.7g	11g	25m	R	91.4	1.2	5593:43 reduze
	11043	boels	20	0	11.7g	11g	19m	R	65.5	1.2	5523:44 reduze
	11039	boels	20	0	11.5g	11g	12m	R	100.0	1.1	6213:14 reduze
	11033	boels	20	0	11.3g	11g	11m	R	65.2	1.1	5780:59 reduze
	11029	boels	20	0	11.2g	10g	14m	R	99.6	1.1	5996:48 reduze
	11086	boels	20	0	10.6g	10g	11m	R	94.7	1.0	5672:34 reduze
	11023	boels	20	0	9.9g	9.7g	14m	R	79.0	1.0	6489:06 reduze
	11136	boels	20	0	9798m	9.4g	27m	R	91.8	0.9	6417:35 reduze
	11026	boels	20	0	9308m	9.0g	27m	R	90.4	0.9	6421:29 reduze
V	11037	boels	20	0	9022m	8.7g	19m	R	59.0	0.9	5713:30 reduze
	11040	boels	20	0	8876m	8.5g	14m	R	57.3	0.9	6139:33 reduze
	11092	boels	20	0	8431m	8.1g	20m	s	100.0	0.8	6483:24 reduze
	11089	boels	20	0	7900m	7.6g	21m	R	69.5	0.8	6322:00 reduze
	11116	boels	20	0	7044m	6.7g	26m	R	100.0	0.7	6417:08 reduze
	11034	boels	20	Ø	7042m	6.70	20m	R	100.0	0.7	6022:42 reduze

IBP reduction: output

Reduze solves finite ranges of identities: choice up to 2 numerator powers, up to 12 denominator powers (extension to 13, beyond unrealistic)

one unreduced master detected (file size) \rightarrow obtained from symmetry

Table 1: Master integra	al statistics of	obtained II	3P reduction
-------------------------	------------------	-------------	--------------

$\#\ {\rm props}$	s = 0	s=1	s=2
12	8	6	0
11	18	2	× 0
10	43	9	0
9	49	1	0
8	51	4	1
7	25	0	0
6	8	0	0
5	0	0	0
sum	203	22	1

(a) planar form factor

	$\# \ \rm props$	s = 0	s=1	s=2
	12	10	10	1
	11	13	3	0
	10	34	10	0
	9	29	1	0
	8	32	3	1
	7	13	0	0
	6	7	0	0
	5	1	0	0
	sum	139	27	2

(b) non-planar form factor

IBP reduction: output

Reduze solves finite ranges of identities: choice up to 2 numerator powers, up to 12 denominator powers (extension to 13, beyond unrealistic)

one unreduced master detected (file size) \rightarrow obtained from symmetry

Table 1: Master integral statistics of obtained IBP reduction

(a) p	lanar for	rm fact	or		(b) non	(b) non-planar form factor			
# props	s = 0	s=1	s=2		# props	s = 0	s=1	s=2	
12	8	6	0		12	10	10	1	
11	18	2	× 0		11	13	3	0	
10	43	9	0	/	10	34	10	0	
9	49	1	0	hardoct	9	29	1	0	
8	51	4	1	nardest	8	32	3	1	
7	25	0	0		7	13	0	0	
6	8	0	0		6	7	0	0	
5	0	0	0		5	1	0	0	
sum	203	22	1		sum	139	27	2	

observation [Lee, Pomeransky, 13]: "number of master integrals in given sector from algebraic geometry"

determine physical subsectors, e.g. with LiteRed

HH iti

Basis check from MINT

- determine physical subsectors, e.g. with LiteRed
- compute G = F + U via Feynman parameter integral for each

- determine physical subsectors, e.g. with LiteRed
- compute G = F + U via Feynman parameter integral for each

• look for roots of:
$$I = \left\langle \frac{\partial G}{\partial \alpha_1}, \dots, \frac{\partial G}{\partial \alpha_m}, \alpha_0 G - 1 \right\rangle,$$

- determine physical subsectors, e.g. with LiteRed
- compute G = F + U via Feynman parameter integral for each

• look for roots of:
$$I = \left\langle \frac{\partial G}{\partial \alpha_1}, \dots, \frac{\partial G}{\partial \alpha_m}, \alpha_0 G - 1 \right\rangle,$$

- Mathematica
- hard → compute Gröbner basis
- Macaulay 2
- Singular

- determine physical subsectors, e.g. with LiteRed
- compute G = F + U via Feynman parameter integral for each

• look for roots of:
$$I = \left\langle \frac{\partial G}{\partial \alpha_1}, \dots, \frac{\partial G}{\partial \alpha_m}, \alpha_0 G - 1 \right\rangle,$$

- Mathematica
- hard → compute Gröbner basis
 Maca
- Macaulay 2
 - Singular
- further processing for hard cases as in [Lee, Pomeransky, 13]

- determine physical subsectors, e.g. with LiteRed
- compute G = F + U via Feynman parameter integral for each

• look for roots of:
$$I = \left\langle \frac{\partial G}{\partial \alpha_1}, \dots, \frac{\partial G}{\partial \alpha_m}, \alpha_0 G - 1 \right\rangle,$$

- Mathematica
- hard → compute Gröbner basis
 Macaulay 2
 - Singular
- further processing for hard cases as in [Lee, Pomeransky, 13]
- number of masters allows a choice of basis (typically corner)
Basis check from MINT

observation [Lee, Pomeransky, 13]: "number of master integrals in given sector from algebraic geometry"

- determine physical subsectors, e.g. with LiteRed
- compute G = F + U via Feynman parameter integral for each

• look for roots of:
$$I = \left\langle \frac{\partial G}{\partial \alpha_1}, \dots, \frac{\partial G}{\partial \alpha_m}, \alpha_0 G - 1 \right\rangle,$$

- Mathematica
- hard → compute Gröbner basis
 Macaulay 2
 - Singular
- further processing for hard cases as in [Lee, Pomeransky, 13]
- number of masters allows a choice of basis (typically corner)
- obtained a complete basis for all topologies (caveat)

Problem: integrals are still very hard and there's very many

Problem: integrals are still very hard and there's very many

e.g. integral topology 24 using FIESTA 4 [Smirnov, I5] choose numerator $(l3 \cdot (p_1 - p_2))^2$

Problem: integrals are still very hard and there's very many

e.g. integral topology 24 using FIESTA 4 [Smirnov, 15] choose numerator $(l3 \cdot (p_1 - p_2))^2$ (24) $= (0.00347222 + pm[-8] * 4.47214e - 08) * e^{-8}$ $+(-0.00694477 + pm[-7] * 8.78066e - 07) * \epsilon^{-7} +$ $(-0.0981135 + pm[-6] * 1.65943e - 05) * \epsilon^{-6} +$ $(0.420959 + pm[-5] * 0.000247494) * \epsilon^{-5}$ $+(8.3578 + pm[-4] * 0.00315751) * \epsilon^{-4}$

Problem: integrals are still very hard and there's very many

e.g. integral topology 24 using FIESTA 4 [Smirnov, 15] choose numerator $(l3 \cdot (p_1 - p_2))^2$ (24) $= (0.00347222 + pm[-8] * 4.47214e - 08) * \epsilon^{-8}$ $+(-0.00694477 + pm[-7] * 8.78066e - 07) * \epsilon^{-7} +$ $(-0.0981135 + pm[-6] * 1.65943e - 05) * \epsilon^{-6} +$ $(0.420959 + pm[-5] * 0.000247494) * \epsilon^{-5}$ ~ week $+(8.3578 + pm[-4] * 0.00315751) * \epsilon^{-4}$

- Mellin-Barnes for non-planar at four loops open problem
- AMBRE & MB & Cuba still useful for some integrals

- Mellin-Barnes for non-planar at four loops open problem
- AMBRE & MB & Cuba still useful for some integrals
- FIESTA can do most master integrals for planar form factor
 up to one 12 propagator integrals

- Mellin-Barnes for non-planar at four loops open problem
- AMBRE & MB & Cuba still useful for some integrals
- FIESTA can do most master integrals for planar form factor
 up to one 12 propagator integrals
- precision is a major problem even in planar sector

- Mellin-Barnes for non-planar at four loops open problem
- AMBRE & MB & Cuba still useful for some integrals
- FIESTA can do most master integrals for planar form factor
 up to one 12 propagator integrals
- precision is a major problem even in planar sector

(Reduze+FIESTA give the three loop cusp in ~ 2 days up to percent level)

Question: are there more useful representations of the form factor integrals?

Question: are there more useful representations of the form factor integrals?

• major source of precision problems is \epsilon factors

$$FF = \ldots + \left(\frac{\sim 1}{\epsilon^4} + \frac{\sim 10}{\epsilon^3} + \ldots\right) I_{\text{master}}$$

 \rightarrow large potential for cancellation errors expanding down six orders in \epsilon!

Question: are there more useful representations of the form factor integrals?

• major source of precision problems is \epsilon factors

$$FF = \ldots + \left(\frac{\sim 1}{\epsilon^4} + \frac{\sim 10}{\epsilon^3} + \ldots\right) I_{\text{master}}$$

→ large potential for cancellation errors expanding down six orders in \epsilon!

 known example of cross-topology cancellations in free variable left after [RB-Kniehl-Yang, 13]

Question: are there more useful representations of the form factor integrals?

• major source of precision problems is \epsilon factors

$$FF = \ldots + \left(\frac{\sim 1}{\epsilon^4} + \frac{\sim 10}{\epsilon^3} + \ldots\right) I_{\text{master}}$$

 \rightarrow large potential for cancellation errors expanding down six orders in \epsilon!

- known example of cross-topology cancellations in free variable left after [RB-Kniehl-Yang, 13]
- \rightarrow find an IBP reduction without \epsilon factors

Question: are there more useful representations of the form factor integrals?

• major source of precision problems is \epsilon factors

$$FF = \ldots + \left(\frac{\sim 1}{\epsilon^4} + \frac{\sim 10}{\epsilon^3} + \ldots\right) I_{\text{master}}$$

 \rightarrow large potential for cancellation errors expanding down six orders in \epsilon!

- known example of cross-topology cancellations in free variable left after [RB-Kniehl-Yang, 13]
- \rightarrow find an IBP reduction without \epsilon factors
- likely to be much faster, expect more compact results coefficient-wise, but also more master integrals

given IBP
$$\operatorname{int}_{j} = \sum c_{ji}(\epsilon) \operatorname{mast}_{i}$$

select subset $V \subset \{int_j\}$

given IBP
$$\operatorname{int}_{j} = \sum c_{ji}(\epsilon) \operatorname{mast}_{i}$$

select subset $V \subset \{int_j\}$

construct

$$\left(\begin{array}{c} c^T(\epsilon_1) \\ c^T(\epsilon_2) \\ \dots \end{array}\right)$$

for random integers \epsilon_i

construct

$$\left(\begin{array}{c} c^T(\epsilon_1) \\ c^T(\epsilon_2) \\ \dots \end{array}\right)$$

for random integers \epsilon_i

compute NullSpace

→ complete relations between subset integrals

construct

$$\left(\begin{array}{c} c^T(\epsilon_1) \\ c^T(\epsilon_2) \\ \dots \end{array}\right)$$

for random integers \epsilon_i

compute NullSpace

→ complete relations between subset integrals

• master integral choice \rightarrow ordering of vectors

construct

$$\left(\begin{array}{c} c^T(\epsilon_1) \\ c^T(\epsilon_2) \\ \dots \end{array}\right)$$

for random integers \epsilon_i

compute NullSpace

→ complete relations between subset integrals

- master integral choice \rightarrow ordering of vectors
- variant: constant coefficients, linear epsilon reductions

construct

$$\left(\begin{array}{c} c^T(\epsilon_1) \\ c^T(\epsilon_2) \\ \dots \end{array}\right)$$

for random integers \epsilon_i

compute NullSpace

→ complete relations between subset integrals

- master integral choice \rightarrow ordering of vectors
- variant: constant coefficients, linear epsilon reductions
- here: implementable by Mathematica, with one embellishment

• still yuge problem: cut down by using graph symmetries

JHH iii

Mini-IBP (given IBP generate sub-IBP)

- still yuge problem: cut down by using graph symmetries
- pre-simplification: look for duplicate reductions first

$$int_1 = int_2$$

Mini-IBP (given IBP generate sub-IBP)

- still yuge problem: cut down by using graph symmetries
- pre-simplification: look for duplicate reductions first

$$int_1 = int_2$$

• reduction: mini-IBP < 100 MB. Full IBP ~ 500GB.

allows one to play with IBPs on laptop

Mini-IBP (given IBP generate sub-IBP)

- still yuge problem: cut down by using graph symmetries
- pre-simplification: look for duplicate reductions first

$$int_1 = int_2$$

• reduction: mini-IBP < 100 MB. Full IBP ~ 500GB.

allows one to play with IBPs on laptop

 much more master integrals (~800 or so), compared to ~250 with full IBP.

Mini-IBP (given IBP generate sub-IBP)

- still yuge problem: cut down by using graph symmetries
- pre-simplification: look for duplicate reductions first

$$int_1 = int_2$$

• reduction: mini-IBP < 100 MB. Full IBP ~ 500GB.

allows one to play with IBPs on laptop

- much more master integrals (~800 or so), compared to ~250 with full IBP.
- quadratic numerators in full propagator integrals rampant (in full IBP only in 1 topology)

Mini-IBP (given IBP generate sub-IBP)

- still yuge problem: cut down by using graph symmetries
- pre-simplification: look for duplicate reductions first

$$int_1 = int_2$$

• reduction: mini-IBP < 100 MB. Full IBP ~ 500GB.

allows one to play with IBPs on laptop

- much more master integrals (~800 or so), compared to ~250 with full IBP.
- quadratic numerators in full propagator integrals rampant (in full IBP only in 1 topology)

problem for form factor?

• problem of the large rationals

11.allrels.txt {-396193/3456, 314330163103/278691840, 9780866891/3096576, 0, -770143973743/278691840, 0, 333/160, -118192620031/278691840, -251561659/483840, 237847776493/92897280, -11583815669/46448640, -477151/7680, -10400892953/34836480, -58187987/145152, -1241830621/3870720, 14630804879/11612160, 2220571/221184, 4403543/103680, 24605521847/34836480, -2772151/552960, 1045180741/2903040, -287/20, 0, 13/24, -539280929/580608, -2622127141/2903040, 270334399/725760, -270334399/725760, 0, 0, -118192620031/278691840, -29936311/552960, -1074398251/2903040, -8622627271/8709120, -10463823863/69672960, 2576272241/3317760, -20354335591/23224320, 3485022715/13934592, -2155735847/2903040, -325143261343/278691840, 0, 325143261343/278691840, 0, -325143261343/278691840, 0, 29936311/552960, 0, -3407/360, -311/15, 0, 0, 0, 1074398251/2903040, 0, 0, 0, 0, 0, 0, -12277/2560, 0, 0, 0, -5997/1280, 374293/9216, 864499/46080, 4647229/414720, -362623/23040, -12019814159/46448640, -13379/6144, 0, 0, -187487/46080, -13379/6144, -26519/2880, 2528617/829440, 0, 0, 0, 0, 0, 0, 0, 0, 370099/23040, 0, 0, 0, 370099/11520, 0, 0, 0, 0, 0, 13379/6144, 0, 0, -382579/23040, -13/24, 0, 0, 0, 0, 0, 0, 2005357/414720, 101443/5760, -13/36, -2240411/51840, -13/144, 13/144, 722327/414720, 1021771/165888, 0, 0, 0, 0, 10657/5040, 6809/1512, -7807/10080, 0, 0, 0, 0, 0, 0, -25727/10080, 0, 6109/1680, -6109/3360, 6109/3360, 0, 0, 0, 0,

• problem of the large rationals

11.allrels.txt {-396193/3456, 314330163103/278691840, 9780866891/3096576, 0, -770143973743/278691840, 0, 333/160, -118192620031/278691840, -251561659/483840, 237847776493/92897280, -11583815669/46448640, -477151/7680, -10400892953/34836480, -58187987/145152, -1241830621/3870720, 14630804879/11612160, 2220571/221184, 4403543/103680, 24605521847/34836480, -2772151/552960, 1045180741/2903040, -287/20, 0, 13/24, -539280929/580608, -2622127141/2903040, 270334399/725760, -270334399/725760, 0, 0, -118192620031/278691840, -29936311/552960, -1074398251/2903040, -8622627271/8709120, -10463823863/69672960, 2576272241/3317760, -20354335591/23224320, 3485022715/13934592, -2155735847/2903040, -325143261343/278691840, 0, 325143261343/278691840, 0, -325143261343/278691840, 0, 29936311/552960, 0, -3407/360, -311/15, 0, 0, 0, 1074398251/2903040, 0, 0, 0, 0, 0, 0, -12277/2560, 0, 0, 0, -5997/1280, 374293/9216, 864499/46080, 4647229/414720, -362623/23040, -12019814159/46448640, -13379/6144, 0, 0, -187487/46080, -13379/6144, -26519/2880, 2528617/829440, 0, 0, 0, 0, 0, 0, 0, 0, 370099/23040, 0, 0, 0, 370099/11520, 0, 0, 0, 0, 0, 13379/6144, 0, 0, -382579/23040, -13/24, 0, 0, 0, 0, 0, 2005357/414720, 101443/5760, -13/36, -2240411/51840, -13/144, 13/144, 722327/414720, 1021771/165888, 0, 0, 0, 0, 10657/5040, 6809/1512, -7807/10080, 0, 0, 0, 0, 0, 0, -25727/10080, 0, 6109/1680, -6109/3360, 6109/3360, 0, 0, 0, 0,

problem = opportunity

• problem of the large rationals

11.allrels.txt {-396193/3456, 314330163103/278691840, 9780866891/3096576, 0, -770143973743/278691840, 0, 333/160, -118192620031/278691840, -251561659/483840, 237847776493/92897280, -11583815669/46448640, -477151/7680, -10400892953/34836480, -58187987/145152, -1241830621/3870720, 14630804879/11612160, 2220571/221184, 4403543/103680, 24605521847/34836480, -2772151/552960, 1045180741/2903040, -287/20, 0, 13/24, -539280929/580608, -2622127141/2903040, 270334399/725760, -270334399/725760, 0, 0, -118192620031/278691840, -29936311/552960, -1074398251/2903040, -8622627271/8709120, -10463823863/69672960, 2576272241/3317760, -20354335591/23224320, 3485022715/13934592, -2155735847/2903040, -325143261343/278691840, 0, 325143261343/278691840, 0, -325143261343/278691840, 0, 29936311/552960, 0, -3407/360, -311/15, 0, 0, 0, 1074398251/2903040, 0, 0, 0, 0, 0, 0, -12277/2560, 0, 0, 0, -5997/1280, 374293/9216, 864499/46080, 4647229/414720, -362623/23040, -12019814159/46448640, -13379/6144, 0, 0, -187487/46080, -13379/6144, -26519/2880, 2528617/829440, 0, 0, 0, 0, 0, 0, 0, 0, 370099/23040, 0, 0, 0, 370099/11520, 0, 0, 0, 0, 0, 13379/6144, 0, 0, -382579/23040, -13/24, 0, 0, 0, 0, 0, 2005357/414720, 101443/5760, -13/36, -2240411/51840, -13/144, 13/144, 722327/414720, 1021771/165888, 0, 0, 0, 0, 10657/5040, 6809/1512, -7807/10080, 0, 0, 0, 0, 0, 0, -25727/10080, 0, 6109/1680, -6109/3360, 6109/3360, 0, 0, 0, 0,

problem = opportunity

reduce form factor without introducing 'large' rationals

• problem of the large rationals

11.allrels.txt {-396193/3456, 314330163103/278691840, 9780866891/3096576, 0, -770143973743/278691840, 0, 333/160, -118192620031/278691840, -251561659/483840, 237847776493/92897280, -11583815669/46448640, -477151/7680, -10400892953/34836480, -58187987/145152, -1241830621/3870720, 14630804879/11612160, 2220571/221184, 4403543/103680, 24605521847/34836480, -2772151/552960, 1045180741/2903040, -287/20, 0, 13/24, -539280929/580608, -2622127141/2903040, 270334399/725760, -270334399/725760, 0, 0, -118192620031/278691840, -29936311/552960, -1074398251/2903040, -8622627271/8709120, -10463823863/69672960, 2576272241/3317760, -20354335591/23224320, 3485022715/13934592, -2155735847/2903040, -325143261343/278691840, 0, 325143261343/278691840, 0, -325143261343/278691840, 0, 29936311/552960, 0, -3407/360, -311/15, 0, 0, 0, 1074398251/2903040, 0, 0, 0, 0, 0, 0, -12277/2560, 0, 0, 0, -5997/1280, 374293/9216, 864499/46080, 4647229/414720, -362623/23040, -12019814159/46448640, -13379/6144, 0, 0, -187487/46080, -13379/6144, -26519/2880, 2528617/829440, 0, 0, 0, 0, 0, 0, 0, 0, 370099/23040, 0, 0, 0, 370099/11520, 0, 0, 0, 0, 0, 13379/6144, 0, 0, -382579/23040, -13/24, 0, 0, 0, 0, 0, 2005357/414720, 101443/5760, -13/36, -2240411/51840, -13/144, 13/144, 722327/414720, 1021771/165888, 0, 0, 0, 0, 0, 10657/5040, 6809/1512, -7807/10080, 0, 0, 0, 0, 0, 0, -25727/10080, 0, 6109/1680, -6109/3360, 6109/3360, 0, 0, 0, 0,

problem = opportunity

- reduce form factor without introducing 'large' rationals
- steer by # of master integrals in full ff (somewhat arbitrary)

• problem of the large rationals

11.allrels.txt {-396193/3456, 314330163103/278691840, 9780866891/3096576, 0, -770143973743/278691840, 0, 333/160, -118192620031/278691840, -251561659/483840, 237847776493/92897280, -11583815669/46448640, -477151/7680, -10400892953/34836480, -58187987/145152, -1241830621/3870720, 14630804879/11612160, 2220571/221184, 4403543/103680, 24605521847/34836480, -2772151/552960, 1045180741/2903040, -287/20, 0, 13/24, -539280929/580608, -2622127141/2903040, 270334399/725760, -270334399/725760, 0, 0, -118192620031/278691840, -29936311/552960, -1074398251/2903040, -8622627271/8709120, -10463823863/69672960, 2576272241/3317760, -20354335591/23224320, 3485022715/13934592, -2155735847/2903040, -325143261343/278691840, 0, 325143261343/278691840, 0, -325143261343/278691840, 0, 29936311/552960, 0, -3407/360, -311/15, 0, 0, 0, 1074398251/2903040, 0, 0, 0, 0, 0, 0, -12277/2560, 0, 0, 0, -5997/1280, 374293/9216, 864499/46080, 4647229/414720, -362623/23040, -12019814159/46448640, -13379/6144, 0, 0, -187487/46080, -13379/6144, -26519/2880, 2528617/829440, 0, 0, 0, 0, 0, 0, 0, 0, 370099/23040, 0, 0, 0, 370099/11520, 0, 0, 0, 0, 0, 13379/6144, 0, 0, -382579/23040, -13/24, 0, 0, 0, 0, 0, 2005357/414720, 101443/5760, -13/36, -2240411/51840, -13/144, 13/144, 722327/414720, 1021771/165888, 0, 0, 0, 0, 10657/5040, 6809/1512, -7807/10080, 0, 0, 0, 0, 0, 0, -25727/10080, 0, 6109/1680, -6109/3360, 6109/3360, 0, 0, 0, 0,

problem = opportunity

- reduce form factor without introducing 'large' rationals
- steer by # of master integrals in full ff (somewhat arbitrary)

 \rightarrow planar ff in terms of ~80 integrals with integer coefficients

progress reported toward four loop form factors (any theory)

- basis of masters
- mini-IBP reduction

progress reported toward four loop form factors (any theory)

basis of masters

mini-IBP reduction

still not quite the right way to compute....

• better basis?

Von Manteuffel/Smirnov talks

 solve IBPs with 'four dots' to open more possibilities

Your Idea Here?