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• mostly explored in planar limit, for (BPS-)operator dims

• most prominent result: exact BES equation [Beisert-Eden-
Staudacher, 04] for planar lightlike cusp anomalous dimension

universal function in IR divergences
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On the virtues of virtuous N=4?

Is this the real life?
Is this just fantasy?

? what about the non-planar corrections to the cusp?

→ no escape from reality!
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cf electromagnetic
form factors in basic QFT

• cusp is universal →  can be computed in multiple ways

F = hg1g2|T (q)i

p21 = p22 = 0

p1

p2

q

• arises in IR divergences: two internal/external  momenta 
collinear or one momentum soft

• must cancel out in total cross-sections: imposes severe 
restrictions on observables (long story)

• here form factor of the stress 
tensor multiplet in N=4 SYM

(simplicity: single scale problem)



Sudakov form factor
F = hg1g2|T (q)i

p21 = p22 = 0

p1

p2

q



Sudakov form factor
F = hg1g2|T (q)i

p21 = p22 = 0

p1

p2

q

IR divergences ‘exponentiate’, roughly:

involves universal functions,  e.g �cusp

Al / e
g2lym

✏2l
h(gym,Nc,✏)Ã
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Conjecture based on a variety of inputs on IR divergences:

non-planar correction to our cusp at four loops

• probably [Ahrens-Neubert-Vernazza, 12]

• vanishes [Becher-Neubert, 09]

“when in doubt, compute”

• integrand generation

• IBP reduction

• (numerical) integration

[RB-Kniehl-Tarasov-Yang, 12]

[this talk, with caveats]

[this talk, partly]

(see also Gardi’s talk!)
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• checked 3 loop-2 point, 2 loop-3 point results (simple!)
• result for 4 loop-2 point:

• 34 graphs, 2 “master” graphs. 
• Ansatz constructed, most 4D unitarity cuts checked
• 1 free parameter left in result (has natural guess).

[RB-Kniehl-Tarasov-Yang]

byproduct → color-kinematic duality exists up to four loops for 
(some) form factors
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Integrand for N=4 cusp, published so far

Integral statistics after generation:

• 34 integrals, non-planar topologies rampant
• 14 have a non-planar color part
• 10 are purely non-planar color

• many up to quadratic in irreducible numerators
• topology 26: no internal boxes

• generically, 18 independent propagators, 6 
irreducible numerators / graph topology

• several have one or more graph symmetries
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non-planar topology integrals with up-to quadratic numerators 
are still hard to integrate → need simpler integrals

IBPs implemented in many ways. Public: 
• AIR [Anastasiou, Lazopoulos, 04], 
• FIRE [Smirnov(s), 06,13,14,15]
• Reduze [Studerus, 09], [Von Manteuffel-Studerus, 12]
• LiteRed [Lee, 12,13]

→ none work out of the box for all integrals (try 26)

Reduze works (fix disk access pile-up problem / “non-
standard” system requirements / choice of numerator)

Reduze doesn’t scale well for beyond N=4, e.g. for QCD
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observation [Lee, Pomeransky, 13]: “number of master 
integrals in given sector from algebraic geometry”

• determine physical subsectors, e.g. with LiteRed

• compute                    via Feynman parameter integral
for each

G = F + U

I =

⌧
@G

@↵1
, . . . ,

@G

@↵m
, ↵0G� 1

�
,• look for roots of:

• hard → compute Gröbner basis
• Mathematica

• Singular
• Macaulay 2

• further processing for hard cases as in [Lee, Pomeransky, 13]

• number of masters allows a choice of basis (typically corner)

• obtained a complete basis for all topologies (caveat)
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Toward numerical computation…

(l3 · (p1 � p2))
2choose numerator

e.g. integral topology 24 using 
FIESTA 4 [Smirnov, 15] 

= (0.00347222 + pm[�8] ⇤ 4.47214e� 08) ⇤ ✏�8

+(�0.00694477 + pm[�7] ⇤ 8.78066e� 07) ⇤ ✏�7+

(�0.0981135 + pm[�6] ⇤ 1.65943e� 05) ⇤ ✏�6+

(0.420959 + pm[�5] ⇤ 0.000247494) ⇤ ✏�5

+(8.3578 + pm[�4] ⇤ 0.00315751) ⇤ ✏�4

Problem: integrals are still very hard and there’s very many

~ week
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Integration status

• Mellin-Barnes for non-planar at four loops open problem

• AMBRE & MB & Cuba still useful for some integrals

• FIESTA can do most master integrals for planar form factor 
- up to one 12 propagator integrals

• precision is a major problem even in planar sector

(Reduze+FIESTA give the three loop cusp in ~ 2 days up to 
percent level)
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Towards other ideas…

Question: are there more useful representations of the form 
factor integrals?

• → find an IBP reduction without \epsilon factors

• major source of precision problems is \epsilon factors

FF = . . .+

✓
⇠ 1

✏4
+

⇠ 10

✏3
+ . . .

◆
Imaster

→ large potential for cancellation errors 
expanding down six orders in \epsilon!

• likely to be much faster, expect more compact results 
coefficient-wise, but also more master integrals

• known example of cross-topology cancellations in free 
variable left after [RB-Kniehl-Yang, 13]
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Mini-IBP (given IBP generate sub-IBP)

given IBP

• variant: constant coefficients, linear epsilon reductions

V ⇢ {intj}select subset

intj =
X

cji(✏)masti

construct

0

@
cT (✏1)
cT (✏2)
. . .

1

A for random integers 
\epsiloni

compute NullSpace
→ complete relations between subset integrals

• here: implementable by Mathematica, with one embellishment

• master integral choice → ordering of vectors



Mini-IBP (given IBP generate sub-IBP)

• still yuge problem: cut down by using graph symmetries



Mini-IBP (given IBP generate sub-IBP)

• still yuge problem: cut down by using graph symmetries

• pre-simplification: look for duplicate reductions first 

int1 = int2



Mini-IBP (given IBP generate sub-IBP)

• still yuge problem: cut down by using graph symmetries

• pre-simplification: look for duplicate reductions first 

int1 = int2

• reduction: mini-IBP < 100 MB. Full IBP ~ 500GB.

allows one to play with IBPs on laptop



Mini-IBP (given IBP generate sub-IBP)

• much more master integrals (~800 or so), compared to ~250 
with full IBP. 

• still yuge problem: cut down by using graph symmetries

• pre-simplification: look for duplicate reductions first 

int1 = int2

• reduction: mini-IBP < 100 MB. Full IBP ~ 500GB.

allows one to play with IBPs on laptop



Mini-IBP (given IBP generate sub-IBP)

• much more master integrals (~800 or so), compared to ~250 
with full IBP. 

• quadratic numerators in full propagator integrals rampant 
(in full IBP only in 1 topology)

• still yuge problem: cut down by using graph symmetries

• pre-simplification: look for duplicate reductions first 

int1 = int2

• reduction: mini-IBP < 100 MB. Full IBP ~ 500GB.

allows one to play with IBPs on laptop



Mini-IBP (given IBP generate sub-IBP)

• much more master integrals (~800 or so), compared to ~250 
with full IBP. 

• quadratic numerators in full propagator integrals rampant 
(in full IBP only in 1 topology)

• still yuge problem: cut down by using graph symmetries

• pre-simplification: look for duplicate reductions first 

int1 = int2

• reduction: mini-IBP < 100 MB. Full IBP ~ 500GB.

allows one to play with IBPs on laptop

problem for form factor?
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Mini-IBP (given IBP generate sub-IBP)

• problem of the large rationals

• reduce form factor without introducing ‘large’ rationals

problem = opportunity

• steer by # of master integrals in full ff (somewhat arbitrary)

→ planar ff in terms of ~80 integrals with integer coefficients
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Outlook

progress reported toward four loop form factors (any theory)

• basis of masters
• mini-IBP reduction

still not quite the right way to compute…. 
• better basis? 
     Von Manteuffel/Smirnov talks
• solve IBPs with ‘four dots’ to 
  open more possibilities



Your Idea
Here?


