nTuples and applications

Daniel Maître

with Gudrun Heinrich and Mark Johnson

IPPP Durham

- nTuples
 - NLO
 - NNLO
- Strong coupling constant from high multiplicity processes

n-Tuple files [arXiv:1310.7439]

- High multiplicity NLO calculations are computationally intensive
- It would not be possible to rerun a high multiplicity W+jet calculation every time a new interesting observable comes up
- Matrix elements are expensive, while
 - Jet clustering
 - Observables
 - PDF evaluation

are relatively cheap

- Store each matrix element, PS point and the information necessary to change the factorisation and renormalisation scales in large files we call n-Tuple files
- We use ROOT file as storage

- Advantages
 - One can change the analysis cuts, add observables
 - Cheap scale variation and PDF errors (otherwise extremely expensive)
 - Easy communication between theorists and experimenters
 - No need for specific know-how of the tool which produced the NLO calculation
 - Easier to "endorse" an event file than a program
- Disadvantage
 - Large files
 - Generation cuts need to be loose enough to accommodate many analysis \rightarrow efficiency cost

nTupleReader library [arXiv:1310.7439]

- We provide a C++ library to facilitate the use of the n-Tuple files
- Allows:
 - Change of factorisation and renormalisation scales
 - Change of pdf (from LHAPDF set), including error sets
- Has a Python interface
- Template for a customised implementation
- Available on hepforge

https://blackhat.hepforge.org/trac/wiki/BlackHatSherpaNtuples

Rivet for NLO

- Rivet is an analysis framework developed to facilitate the validation of MC with experimental data
- Many experimental analyses provide a Rivet analysis
- So far Rivet could not easily be used to analyse NLO predictions because correlated weights were not treated correctly. [Buckley,Grellscheid,Pollard,Schulz,Siegert]
- New version of Rivet will allow for the correct treatment of
 - Correlated events
 - Weight vectors (pdf errors)
- It will be easier to compare NLO predictions with data
- Test version on the Les Houches wiki

Analysis program

- With the new features of Rivet nTuple files can be used as input for the analysis
- New nTupleReader library contain the necessary ingredients to integrate with these new features
- Allows to run
 - > analyse
 - > RIVET_ANALYSIS \
 - > nTupleFile1.root \
 - > nTuplesFile2.root...

int main(int argc,char *argv[]){

Rivet::AnalysisHandler rivet; Rivet.addAnalysis(argv[1]);

nTupleReader r;

```
for (int ii=2;ii<argc;ii++){
  r.addFile(argv[ii]);
}</pre>
```

```
r.setPDF("CT10nlo.LHgrid");
r.setCMSEnergy(7000);
r.setColliderType(pp);
```

```
while(r.nextEntry()){
  HepMC::GenEvent evt;
  r.setHepMC(evt);
  rivet.analyze(evt);
```

rivet.setCrossSection(r.getCrossSection()); rivet.finalize(); rivet.writeData(std::string(argv[1])+".yoda");

nTuples for NNLO

- nTuples have proven useful for NLO
- Can they be as useful for NNLO?
- Same advantages and same disadvantages but amplified:
 - Programs are more complex
 - Larger files:
 - Many more pieces in the calculation
 - More logarithm coefficients
- Main question: is the size reasonable?

Experiment in Les Houches

- Used EErad3 [Gehrmann-De Ridder, Gehrmann, Glover, Heinrich; arXiv:0710.0346] to generate NNLO ntuples for $e^+e^- \rightarrow 3$ jets
- Storage structure very similar to NLO nTuples
- Easier than hadronic :
 - No initial state information
 - Strong coupling dependence trivial (no real need to store coefficients of logarithms)

Size vs Event number

Using mapping information

- The most space-consuming part is the double real part
 - More final state momenta
 - Need much statistics because of subtraction terms
- For each real-real phase-space point we have many subtraction terms
- Each of them has a different set of momenta given by a (n+2)→ n or (n+1) →n map
- We can save much space if we simply record the mapping that was used instead of the momenta
- The downside is that
 - there is more calculation at the moment of reading the nTuple
 - More coupling between nTuple file and code that produced it

Extrapolated file size

File sizes

- EErad3 "true" NNLO calculation with NNLO subtraction
- Processes calculated with the q_{τ} subtraction or n-jettiness methods look more like two NLO calculations \rightarrow could be more suitable for nTuple production
- Current programs are optimized for CPU usage, the tradoffs between "unweighting" and run time can be different if one wants to optimise the storage size

More effective storage

- Real phase space has many divergent regions
- Each is made finite by subtraction terms

More effective storage

- The cancellation between real matrix element and subtraction in the divergent part of the phase space requires a lot of statistics
- Much less is needed where the subtraction term is finite
- At NLO subtraction terms are routinely cut off where they are not needed.
- The subtraction term is integrated analytically as a function of the cut-off
- It is much harder to do at NNLO

More effective storage

- To optimise the storage one can separate the integration in two parts, one where the cancellations happen and one free of cancellations
- The former requires large statistics but the latter does not
- No analytical integration needed, just to run the program once above and once below the cut-off, with different statistics

NNLO nTuple files

• Trade offs

How intrusive

(almost) no|introduce cut-off|reorganise PSmodification|integration

How much calculation at read time/coupling to original code

no use of mapping | use mapping information | information

- Strong coupling determination are usually done using low multiplicity processes
 - High statistics
 - Well studied
 - Can have NNLO predictions
- High multiplicity
 processes have
 - A steeper coupling constant dependence
 - Less statistics

- Here we look at the coupling constant dependence in Z+2,3,4 jets
- Compare BlackHat+Sherpa NLO results with Atlas measurement at 7 TeV [arXiv:1304.7098]
- To do this one needs to calculate the NLO theory prediction for several values of the coupling constant, for several pdfs and for all pdf sets to estimate the pdf uncertainty
- It is too much even with nTuples
- We used the BH+Sherpa public nTuples to create fastNLO tables [Britzger, Rabbertz, Sieber, Stober, Wobisch; arXiv:1208.3641]

- Ingredients
 - Experimental data with error covariance matrix
 - Non-perturbative corrections
 - NLO prediction with error covariance
 - PDF uncertainties with covariance

$$\chi^{2}(\alpha_{S}) = (y_{theory}(\alpha_{s}) - y_{data})^{T} C^{-1} (y_{theory}(\alpha_{s}) - y_{data})$$
$$C = C_{exp} + C_{pdf} + C_{theory}$$

- Look at
 - 2nd jet pt
 - 3rd jet pt
 - 4th jet pt
 - 2nd jet rapidity
 - 3rd jet rapidity
 - 4th jet rapidity

- The high multiplicity processes are not quite competitive
- High multiplicity processes are a good place to investigate scale setting issues between predictions and pdfs
- No scale variation

Red: World average Green: CMS inclusive jets [arXiv:1410.6765]

Conclusion

- nTuples could be a viable option for NNLO
 - Storage can be made more efficient at the cost of read-time speed or changes to the original code
 - Can help disseminate NNLO results
- High multiplicity processes can be used to determine the strong coupling constant