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Motivation

Developing an algorithm for multi-loop many-leg processes

Extending the NLO automation at high high orders

From the beauty of simple formulas (in special kinematics) 
to the beauty of the structures (in arbitrary kinematics)

Path
Multi-loop Integrand Reduction: exploiting dimensional regularization

Amplitudes & Phenomenology

Magnus Series for Master Integrals

Novel decomposition @ any loop: the 2-loop case to begin with

Two-loop Master Integrals for the QCD-EW corrections to Drell-Yan scattering

Revisiting the 1-loop decomposition



Amplitudes Decomposition: 
                                            the algebraic way

Basis: {i j k}

Scalar product/Projection:
to extract the components

a = ax i  +  ay j  +  az k

ax = a.i 

ay = a.j 

az = a.k



Amplitudes Decomposition: 
                                            the algebraic way

=

4. FOR the COLLOQUIUM
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Integrand-Reduction

Ossola & P.M. (2011)

Badger, Frellesvig, Zhang (2011)
Zhang (2012)

Mirabella, Ossola, Peraro, & P.M. (2012)

Ossola Papadopoulos Pittau  (2006)

Ellis Giele Kunszt Melnikov  (2007)

unitarity at integrand level

>> Ossola



means of the Finiteness Theorem and of the Shape Lemma, we proved that the residue at

the maximum-cuts is parametrised exactly by a number of coe�cients equal to the number

of solutions of the cut itself.

6. Some stu↵

Aone�loop

n =

Z
d

�2✏
µ

Z
d

4

q In , In ⌘ Nn(q, µ2)

D̄

0

D̄

1

· · · D̄n�1

(6.1)

In 6= c

5,0

D̄

0

D̄

1

D̄

2

D̄

3

D̄

4

+
c

4,0 + c

4,4µ
4

D̄

0

D̄

1

D̄

2

D̄

3

+
c

3,0 + c

3,7µ
2

D̄

0

D̄

1

D̄

2

+
c

2,0 + c

2,9µ
2

D̄

0

D̄

1

+
c

1,0

D̄

0

=
c

5,0 + f

01234

(q, µ2)

D̄

0

D̄

1

D̄

2

D̄

3

D̄

4

+
c

4,0 + c

4,4µ
4 + f

0123

(q, µ2)

D̄

0

D̄

1

D̄

2

D̄

3

+
c

3,0 + c

3,7µ
2 + f

012

(q, µ2)

D̄

0

D̄

1

D̄

2

+
c

2,0 + c

2,9µ
2 + f

01

(q, µ2)

D̄

0

D̄

1

+
c

1,0 + f

0

(q, µ2)

D̄

0

Z
d

�2✏
µ

Z
d

4

q

fi1i2···in
D̄i1D̄i2 · · · D̄in

= 0 . (6.2)

Nn(q, µ4)

D̄

0

D̄

1

· · · D̄n�1

=
�

01234

(q, µ2)

D̄

0

D̄

1

D̄

2

D̄

3

D̄

4

+
�

0123

(q, µ2)

D̄

0

D̄

1

D̄

2

D̄

3

+
�

012

(q, µ2)

D̄

0

D̄

1

D̄

2

+
�

01

(q, µ2)

D̄

0

D̄

1

+
�

0

(q, µ2)

D̄

0

Acknowledgments

We are indebted to Simon Badger and Yang Zhang for fruitful discussions, in particular
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The result is given as Laurent expansion in ε up to the finite-order, and accounts for the

full rational terms.

samurai is implemented as a Fortran90 library, publicly available at the webpage:

http://cern.ch/samurai

and it is linked to OneLOop [78] and QCDLoop [95] for the numerical evaluation of the

MI. We applied it to a series of known processes, like the four-, six-photon and eight-

photon scattering in QED, the QCD virtual corrections to Drell-Yan, to the leading-color

amplitude for V + 1jet production, to the six-quark scattering, q1q̄1 → q2q̄2 q3q̄3, and

to the contributions of the massive-scalar loop-diagrams to the all-plus helicity five- and

six-gluon scattering.

In particular, for the virtual corrections to q1q̄1 → q2q̄2 q3q̄3 [52], we also considered the

reduction of automatically generated integrands, by interfacing samurai with an infras-

tructure derived from golem-2.0 [96], which provides numerators of Feynman integrals.

These examples are thought to be used both as a guide to understand the samurai frame-

work, and as templates to generate the codes for other calculations.

In the context of collaborations among different groups aiming at automated NLO cal-

culations relevant for LHC phenomenology [97], and, therefore, providing complementary

structures to be interfaced [98], samurai could constitute the module for the systematic

evaluation of the virtual corrections.

The paper is organized as follows. The reduction algorithm is discussed in section 2;

section 3 describes the key-points of the samurai library, while a series of applications are

illustrated in section 4. In section 5, we resume our conclusions.

2 Reduction algorithm

The reduction method is based on the general decomposition for the integrand of a generic

one-loop amplitude, originally proposed by Papadopoulos, Pittau and one of us [80, 89],

and later extended by Ellis, Giele, Kunszt and Melnikov [87, 88]. Within the dimensional

regularization scheme, any one-loop n-point amplitude can be written as

An =

∫

ddq̄ A(q̄, ε) ,

A(q̄, ε) =
N (q̄, ε)

D̄0D̄1 · · · D̄n−1
,

D̄i = (q̄ + pi)
2 − m2

i = (q + pi)
2 − m2

i − µ2, (p0 #= 0) . (2.1)

We use a bar to denote objects living in d = 4− 2ε dimensions, following the prescription

/̄q = /q + /µ , with q̄2 = q2 − µ2 . (2.2)

Also, we use the notation f(q̄) as short-hand notation for f(q, µ2).
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means of the Finiteness Theorem and of the Shape Lemma, we proved that the residue at

the maximum-cuts is parametrised exactly by a number of coe�cients equal to the number

of solutions of the cut itself.
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D̄

1

+
c

1,0

D̄

0

=
c

5,0 + f

01234

(q, µ2)

D̄

0

D̄

1

D̄

2

D̄

3

D̄

4

+
c

4,0 + c

4,4µ
4 + f

0123

(q, µ2)

D̄

0

D̄

1

D̄

2

D̄

3

+
c

3,0 + c

3,7µ
2 + f

012
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D̄
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D̄

1

D̄

2

+
c

2,0 + c

2,9µ
2 + f

01

(q, µ2)

D̄

0

D̄

1

+
c

1,0 + f

0

(q, µ2)

D̄

0

Z
d

�2✏
µ

Z
d

4

q

fi1i2···in(q, µ
2)

D̄i1D̄i2 · · · D̄in
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D̄

0

D̄

1
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�
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2
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3

D̄
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+
�

0123
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�

012
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�
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 @ the integrand-level

One-Loop Integrand Decomposition

  f’s are “spurious” ==> integrate to 0 !!!



Problem: what is the form of the residues?

“find the right variables encoding the cut-structure”

• Loop momentum decomposition

q + p

i

=
4

X

↵=1

x

↵

e

(ijk··· )
↵

, x

↵

= (q + p

i

) · e(ijk··· )
↵

(2.7)

cut external (p
i

) auxiliary (v
i

) �-variables (ISP’s)

5 4 0 µ

2

4 3 1 µ

2
, q · v1

3 2 2 µ

2
, q · v

i

(i = 1, 2)

2 1 3 µ

2
, q · v

i

(i = 1, . . . , 3)

1 0 4 µ

2
, q · v

i

(i = 1, . . . , 4)

cut/legs basis �-variables (ISP’s)

external (p
i

) auxiliary (v
i

)

5 4 0 µ

2

4 3 1 µ

2
, q · v1

3 2 2 µ

2
, q · v

i

(i = 1, 2)

2 1 3 µ

2
, q · v

i

(i = 1, . . . , 3)

1 0 4 µ

2
, q · v

i

(i = 1, . . . , 4)

• ISP’s = Irreducible Scalar Products:

– q-components which can variate under cut-conditions

– spurious: vanishing upon integration

– non-spurious: non-vanishing upon integration ) MI’s

• @ 1-Loop

– (q · p
i

) are ALL reducible

– ISP’s could be chosen to be ALL spurious

– n-ple cut identifies an n-point diagram

• Determine the n-point residue (�) from the n-ple cut:

the subtraction of the m-point residues with n < m  5 is necessary to guarantee

a polynomial form ! numerical fitting

• the 5-point residue doesn’t show up

• the 4-point residue doesn’t show up

• �R = reduced polynomial (⇢ �)
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 variables

Ossola & P.M. (2011)

=    ?

Product of trees Polynomials

The Strategy: Generalised Unitarity

• Multiple-cuts as optical filters

Replacing the original amplitude with simpler integrals fulfilling the same algebraic decomposition

= c4 Britto, Cachazo, Feng

= c4 + c3

Bern, Dixon, Dunbar, Kosower

P.M.

Forde

Bjerrum-Bohr, Dunbar, Perkins

= c4 + c3 + c2

Bern, Dixon, Dunbar, Kosower

Brandhuber, McNamara, Spence, Travaglini

Britto, Buchbinder, Cachazo, Feng, ⊕ P.M.

Anastasiou, Britto, Feng, Kunszt, P.M.

Forde; Badger

= c4 + c3 + c2 + c1 Glover, Williams

Britto, Feng
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Towards Higher Loop



Polynomial equations, ideals

Remainder of polynomial division

Polynomials in quotient rings

Unitarity-Cuts, Vanishing denominators

Cut-residue

Amplitudes factorization in tree-amplitudes

Algebraic GeometryQuantum Field Theory

Zhang (2012); Badger Frellesvig Zhang (2012) 
Mirabella, Ossola, Peraro, & P.M. (2012) 

 Amplitude decomposition Multivariate Polynomial division



l-Loop Recurrence Relation

4. FOR the COLLOQUIUM

4.1 Massless Spin-1 propagator (photon, gluon)

�i
gµ⌫

k2 � i0
(4.1)

1

k2 � i0
! �(k2) ) �gµ⌫ !

X

polarization��

✏µ�(k)
⇣
✏⌫�(k)

⌘⇤
(4.2)

4.2 Fermion propagator

i
(/p+m)

p2 �m2 � i0
(4.3)

1

p2 �m2 � i0
! �(p2 �m2) ) (/p+m) !

X

spin�s

us(p) ūs(p) (4.4)

4.3 Phase-space

d4� ⌘ d4`1 d4`2 �(4)
⇣
`1 + `2 � P12

⌘
�(+)

⇣
`21 �m2

1

⌘
�(+)

⇣
`22 �m2

2

⌘
(4.5)

4.4 BCFW

(qi � zi⌘)
2 �m2

i = 0 , zi =
q2i �m2

i

2⌘.qi
, (qi � zj⌘)

2 �m2
i = 2⌘.qi(zi � zj) (4.6)

(�1)
1

q21 �m2
1

1

q22 �m2
2

· · · 1

q2n �m2
n
=

1

q21 �m2
1

1

(q2 � z1⌘)2 �m2
2

· · · 1

(qn � z1⌘)2 �m2
n

+
1

(q1 � z2⌘)2 �m2
1

1

q22 �m2
2

· · · 1

(qn � z2⌘)2 �m2
n

+ . . . . . .

+
1

(q1 � zn⌘)2 �m2
1

1

(q2 � zn⌘)2 �m2
2

· · · 1

q2n �m2
n

(4.7)

I
dz

z(z � z1)(z � z2) · · · (z � zn)
= 0 (4.8)

(�1)

z1z2 · · · zn
=

1

z1(z1 � z2) · · · (z1 � zn)

+
1

(z2 � z1)z2 · · · (z2 � zn)
+ . . . . . .

+
1

(zn � z1)(zn � z2) · · · (zn � zn�1)zn
(4.9)
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Pinches
= + x

Multi-Loop Integrand Recurrence
Mirabella, Ossola, Peraro, & P.M. (2012) 

  all orders (any number of loops and legs)
  any topology (planar and non-planar)
  all kinematics (massless and massive)

n-line 
graph

(n-1)-line 
graph

coefficient 
product of simpler amplitudes

Master functions

  high-power of denominators  



The Maximum-Cut Theorem
4. The Maximum-cut Theorem

At ` loops, in four dimensions, we define a maximum-cut as a (4`)-ple cut

Di1 = Di2 = · · · = Di4` = 0 ,

which constrains completely the components of the loop momenta. In four dimensions

this implies the presence of four constraints for each loop momenta. We assume that, in

non-exceptional phase-space points, a maximum-cut has a finite number ns of solutions,

each with multiplicity one. Under this assumption we have the following

Theorem 4.1 (Maximum cut). The residue at the maximum-cut is a polynomial para-

matrised by ns coe�cients, which admits a univariate representation of degree (ns � 1).

Proof. Let us parametrize the propagators using 4` variables z = (z1, . . . z4`). In this

parametrization, the solutions of the maximum-cut read,

z(i) =
⇣
z

(i)
1 , . . . , z

(i)
4`

⌘
, with i = 1, . . . , ns .

Let Ji1···i4` be the ideal generated by the on-shell denominators, Ji1···i4` = hDi1 , . . . , Di4`i .
According to the assumptions, the number ns of the solutions is finite, and each of them

has multiplicity one, therefore Ji1···i4` is zero-dimensional and radical 1, In this case, the

Finiteness Theorem ensures that the remainder of the division of any polynomial modulo

Ji1···i4` can be parametrised exactly by ns coe�cients.

Moreover, up to a linear coordinate change, we can assume that all the solutions of the

system have distinct first coordinate z1, i.e. z

(i)
1 6= z

(j)
1 8 i 6= j. We observe that Ji1···i4`

and z1 are in the Shape Lemma position therefore a Gröbner basis for the lexicographic

order z1 < z2 < · · · < zn is Gi1···i4` = {g1, . . . , g4`}, in the form

8
>>>><

>>>>:

g1(z) = f1(z1)

g2(z) = z2 � f2(z1)
...

g4`(z) = z4` � f4`(z1) .

The functions fi are univariate polynomials in z1. In particular f1 is a rank-ns square-free

polynomial

f1(z1) =
nsY

i=1

⇣
z1 � z

(i)
1

⌘
,

i.e. it does not exhibits repeated roots. The multivariate division of Ni1···ı4` modulo Gi1···i4`
leaves a remainder �i1···i4` which is a univariate polynomial in z1 of degree (ns � 1) in

accordance with the Finiteness Theorem.

1
Given an ideal J , the radical of J is

p
J ⌘ {f 2 P [z] : 9 s 2 N, fs 2 J }. J is radical i↵ J =

p
J .

– 8 –

Mirabella, Ossola, Peraro, & P.M. (2012) 

(�1)

z
1

z
2

· · · zn
=

1

z
1

(z
1

� z
2

) · · · (z
1

� zn)

+
1

(z
2

� z
1

)z
2

· · · (z
2

� zn)
+ . . . . . .

+
1

(zn � z
1

)(zn � z
2

) · · · (zn � zn�1

)zn
(4.9)

5. The Maximum Cut Theorem

At any loop `, loops we define maximum cut as the set of vanishing denominators

D
0

= D
1

= . . . = 0

which constrains completely the components of the loop momenta.

We assume that, in non-exceptional phase-space points, a maximum-cut has a finite number

ns of solutions, each with multiplicity one.

Then,

– 7 –

0-dimensional



Application at one-loop

Choice of 4-dimensional basis for an m-point residue

e2

1

= e2

2

= 0 , e
1

· e
2

= 1 , e2

3

= e2

4

= �m4

, e
3

· e
4

= �(1 � �m4

)

Coordinates: z = (z
1

, z
2

, z
3

, z
4

, z
5

) ⌘ (x
1

, x
2

, x
3

, x
4

, µ2)

qµ
4-dim

= �pµi
1

+ x
1

eµ
1

+ x
2

eµ
2

+ x
3

eµ
3

+ x
4

eµ
4

, q2 = q2

4-dim

� µ2

Generic numerator

Ni
1

···im =
X

j
1

,...,j
5

↵~j z j
1

1

z j
2

2

z j
3

3

z j
4

4

z j
5

5

, (j
1

. . . j
5

) such that rank(Ni
1

···im )  m

Residues

�i
1

i
2

i
3

i
4

i
5

= c
0

�i
1

i
2

i
3

i
4

= c
0

+ c
1

x
4

+ µ2(c
2

+ c
3

x
4

+ µ2c
4

)

�i
1

i
2

i
3

= c
0

+ c
1

x
3

+ c
2

x2

3

+ c
3

x3

3

+ c
4

x
4

+ c
5

x2

4

+ c
6

x3

4

+ µ2(c
7

+ c
8

x
3

+ c
9

x
4

)

�i
1

i
2

= c
0

+ c
1

x
2

+ c
2

x
3

+ c
3

x
4

+ c
4

x2

2

+ c
5

x2

3

+ c
6

x2

4

+ c
7

x
2

x
3

+ c
9

x
2

x
4

+ c
9

µ2

�i
1

= c
0

+ c
1

x
1

+ c
2

x
2

+ c
3

x
3

+ c
4

x
4

It can be easily extended to higher-rank numerators

T. Peraro (MPI - München) New techniques for integrand reduction at one loop and beyond MPI, 2013 16

One-Loop Integrand Decomposition

Ellis Giele Kunszt Melnikov
Ossola Papadopoulos Pittau

4.4 d-dimensional integrand decomposition

one can rewrite this as:

An =

n�1
X

(ijk`)

⇢

c(ijk`)
4,0 Iijk` + c(ijk`)

4,4 Iijk`[µ
4
]

�

+

n�1
X

(ijk)

⇢

c(ijk)
3,0 Iijk + c(ijk)

3,7 Iijk[µ
2
]

�

+

n�1
X

(ij)

⇢

c(ij)
2,0 Iij + c(ij)

2,1 Iij [(q + pi) · e2] + c(ij)
2,2 Iij [((q + pi) · e2)

2
] + c(ij)

2,9 Iij [µ
2
]

�

+

n�1
X

i

c(i)
1,0Ii .(4.90)

[Need to include the two bubbles because of possibility of k2
= 0.] Integrals with µ2 in the

numerator can be traded for higher dimensional ones using (see appendix B.1)

Ii1···ik [(µ
2
)

rf(q, µ2
)] =

1

⇡r

r
Y

=1

✓

 � 3 +

d

2

◆

Z

dd+2r q̄
f(q, µ2

)

Di1 · · · Dik
. (4.91)

=r  n c4,0 + c4,4 d + 4 + c3,0

+ c2,0

+ c2,9 d + 2 + c1,0

+ c2,1

+ c2,2

+ c3,7 d+ 2

r=2

r=1

Figure 4.3.: Depiction of the decomposition of a generic integral in a set of master integrals

Equation 4.88 holds at the integral level. In order to get a similar expression at the integrand
level, it is not allowed to simply remove the integral signs, because this would ignore the
overal integration constants of all the individual integrals. Rather, one needs to add so called
spurious functions, functions that vanish upon integration. Using the notation:

Z

ddq̄
f s
ijk..(q̄)

DiDj ..
= 0 (4.92)

we can write the corresponding equation at the integrand level:

A(q̄) =

X

(ijk`m)

c5,0µ2
+ f s

ijk`m(q̄)

DiDjDkDlDm

+

X

(ijk`)

c4,0 + c4,4µ4
+ f s

ijk`(q̄)

DiDjDkDl
+

X

(ijk)

c3,0 + c3,7µ2
+ f s

ijk(q̄)

DiDjDk

+

X

(ij)

c2,0 + c2,1w + c2,2w2
+ c2,9µ2

+ f s
ij(q̄)

DiDj
+

X

(i)

c1,0 + f s
i (q̄)

Di

(4.93)
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4.4 d-dimensional integrand decomposition
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[Need to include the two bubbles because of possibility of k2
= 0.] Integrals with µ2 in the

numerator can be traded for higher dimensional ones using (see appendix B.1)
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Figure 4.3.: Depiction of the decomposition of a generic integral in a set of master integrals
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As a consequence, the integral over all angular variables θi can be immediately evaluated

by means of the orthogonality relation (B.3) satisfied by such polynomials,
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−1
d cos θ(sin θ)2α−1C(α)

n (cos θ)C(α)
m (cos θ) = δmn

21−2απΓ(n+ 2α)

n!(n+ α)Γ2(α)
. (1.13)

After this operation is performed, all spurious terms are automatically set to zero and non-

vanishing contributions are reduced, apart from constant prefactors, to additional powers

of λ2 in the numerator.

In the same way, after the change of variables (1.11)-(1.12), the integrand I2 turns

into a polynomial in {cos θij, sin θij}, i != 1 ∧ i != 2, with coefficients depending on λ11, λ22

and θ12, and the integration over all angular variables θij != θ12 can be again performed

by using the orthogonality relation (1.13), which automatically sets to zero spurious terms

and reduce non-vanishing contributions to additional powers of λij .

2 One-loop integrals

We consider a general dimensional regulated n-point one loop integral of the type

Idn[N ] =

∫

ddq

πd/2

N (q)
∏n−1

i=0 Di

, (2.1)

with an arbitrary tensor numerator N (q) and denominators given by

Di =
(

q +
i

∑

j=0

pj
)2

+m2
i , p0 = 0, (2.2)

being {p1, ..., pn−1} the set of external momenta. A common way of parametrizing the

d-dimensional loop momentum consists in splitting it into

qα = qα[4] + µα, (2.3)

where qα[4] is a vector of the physical four-dimensional space and µα belongs to the orthogonal

(d− 4)-dimensional subspace, which is assumed to have an euclidean metric δij , so that

µ · µ = µ2 (µ2 > 0), q2 = q2[4] + µ2. (2.4)

Since all external momenta are four-dimensional,

pi · µ = 0, (2.5)

the denominators (2.2) can be written as

Di =
(

q[4] +
i
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pj
)2

+ µ2 +m2
i , (2.6)
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and, introducing spherical coordinates for the (d − 4)-subspace, the loop integral (2.1)

becomes

Idn[N ] =
1

π2Γ
(

d−4
2

)

∫

d4q[4]

∫ ∞

0
dµ2(µ2)

d−6
2

N (q[4], µ
2)

∏n−1
i=0 Di

. (2.7)

For practical purposes, it is often convenient to decompose the four-dimensional part of the

loop momentum into a specific basis of vectors {eαi },

qα[4] =
4

∑

i=1

xie
α
i , (2.8)

and rewrite (2.7) as

Idn[N ] =
K

π2Γ
(

d−4
2

)
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−∞

4
∏

i=1

dxi

∫ ∞

0
dµ2(µ2)

d−6
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N (xi, µ2)
∏n−1

i=0 Di

, (2.9)

where K is the Jacobian factor

K =

√

det

(∂qµ[4]
∂xi

∂q[4]µ
∂xj

)

. (2.10)

The choice of the basis {eαi } is completely arbitrary. In particular, for a number of external

legs n ≤ 4, one can choose 5 − n vectors of such basis to lie into the subspace orthogonal

to the external kinematics, i.e. such that

ei · pj = 0, i ≥ n, ∀j, (2.11a)

ei · ej = δij , i, j ≥ n. (2.11b)

As a special case, it should be noted that the dimension of the transverse space for the

two-point integral with massless external momentum is reduced to 4− n.

The comparison between (2.5) and (2.11) suggests a parametrization of the loop mo-

mentum alternative to (2.3),

qα = qα[k] + λα, qα[k] =
k

∑

j=1

xje
α
j , (2.12)

where qα[k] is a vector of k-dimensional the space spanned by the external momenta and

λα =
4

∑

j=k+1

xje
α
j + µα, λ2 =

4
∑

j=k+1

x2j + µ2, (2.13)

belongs the (d − k)-dimensional orthogonal subspace. In this way, the square of the d-

dimensional loop momentum qα is given by as

q2 = q2[k] + λ2, (2.14)
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and, introducing spherical coordinates for the (d − 4)-subspace, the loop integral (2.1)

becomes

Idn[N ] =
1

π2Γ
(

d−4
2

)

∫

d4q[4]

∫ ∞

0
dµ2(µ2)

d−6
2

N (q[4], µ
2)

∏n−1
i=0 Di

. (2.7)

For practical purposes, it is often convenient to decompose the four-dimensional part of the

loop momentum into a specific basis of vectors {eαi },

qα[4] =
4

∑

i=1

xie
α
i , (2.8)

and rewrite (2.7) as

Idn[N ] =
K

π2Γ
(

d−4
2

)

∫ ∞

−∞

4
∏

i=1

dxi

∫ ∞

0
dµ2(µ2)

d−6
2

N (xi, µ2)
∏n−1

i=0 Di

, (2.9)

where K is the Jacobian factor

K =

√

det

(∂qµ[4]
∂xi

∂q[4]µ
∂xj

)

. (2.10)

The choice of the basis {eαi } is completely arbitrary. In particular, for a number of external

legs n ≤ 4, one can choose 5 − n vectors of such basis to lie into the subspace orthogonal

to the external kinematics, i.e. such that

ei · pj = 0, i ≥ n, ∀j, (2.11a)

ei · ej = δij , i, j ≥ n. (2.11b)

As a special case, it should be noted that the dimension of the transverse space for the

two-point integral with massless external momentum is reduced to 4− n.

The comparison between (2.5) and (2.11) suggests a parametrization of the loop mo-

mentum alternative to (2.3),

qα = qα[k] + λα, qα[k] =
k

∑

j=1

xje
α
j , (2.12)

where qα[k] is a vector of k-dimensional the space spanned by the external momenta and

λα =
4

∑

j=k+1

xje
α
j + µα, λ2 =

4
∑

j=k+1

x2j + µ2, (2.13)

belongs the (d − k)-dimensional orthogonal subspace. In this way, the square of the d-

dimensional loop momentum qα is given by as

q2 = q2[k] + λ2, (2.14)
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We observe that, because of (2.14), when the integral (2.1) is written in terms of the

variables {qα[k],λ
α},

Idn[N ] =

∫

dkq[k]
πd/2

∫

dλd−k N (q)
∏n−1

i=0 Di

, (2.15)

all denominators become independent from the transverse components of qα,

Di =
(

q[k] +
i

∑

j=0

pj
)2

+ λ2 +m2
i . (2.16)

As a consequence, the integrand satisfies the requirement (1.3) since, besides being a func-

tion of qα[k], it only depends on λ2 and on a finite subset of components of λα, which

correspond to the transverse directions {xk+1, ..., x4},

N (q) ≡ N (qα[k],λ
2, {xk+1, ..., x4}). (2.17)

Therefore, the integral over the (d− k)-dimensional subspace is exactly of the type (1.1) so

that, if we introduce spherical coordinates


























xk+1 = λ cos θ1

xk+2 = λ sin θ1 cos θ2

· · ·
x4 = λ cos θ4−k

∏3−k
i=1 sin θi,

(2.18)

we can express the one-loop integral, analogously to Eq. (1.4), as

Idn[N ] =
1

π2Γ
(

d−4
2

)

∫

dkq[k]

∫ ∞

0
dλ2(λ2)

d−k−2
2

4−k
∏

i=1

∫ 1

−1
d cos θi(sin θi)

d−k−i−2 N (q)
∏n−1

i=0 Di

.

(2.19)

Moreover, since the denominators are completely independent from the transverse variables,

they can only appear polynomially in the numerator. Hence, as we have already observed

in Section 1, any dependence of the integrand on {xk+1, ..., x4} can be immediately inte-

grated by expanding the numerator in terms of Gegenbauer polynomials and by using the

orthogonality relation (1.13). This procedure allows to reduce any tensor Feynman integral

as a linear combination of integrals whose numerators only depends of the components of

the loop momentum lying on the space spanned by the external momenta.

In following, we will specify the parametrization (2.19) for all kinematics configurations

with n ≤ 4 and we will provide some explicit examples of integrals over the transverse

components of the loop momentum.

2.1 Four-point integrals

For a general four-point integral,

Id4 [N ] =

∫

ddq

πd/2

N (q)

D0D1D2D3
, (2.20)
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Larsen Zhang;



As a consequence, the integral over all angular variables θi can be immediately evaluated

by means of the orthogonality relation (B.3) satisfied by such polynomials,

∫ 1

−1
d cos θ(sin θ)2α−1C(α)

n (cos θ)C(α)
m (cos θ) = δmn

21−2απΓ(n+ 2α)

n!(n+ α)Γ2(α)
. (1.13)

After this operation is performed, all spurious terms are automatically set to zero and non-

vanishing contributions are reduced, apart from constant prefactors, to additional powers

of λ2 in the numerator.

In the same way, after the change of variables (1.11)-(1.12), the integrand I2 turns

into a polynomial in {cos θij, sin θij}, i != 1 ∧ i != 2, with coefficients depending on λ11, λ22

and θ12, and the integration over all angular variables θij != θ12 can be again performed

by using the orthogonality relation (1.13), which automatically sets to zero spurious terms

and reduce non-vanishing contributions to additional powers of λij .

2 One-loop integrals

We consider a general dimensional regulated n-point one loop integral of the type

Idn[N ] =

∫

ddq

πd/2

N (q)
∏n−1

i=0 Di

, (2.1)

with an arbitrary tensor numerator N (q) and denominators given by

Di =
(

q +
i

∑

j=0

pj
)2

+m2
i , p0 = 0, (2.2)

being {p1, ..., pn−1} the set of external momenta. A common way of parametrizing the

d-dimensional loop momentum consists in splitting it into

qα = qα[4] + µα, (2.3)

where qα[4] is a vector of the physical four-dimensional space and µα belongs to the orthogonal
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B Gegenbauer polynomials

In this Appendix we collect the most relevant properties of Gegenbauer polynomials.

Gegenbauer polynomials C(α)
n (x) are orthogonal polynomials over the interval [−1, 1] with

respect to the weight function

ωα(x) = (1− x2)α−
1
2 , (B.1)

and they can be defined through the generating function

1

(1− 2xt+ t2)α
=

∞
∑

n=1

C(α)
n (x)tn. (B.2)

These polynomials obey the orthogonality relation

∫ 1

−1
dx ωα(x)C

(α)
n (x)C(α)

m (x) = δmn
21−2απΓ(n+ 2α)

n!(n+ α)Γ2(α)
. (B.3)

The explicit expressions of the first Gegenbauer polynomials are given by

C(α)
0 (x) = 1,

C(α)
1 (x) = 2αx,

C(α)
2 (x) = −α+ 2α(1 + α)x2,

· · · (B.4)

and they can inverted in order to express arbitrary powers of the variable x in terms of

products of Gegenbauer polynomials,

x =
1

2α
C(α)
0 (x)C(α)

1 (x),

x2 =
1

4α2
[C(α)

1 (x)]2,

x3 =
1

4α2(1 + α)
C(α)
1 (x)[αC(α)

0 (x) + C(α)
2 (x)],

x4 =
1

4α2(1 + α)2
[αC(α)

0 (x) + C(α)
2 (x)]2,

· · · (B.5)

These identities can be used to evaluate the integral of any polynomial in x, convoluted

with the weight function ωα(x), by means of the orthogonality relation (B.3).
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Gegenbauer polynomials

Orthogonality condition

  Integration over Transverse Angles: trivialized @ all-loop!

Integrating over Transverse Angles
Peraro Primo P.M. (to appear) 

  Alternative to PV-tensor reduction in the transverse-space



D0 = q

2 �m

2
0

D1 = (q + p1)
2 �m

2
1

D2 = (q + p1 + p2)
2 �m

2
2

. . . . . .

D

n�2 = (q + p1 + p2 + . . .+ p

n�2)
2 �m

2
n�2

D

n�1 = (q � p

n

)2 �m

2
n�1

4.5 Transverse Space

d = 4� 2✏ (4.25)

d = d

//

+ d? (4.26)
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and, introducing spherical coordinates for the (d − 4)-subspace, the loop integral (2.1)

becomes

Idn[N ] =
1

π2Γ
(

d−4
2

)

∫

d4q[4]

∫ ∞

0
dµ2(µ2)

d−6
2

N (q[4], µ
2)

∏n−1
i=0 Di

. (2.7)

For practical purposes, it is often convenient to decompose the four-dimensional part of the

loop momentum into a specific basis of vectors {eαi },

qα[4] =
4

∑

i=1

xie
α
i , (2.8)

and rewrite (2.7) as

Idn[N ] =
K

π2Γ
(

d−4
2

)

∫ ∞

−∞

4
∏

i=1

dxi

∫ ∞

0
dµ2(µ2)

d−6
2

N (xi, µ2)
∏n−1

i=0 Di

, (2.9)

where K is the Jacobian factor

K =

√

det

(∂qµ[4]
∂xi

∂q[4]µ
∂xj

)

. (2.10)

The choice of the basis {eαi } is completely arbitrary. In particular, for a number of external

legs n ≤ 4, one can choose 5 − n vectors of such basis to lie into the subspace orthogonal

to the external kinematics, i.e. such that

ei · pj = 0, i ≥ n, ∀j, (2.11a)

ei · ej = δij , i, j ≥ n. (2.11b)

As a special case, it should be noted that the dimension of the transverse space for the

two-point integral with massless external momentum is reduced to 4− n.

The comparison between (2.5) and (2.11) suggests a parametrization of the loop mo-

mentum alternative to (2.3),

qα = qα[k] + λα, qα[k] =
k

∑

j=1

xje
α
j , (2.12)

where qα[k] is a vector of k-dimensional the space spanned by the external momenta and

λα =
4

∑

j=k+1

xje
α
j + µα, λ2 =

4
∑

j=k+1

x2j + µ2, (2.13)

belongs the (d − k)-dimensional orthogonal subspace. In this way, the square of the d-

dimensional loop momentum qα is given by as

q2 = q2[k] + λ2, (2.14)
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becomes

Idn[N ] =
1

π2Γ
(

d−4
2

)

∫

d4q[4]

∫ ∞

0
dµ2(µ2)

d−6
2

N (q[4], µ
2)

∏n−1
i=0 Di

. (2.7)

For practical purposes, it is often convenient to decompose the four-dimensional part of the

loop momentum into a specific basis of vectors {eαi },

qα[4] =
4

∑

i=1

xie
α
i , (2.8)

and rewrite (2.7) as

Idn[N ] =
K

π2Γ
(

d−4
2

)

∫ ∞

−∞

4
∏

i=1

dxi

∫ ∞

0
dµ2(µ2)

d−6
2

N (xi, µ2)
∏n−1

i=0 Di

, (2.9)

where K is the Jacobian factor

K =

√

det

(∂qµ[4]
∂xi

∂q[4]µ
∂xj

)

. (2.10)

The choice of the basis {eαi } is completely arbitrary. In particular, for a number of external

legs n ≤ 4, one can choose 5 − n vectors of such basis to lie into the subspace orthogonal

to the external kinematics, i.e. such that

ei · pj = 0, i ≥ n, ∀j, (2.11a)

ei · ej = δij , i, j ≥ n. (2.11b)

As a special case, it should be noted that the dimension of the transverse space for the

two-point integral with massless external momentum is reduced to 4− n.

The comparison between (2.5) and (2.11) suggests a parametrization of the loop mo-

mentum alternative to (2.3),

qα = qα[k] + λα, qα[k] =
k

∑

j=1

xje
α
j , (2.12)

where qα[k] is a vector of k-dimensional the space spanned by the external momenta and

λα =
4

∑

j=k+1

xje
α
j + µα, λ2 =

4
∑

j=k+1

x2j + µ2, (2.13)

belongs the (d − k)-dimensional orthogonal subspace. In this way, the square of the d-

dimensional loop momentum qα is given by as

q2 = q2[k] + λ2, (2.14)

– 5 –

We observe that, because of (2.14), when the integral (2.1) is written in terms of the

variables {qα[k],λ
α},

Idn[N ] =

∫

dkq[k]
πd/2

∫

dλd−k N (q)
∏n−1

i=0 Di

, (2.15)

all denominators become independent from the transverse components of qα,

Di =
(

q[k] +
i

∑

j=0

pj
)2

+ λ2 +m2
i . (2.16)

As a consequence, the integrand satisfies the requirement (1.3) since, besides being a func-

tion of qα[k], it only depends on λ2 and on a finite subset of components of λα, which

correspond to the transverse directions {xk+1, ..., x4},

N (q) ≡ N (qα[k],λ
2, {xk+1, ..., x4}). (2.17)

Therefore, the integral over the (d− k)-dimensional subspace is exactly of the type (1.1) so

that, if we introduce spherical coordinates


























xk+1 = λ cos θ1

xk+2 = λ sin θ1 cos θ2

· · ·
x4 = λ cos θ4−k

∏3−k
i=1 sin θi,

(2.18)

we can express the one-loop integral, analogously to Eq. (1.4), as

Idn[N ] =
1

π2Γ
(

d−4
2

)

∫

dkq[k]

∫ ∞

0
dλ2(λ2)

d−k−2
2

4−k
∏

i=1

∫ 1

−1
d cos θi(sin θi)

d−k−i−2 N (q)
∏n−1

i=0 Di

.

(2.19)

Moreover, since the denominators are completely independent from the transverse variables,

they can only appear polynomially in the numerator. Hence, as we have already observed

in Section 1, any dependence of the integrand on {xk+1, ..., x4} can be immediately inte-

grated by expanding the numerator in terms of Gegenbauer polynomials and by using the

orthogonality relation (1.13). This procedure allows to reduce any tensor Feynman integral

as a linear combination of integrals whose numerators only depends of the components of

the loop momentum lying on the space spanned by the external momenta.

In following, we will specify the parametrization (2.19) for all kinematics configurations

with n ≤ 4 and we will provide some explicit examples of integrals over the transverse

components of the loop momentum.

2.1 Four-point integrals

For a general four-point integral,

Id4 [N ] =

∫

ddq

πd/2

N (q)

D0D1D2D3
, (2.20)
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Moreover, since the denominators are completely independent from the transverse variables,
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orthogonality relation (1.13). This procedure allows to reduce any tensor Feynman integral
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We observe that, because of (2.14), when the integral (2.1) is written in terms of the

variables {qα[k],λ
α},
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Di =
(

q[k] +
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)2

+ λ2 +m2
i . (2.16)

As a consequence, the integrand satisfies the requirement (1.3) since, besides being a func-

tion of qα[k], it only depends on λ2 and on a finite subset of components of λα, which

correspond to the transverse directions {xk+1, ..., x4},

N (q) ≡ N (qα[k],λ
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· · ·
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∏3−k
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(2.18)

we can express the one-loop integral, analogously to Eq. (1.4), as

Idn[N ] =
1

π2Γ
(

d−4
2

)

∫

dkq[k]

∫ ∞

0
dλ2(λ2)

d−k−2
2

4−k
∏

i=1

∫ 1

−1
d cos θi(sin θi)

d−k−i−2 N (q)
∏n−1

i=0 Di

.

(2.19)

Moreover, since the denominators are completely independent from the transverse variables,

they can only appear polynomially in the numerator. Hence, as we have already observed

in Section 1, any dependence of the integrand on {xk+1, ..., x4} can be immediately inte-

grated by expanding the numerator in terms of Gegenbauer polynomials and by using the

orthogonality relation (1.13). This procedure allows to reduce any tensor Feynman integral

as a linear combination of integrals whose numerators only depends of the components of

the loop momentum lying on the space spanned by the external momenta.

In following, we will specify the parametrization (2.19) for all kinematics configurations

with n ≤ 4 and we will provide some explicit examples of integrals over the transverse

components of the loop momentum.

2.1 Four-point integrals

For a general four-point integral,

Id4 [N ] =

∫

ddq

πd/2

N (q)

D0D1D2D3
, (2.20)
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with denominators given by

D0 = q2 +m2
0

D1 = (q + p1)
2 +m2

1,

D2 = (q + p1 + p2)
2 +m2

2,

D3 = (q + p1 + p2 + p3)
2 +m2

3, (2.21)

we can define a basis {eαi } containing one single transverse direction eα4 such that

pi · e4 = 0 ∀i = 1, 2, 3. (2.22)

Therefore, according to (2.11), we can define the vectors

qα[3] =
3

∑

i=1

xie
α
i , λα = x4e

α
4 + µα, (2.23)

and decompose the d-dimensional loop momentum as

qα = qα[3] + λα, q2 = q2[3] + λ2. (2.24)

In this parametrization, the four-point integral becomes

Id4 [N ] =

∫

d3q[3]
πd/2

∫

dd−3λ
N (q[3],λ

2, x4)

D0D1D2D3
. (2.25)

and, since all denominators are now independent from the transverse component x4,

D0 = q2[3] + λ2 +m2
0

D1 = (q2[3] + p1)
2 + λ2 +m2

1,

D2 = (q2[3] + p1 + p2)
2 + λ2 +m2

2,

D3 = (q2[3] + p1 + p2 + p3)
2 + λ2 +m2

3. (2.26)

we can introduce spherical coordinates

x4 = λ cos θ1 (2.27)

and obtain, according to (2.19) for k = 3,

Id4 [N ] =
1

π2Γ
(

d−4
2

)

∫

d3q[3]

∫ ∞

0
dλ2(λ2)

d−5
2

∫ 1

−1
d cos θ1(sin θ1)

d−6N (q[3],λ
2, cos θ1)

D0D1D2D3
.

(2.28)

The numerator of any Feynman integral is a polynomial in x4 (and hence in cos θ1), so that

the angular integration can be always reduced to the orthogonality relation (1.13).

In particular, for the case of the scalar four-point integral we obtain

Id4 [1] =
1

π3/2Γ
(

d−3
2

)

∫

d3q[3]

∫ ∞

0
dλ2(λ2)

d−5
2

1

D0D1D2D3
. (2.29)
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Moreover, as we recall in Appendix B, all odd powers of x4 are expressed in terms of Gegen-

bauer polynomials with different indices and, therefore, vanish by orthogonality, whereas

even powers of x4 give rise to non zero contributions. As an example, which will be later

become useful, let us consider the integrals Let’s consider, as an example, the integral

Id4 [x
2
4 ] =

1

π2Γ
(

d−4
2

)

∫

d3q[3]

∫ ∞

0
dλ2(λ2)

d−3
2

∫ 1

−1
d cos θ1(sin θ1)

d−6 cos2 θ1
D0D1D2D3

, (2.30a)

Id4 [x
4
4 ] =

1

π2Γ
(

d−4
2

)

∫

d3q[3]

∫ ∞

0
dλ2(λ2)

d−1
2

∫ 1

−1
d cos θ1(sin θ1)

d−6 cos4 θ1
D0D1D2D3

, (2.30b)

where we used (2.27).

By expressing powers of cos θ1 in terms of Gegenbauer polynomials,

cos2 θ1 =
1

(d− 5)2
[

C
(d−5

2
)

1 (cos θ1)
]2
, (2.31a)

cos4 θ1 =
1

(d− 3)2

[

C
(d−5

2
)

0 (cos θ1) +
4

(d− 5)2
C

d−5
2

2 (cos θ1)

]2

(2.31b)

we can evaluate the angular integrals by means of the orthogonality relations and obtain

Id4 [x
2
4 ] =

1

d− 3
Id4 [λ

2 ] =
1

2
Id+2
4 [1], (2.32a)

Id4 [x
4
4 ] =

3

(d− 3)(d − 1)
Id4 [λ

4 ] =
3

4
Id+4
4 [1]. (2.32b)

where, in the second equality, we have identified additional powers of λ2 in the numerator

with higher-dimensional scalar integrals, has it can be easily checked from the explicit

expression of the d-dimensional integral (2.29).

Similar results can be obtained for higher rank numerators.

2.2 Three-point integrals

Given an arbitrary three-point integral,

Id3 [N ] =

∫

ddq

πd/2

N (q)

D0D1D2
, (2.33)

with

D0 = q2 +m2
0

D1 = (q + p1)
2 +m2

1,

D2 = (q + p1 + p2)
2 +m2

2, (2.34)

we can build a basis of the four-dimensional space containing two transverse directions eα3,4,

pi · ej = 0 i = 1, 2, j = 3, 4, (2.35)

which allow us to define the vectors

qα[2] =
2

∑

i=1

xie
α
i , λα =

4
∑

i=3

xie
α
i + µα, (2.36)
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2

)

∫

d3q[3]

∫ ∞

0
dλ2(λ2)

d−3
2

∫ 1

−1
d cos θ1(sin θ1)

d−6 cos2 θ1
D0D1D2D3

, (2.30a)
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4
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(
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2
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∫ ∞

0
dλ2(λ2)

d−1
2

∫ 1

−1
d cos θ1(sin θ1)

d−6 cos4 θ1
D0D1D2D3
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where we used (2.27).

By expressing powers of cos θ1 in terms of Gegenbauer polynomials,

cos2 θ1 =
1

(d− 5)2
[

C
(d−5

2
)

1 (cos θ1)
]2
, (2.31a)

cos4 θ1 =
1

(d− 3)2

[

C
(d−5

2
)

0 (cos θ1) +
4

(d− 5)2
C

d−5
2

2 (cos θ1)

]2

(2.31b)

we can evaluate the angular integrals by means of the orthogonality relations and obtain

Id4 [x
2
4 ] =

1

d− 3
Id4 [λ

2 ] =
1

2
Id+2
4 [1], (2.32a)

Id4 [x
4
4 ] =

3

(d− 3)(d − 1)
Id4 [λ

4 ] =
3

4
Id+4
4 [1]. (2.32b)

where, in the second equality, we have identified additional powers of λ2 in the numerator

with higher-dimensional scalar integrals, has it can be easily checked from the explicit

expression of the d-dimensional integral (2.29).

Similar results can be obtained for higher rank numerators.

2.2 Three-point integrals

Given an arbitrary three-point integral,
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∫
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D0D1D2
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with
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2 +m2
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D2 = (q + p1 + p2)
2 +m2

2, (2.34)

we can build a basis of the four-dimensional space containing two transverse directions eα3,4,

pi · ej = 0 i = 1, 2, j = 3, 4, (2.35)

which allow us to define the vectors

qα[2] =
2

∑

i=1

xie
α
i , λα =

4
∑

i=3

xie
α
i + µα, (2.36)
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∏
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
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




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








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and split the d-dimensional loop momentum into

qα = qα[2] + λα, q2 = q2[2] + λ2. (2.37)

After parametrizing the integral in these new variables

Id3 [N ] =

∫

d2q[2]
πd/2

∫

dd−2λ
N (q[2],λ

2, x3, x4)

D0D1D2
. (2.38)

the denominators become independent from the transverse directions x3 and x4,

D0 = q2[2] + λ2 −m2
0

D1 = (q2[2] + p1)
2 + λ2 −m2

1,

D2 = (q2[2] + p1 + p2)
2 + λ2 −m2

2, (2.39)

so that, by introducing spherical coordinates for the transverse space

{

x3 = λ cos θ1

x4 = λ sin θ1 cos θ2
(2.40)

The integral can be written takes the same form as (2.19) for k = 2

Id3 [N ] =
1

π2Γ
(

d−4
2

)

∫

d2q[2]

∫ ∞

0
dλ2(λ2)

d−4
2

∫ 1

−1
d cos θ1(sin θ1)

d−5×

∫ 1

−1
d cos θ2(sin θ2)

d−6N (q[2],λ
2, {cos θ1, sin θ1, cos θ2})

D0D1D2
. (2.41)

Hence, the polynomial dependence on angular variables can integrated out by expanding

the numerator in terms of Gegenbauer polynomials. For the scalar case, we find

Id3 [1] =
1

πΓ
(

d−2
2

)

∫

d2q[2]

∫ ∞

0
dλ2(λ2)

d−4
2

1

D0D1D2
, (2.42)

and one can easily verify that odd monomials in any of the transverse variable vanish,

whereas even powers of x3 and x4 produce higher-dimensional integrals, such as

Id3 [x
2
3] = Id3 [x

2
4] =

1

d− 2
Id3 [λ

2] =
1

2
Id+2
3 [1]. (2.43)

2.3 Two-point integrals

As we have already mentioned, for two-point integrals of the type

Id2 [N ] =

∫

ddq

πd/2

N (q)

D0D1
, (2.44)

with

D0 = q2 +m2
0, D1 = (q + p)2 +m2

1, (2.45)
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we should distinguish the case with massless external momentum p2 = 0 from the general

one p2 = 0, since their transverse spaces have different dimensions.

In the off-shell case p2 != 0, we can define three transverse directions, eαi , i = 1, 2, 3,

p · ei = 0 i = 1, 2, 3, (2.46)

and then introduce the vectors

qα[1] =x1e
α
1 , λα =

4
∑

i=2

xie
α
i + µα, (2.47)

in such a way that the d-dimensional loop momentum can be decomposed as

qα = qα[1] + λα, q2 = q2[1] + λ2. (2.48)

Once (2.44) is parametrized in terms of these variables,

Id2 [N ] =

∫

dq[1]
πd/2

∫

dd−1λ
N (q[1],λ

2, x2, x3, x4)

D0D1
, (2.49)

the denominators become independent from the transverse directions,

D0 = q2[1] + λ2 +m2
0, D1 = (q[1] + p)2 + λ2 +m2

1, (2.50)

and we can introduce spherical coordinates for the transverse space,















x2 = λ cos θ1

x3 = λ sin θ1 cos θ2,

x4 = λ sin θ1 sin θ2 cos θ3

(2.51)

and rewrite the integral according to (2.19) for k = 1,

Id2 [N ] =
1

π2Γ
(

d−4
2

)

∫

dq[1]

∫ ∞

0
dλ2(λ2)

d−3
2

∫ 1

−1
d cos θ1(sin θ1)

d−4×
∫ 1

−1
d cos θ2(sin θ2)

d−5
∫ 1

−1
d cos θ3(sin θ3)

d−6×

N (q[1],λ
2, cos θ1, sin θ1, cos θ2, sin θ2, cos θ3)

D0D1
, (2.52)

As usual, all monomials in the transverse variables are now reduced to angular integrals

which can be evaluated using the orthogonality relation (1.13). For the scalar integral, we

find

Id2 =
1

√
πΓ

(

d−1
2

)

∫

dq[1]

∫ ∞

0
dλ2(λ2)

d−3
2

1

D0D1
, (2.53)
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p · ei = 0 i = 1, 2, 3, (2.46)

and then introduce the vectors

qα[1] =x1e
α
1 , λα =

4
∑

i=2

xie
α
i + µα, (2.47)

in such a way that the d-dimensional loop momentum can be decomposed as

qα = qα[1] + λα, q2 = q2[1] + λ2. (2.48)

Once (2.44) is parametrized in terms of these variables,

Id2 [N ] =

∫

dq[1]
πd/2

∫

dd−1λ
N (q[1],λ

2, x2, x3, x4)

D0D1
, (2.49)

the denominators become independent from the transverse directions,

D0 = q2[1] + λ2 +m2
0, D1 = (q[1] + p)2 + λ2 +m2

1, (2.50)

and we can introduce spherical coordinates for the transverse space,















x2 = λ cos θ1

x3 = λ sin θ1 cos θ2,

x4 = λ sin θ1 sin θ2 cos θ3

(2.51)

and rewrite the integral according to (2.19) for k = 1,

Id2 [N ] =
1
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(

d−4
2

)

∫

dq[1]

∫ ∞

0
dλ2(λ2)

d−3
2

∫ 1

−1
d cos θ1(sin θ1)

d−4×
∫ 1

−1
d cos θ2(sin θ2)

d−5
∫ 1

−1
d cos θ3(sin θ3)

d−6×

N (q[1],λ
2, cos θ1, sin θ1, cos θ2, sin θ2, cos θ3)

D0D1
, (2.52)

As usual, all monomials in the transverse variables are now reduced to angular integrals

which can be evaluated using the orthogonality relation (1.13). For the scalar integral, we

find

Id2 =
1

√
πΓ

(

d−1
2

)

∫

dq[1]

∫ ∞
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, (2.53)

– 10 –

and, analogously to the previous cases, it can be verified that

Id2 [x
2
2 ] = Id2 [x

2
3 ] = Id2 [x

2
4 ] =

1

d− 1
Id2 [λ

2] =
1

2
Id+2
2 [1]. (2.54)

In the special case of a two-point integral with massless external momentum, p2 = 0,

we define only two vectors eα3,4 such that

p · ei = 0 i = 3, 4, (2.55)

Therefore, we introduce a decomposition of the d-dimensional loop momentum analogous

to the one used for the three-point integral, (2.37), and we parametrize (2.44) as

Id2 [N ]
∣

∣

p2=0
=

∫

d2q[2]
πd/2

∫

dd−2λ
N (q[2],λ

2, x3, x4)

D0D1
. (2.56)

In this way, the denominators become

D0 = q2[2] + λ2 +m2
0, D1 = (q[2] + p)2 + λ2 +m2

1, (2.57)

and, introducing spherical coordinates

{

x3 = λ cos θ1

x4 = λ sin θ1 cos θ2
(2.58)

we can specify (2.19) for k = 2 and obtain

Id2 [N ]
∣

∣

p2=0
=

1

π2Γ
(

d−4
2

)

∫

d2q[2]

∫ ∞

0
dλ2(λ2)

d−4
2

∫ 1

−1
d cos θ1(sin θ1)

d−5×

∫ 1

−1
d cos θ2(sin θ2)

d−6N (q[2],λ
2, cos θ1, sin θ1, cos θ2)

D0D1
, (2.59)

For the scalar case, after integration over the angular variables, we get

Id2
∣

∣

p2=0
=

1

πΓ
(

d−2
2

)

∫

d2q[2]

∫ ∞

0
dλ2(λ2)

d−4
2

1

D0D1
, (2.60)

while non-spurious monomials in the transverse direction return higher-dimensional inte-

grals, such as

Id2 [x
2
3 ] = Id2 [x

2
4 ] =

1

d− 2
Id2 [λ

2] =
1

2
Id+2
2 [1]. (2.61)

2.4 One-point integrals

As a limiting case of the parametrization of one-lopo integrals introduced at the beginning

of this Section, we consider the case of one-point integral of the type

Id1 [N ] =

∫

ddq

πd/2

N (q)

D0
, (2.62)
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with

D0 = q2 +m2
0. (2.63)

In this case, since there is no dependence of the denominators on any external momenta,

we can choose a completely orthornomal basis {eαi } for the four-dimensional physical space,

and identify the vector λα with the full d-dimensional loop momentum,

qα ≡ λα =
4

∑

i=1

xαi e
α
i + µα, λ2 =

4
∑

i=1

x2i + µ2, (2.64)

In this way, if we introduce spherical coordinates,


























x1 = λ cos θ1,

x2 = λ sin θ1 cos θ2,

x3 = λ sin θ1 sin θ2 cos θ3

x4 = λ sin θ1 sin θ2 sin θ3 cos θ4

(2.65)

the integral over full d-dimensional space can be directly read from (2.19) by choosing k = 0,

Id1 [N ] =
1

π2Γ
(

d−4
2

)

∫ ∞

0
dλ2(λ2)

d−2
2

∫ 1

−1
d cos θ1(sin θ1)

d−3
∫ 1

−1
d cos θ1(sin θ1)

d−4×
∫ 1

−1
d cos θ2(sin θ2)

d−5 ×
∫ 1

−1
d cos θ3(sin θ3)

d−6×

N (q[1],λ
2, cos θ1, sin θ1, cos θ2, sin θ2, cos θ3, sin θ3, cos θ4)

D0
, (2.66)

From this expression, we can immediately obtain the scalar integral,

Id1 =
1

Γ
(

d
2

)

∫ ∞

0
dλ2(λ2)

d−2

2
1

D0
, (2.67)

whereas any monomial in transverse components can easily integrated via orthogonality

relation, once it has been expressed in terms of polynomials C(α)
n (cos θi). Again, all mono-

mials containing odd powers of the transverse variables are spurious and the non-vanishing

terms give rise to higher-dimension integrals.

The parametrisation of the integrals in terms of {qα[k],λ
α} and the resulting algebraic in-

tegration of transverse directions in terms of orthogonal polynomials we have presented in

this Section can be, of course, applied to any one-loop Feynman integral. In particular, as

we are about to show, it can be usefully applied to the integrand decomposition of one-

loop amplitudes, where the adaptive ridefinition of the transverse space at each step of the

reduction can lead to a remarkably simplified version of the algorithm.
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Cutting in the Longitudinal Space

idea n.2



3.2 One-loop intengrand decomposition

In order to determine the universal parametrization of the residues for one-loop Feynman

amplitudes, let us consider a general n-point integrand of the form

Ii0···in−1
=

Ni1···in(q)

Di0 · · · Din−1

, (3.9)

In any renormalisable theory, we can admit at most a rank-n numerator i.e., given a decom-

position of the four-dimensional part of the loop momentum in some basis, qα[4] =
∑4

i=1 xie
α
i ,

the most general numerator can be treated as a rank-n polynomial in the variables z =

{x1, x2, x3, x4, µ2},

Ni0···in−1
(z) =

∑

"j∈J(n)

α"jx
j1
1 xj22 xj33 xj44 (µ2)j5 , (3.10)

with J(n) = {"j = (j1, ..., j5)/j1 + j2 + j3 + j4 + 2j5 ≤ n}.
In the following, we we will go step by step through the reduction algorithm outlined in

the previous Section and we will identify the structure of the residues through polynomial

division.

1. n ≥ 5 Proposition 2 guarantees that any integrand with n > 5 external legs is

reducible and, by iteration, it can be written as a linear combination of five-point

integrands. Hence, we can start our analysis from a five-point integrand Ii0···i4.

The numerator Ni0···i4 of a general five-point integrand is a rank-5 polynomial in the

variables z = {x1, x2, x3, x4, µ2}.
A 5-ple cut is a maximum cut, since the cut conditions

Di0(z) = Di1(z) = Di2(z) = Di3(z) = Di4(z) = 0 (3.11)

completely constrain z. In agreement with the Shape Lemma, a Gröebner basis Gi0···i4

of Ji0···i4 is found in the remarkably simple form

gi(z) = κi + zi, i = 1, ... , 5 (3.12)

where κi’s are constants. The linear dependence of gi(z) on zi explicitly shows that

the quintuple cut has a single solution. Therefore, according to the maximum-cut

theorem, the residue must be a constant and, dividing Ni0···i4 modulo Gi0···i4 we con-

sistently find

∆i0···i4 = c0. (3.13)

The Γi0···i4 term obtained from the polynomial division of Ni0···i4 generates the nu-

merators of four-point integrands Ii0···ik1 ik+1···i4 .
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2. n = 4 The numerator of each Ii0···i3 can admit at most four powers loop momentum

that, with a change of basis, can be decomposed, as discussed in Section 2.1 into

qα = qα[3] + λα. (3.14)

Thus, Ni0···i3 can be treated as a rank-4 polynomial in the variables {x1, x2, x3, x4,λ2},

Ni0···i3(x1, x2, x3, x4,λ
2) =

∑

"j∈J(4)

α"jx
j1
1 xj22 xj33 xj44 (λ2)j5 . (3.15)

As we have already observed, this parametrization of the loop momentum makes all

denominators independent from its component along the transverse direction x4, so

that the Di’s are functions of the variables z = {x1, x2, x3,λ2} only.

Therefore, the quadruple cut

Di0(z) = Di1(z) = Di2(z) = Di3(z) = 0 (3.16)

can be thought as a “maximum” cut meaning that, although it does not impose

constraints on the transverse component of the loop momentum, it completely fixes

the four variables the denominators depend on.

As a consequence, a Gröebner basis Gi0···i3 = {g1, ..., g4} of the ideal Ji0···i3 is found

in a simplified linear form analogous to the quintuple cut case,

gi(z) = κi + zi, i = 1, ... , 4. (3.17)

Eq.(3.17) makes the uniqueness of the cut-solution in the z variables manifest. As

a consequence, according to maximum-cut theorem, the residue must be a constant

with respect to z. Nevertheless, it can still show a polynomial dependence, up to

rank 4, on the transverse component x4, which is left unconstrained from the cut

conditions.

Accordingly, dividing Ni0···i3 modulo Gi0···i3 we find the remainder

∆i0···i3 = c0 + c1x4 + c2x
2
4 + c3x

3
4 + c4x

4
4, (3.18)

together with the three-point numerators Ii0···ik1 ik+1···i3 contained in Γi0···i3.

The integral of the residue (3.18) is nothing but a particular case of (2.28), so that the

integration over the transverse component of the loop momentum can be performed

using the orthogonality relation of Gegenbauer polynomials.

Therefore, we immediately recognized that odd powers of x4 are spurious whereas

even powers produce higher-dimension integrals. More precisely, recalling (2.32), we

find
∫

ddq

πd/2

∆i0i1i2i3

Di0Di1Di2Di3
= c0I

d
4 [1] +

1

(d− 3)
c2I

d
4 [λ

2] +
3

(d− 3)(d − 1)
c4I

d
4 [λ

4]

= c0I
d
4 [1] +

1

2
c2I

d+2
4 [1] +

3

4
c4I

d+4
4 [1]. (3.19)
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3. n = 3 Once each ot the three-point integrands Ii0···i3 is re-parametrised in terms of

qα = qα[2] + λα, (3.20)

its numerator can be treated as the rank-3 polynomial of the type

Ni0i1i2(x1, x2, x3, x4,λ
2) =

∑

"j∈J(3)

"αjx
j1
1 xj22 xj33 xj44 (λ2)j5 . (3.21)

As in the previous case, thanks to the choice of the integration variables, the triple

cut

Di0(z) = Di1(z) = Di2(z) = 0 (3.22)

is a “maximum” cut in the variables z = {x1, x2,λ2} and the Gröebner basis Gi0···i2 =

{g1, g2, g3} assumes the linear form

gi(z) = κi + zi, i = 1, 2, 3. (3.23)

Consistently with the maximum cut theorem, the residue must be a polynomial in

the transverse variable x3 and x4, completely independent from z. The division of

NI0i1i2 modulo Gi0i1i2 returns the remainder

∆i0i1i2 =c0 + c1x3 + c2x4 + c3x
2
3 + c4x3x4

+ c5x
2
4 + c6x

3
3 + c7x

2
3x4 + c8x3x

2
4 + c9x

3
4. (3.24)

together with the numerators of two-point integrands Ni0i1 , Ni0i2 and Ni1i2 . Also in

this case, identifying the residue ∆i0i1i2 as the numerator function appearing in (2.41)

we can integrate out the transverse variables and determine non-spurious contribu-

tions,

Recalling (2.43), we have

∫

ddq

πd/2

∆i0i1i2

Di0Di1Di2
= c0I

d
3 [1] +

1

(d− 3)
(c3 + c5)I

d
3 [λ

2]

= c0I
d
3 [1] +

1

2
(c3 + c5)I

d+2
3 [1]. (3.25)

4. n = 2 If we assume the external momentum to be non-vanishing, p2 "=, we can

express the two-point integrand Ii0i1 in terms of

qα = qα[1] + λα, (3.26)

and obtain a numerator of the form

Ni0i1(x1, x2, x3, x4,λ
2) =

∑

"j∈J(2)

"αjx
j1
1 xj22 xj33 xj44 (λ2)j5 . (3.27)
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Adaptive Unitarity @ 1-loop

D0 = q

2 �m

2
0

D1 = (q + p1)
2 �m

2
1

D2 = (q + p1 + p2)
2 �m

2
2

. . . . . .

D

n�2 = (q + p1 + p2 + . . .+ p

n�2)
2 �m

2
n�2

D

n�1 = (q � p

n

)2 �m

2
n�1

4.5 Transverse Space

d = 4� 2✏ (4.25)

d = d

//

+ d? (4.26)
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Integrand red’n

and, introducing spherical coordinates for the (d − 4)-subspace, the loop integral (2.1)

becomes

Idn[N ] =
1

π2Γ
(

d−4
2

)

∫

d4q[4]

∫ ∞

0
dµ2(µ2)

d−6
2

N (q[4], µ
2)

∏n−1
i=0 Di

. (2.7)

For practical purposes, it is often convenient to decompose the four-dimensional part of the

loop momentum into a specific basis of vectors {eαi },

qα[4] =
4

∑

i=1

xie
α
i , (2.8)

and rewrite (2.7) as

Idn[N ] =
K

π2Γ
(

d−4
2

)

∫ ∞

−∞

4
∏

i=1

dxi

∫ ∞

0
dµ2(µ2)

d−6
2

N (xi, µ2)
∏n−1

i=0 Di

, (2.9)

where K is the Jacobian factor

K =

√

det

(∂qµ[4]
∂xi

∂q[4]µ
∂xj

)

. (2.10)

The choice of the basis {eαi } is completely arbitrary. In particular, for a number of external

legs n ≤ 4, one can choose 5 − n vectors of such basis to lie into the subspace orthogonal

to the external kinematics, i.e. such that

ei · pj = 0, i ≥ n, ∀j, (2.11a)

ei · ej = δij , i, j ≥ n. (2.11b)

As a special case, it should be noted that the dimension of the transverse space for the

two-point integral with massless external momentum is reduced to 4− n.

The comparison between (2.5) and (2.11) suggests a parametrization of the loop mo-

mentum alternative to (2.3),

qα = qα[k] + λα, qα[k] =
k

∑

j=1

xje
α
j , (2.12)

where qα[k] is a vector of k-dimensional the space spanned by the external momenta and

λα =
4

∑

j=k+1

xje
α
j + µα, λ2 =

4
∑

j=k+1

x2j + µ2, (2.13)

belongs the (d − k)-dimensional orthogonal subspace. In this way, the square of the d-

dimensional loop momentum qα is given by as

q2 = q2[k] + λ2, (2.14)

– 5 –

We observe that, because of (2.14), when the integral (2.1) is written in terms of the

variables {qα[k],λ
α},

Idn[N ] =

∫

dkq[k]
πd/2

∫

dλd−k N (q)
∏n−1

i=0 Di

, (2.15)

all denominators become independent from the transverse components of qα,

Di =
(

q[k] +
i

∑

j=0

pj
)2

+ λ2 +m2
i . (2.16)

As a consequence, the integrand satisfies the requirement (1.3) since, besides being a func-

tion of qα[k], it only depends on λ2 and on a finite subset of components of λα, which

correspond to the transverse directions {xk+1, ..., x4},

N (q) ≡ N (qα[k],λ
2, {xk+1, ..., x4}). (2.17)

Therefore, the integral over the (d− k)-dimensional subspace is exactly of the type (1.1) so

that, if we introduce spherical coordinates


























xk+1 = λ cos θ1

xk+2 = λ sin θ1 cos θ2

· · ·
x4 = λ cos θ4−k

∏3−k
i=1 sin θi,

(2.18)

we can express the one-loop integral, analogously to Eq. (1.4), as

Idn[N ] =
1

π2Γ
(

d−4
2

)

∫

dkq[k]

∫ ∞

0
dλ2(λ2)

d−k−2
2

4−k
∏

i=1

∫ 1

−1
d cos θi(sin θi)

d−k−i−2 N (q)
∏n−1

i=0 Di

.

(2.19)

Moreover, since the denominators are completely independent from the transverse variables,

they can only appear polynomially in the numerator. Hence, as we have already observed

in Section 1, any dependence of the integrand on {xk+1, ..., x4} can be immediately inte-

grated by expanding the numerator in terms of Gegenbauer polynomials and by using the

orthogonality relation (1.13). This procedure allows to reduce any tensor Feynman integral

as a linear combination of integrals whose numerators only depends of the components of

the loop momentum lying on the space spanned by the external momenta.

In following, we will specify the parametrization (2.19) for all kinematics configurations

with n ≤ 4 and we will provide some explicit examples of integrals over the transverse

components of the loop momentum.

2.1 Four-point integrals

For a general four-point integral,

Id4 [N ] =

∫

ddq

πd/2

N (q)

D0D1D2D3
, (2.20)
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Cutting in different dimensions
according to the # of legs

3.5 The one-loop case: OPP decomposition 39
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Figure 3.2: Schematic illustration of the one-loop OPP decomposition.

which is allowed because 1 is proportional to µ2 in the quotient ring P [z]/Ji
1

i
2

i
3

i
4

i
5

. The main

advantage of this choice is that the 5-point residues will vanish after integration. Besides,

with this parametrization, the four-dimensional part of the 4-point residues will coincide

with the one which would be obtained with a purely four-dimensional reduction (i.e. with

q̄ = q, µ2 = 0). With these choices, the most general parametric form of the residues is

[40, 41, 94]
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i
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2

�i
1

= c0 + c1x2 + c2x1 + c3x4 + c4x3, (3.27)

where we understand that the unknown coe�cients cj depend on the indexes of the residue

(e.g. cj = c
(i

1

···ik)
j ), while the scalar products xi and xi,v depend on both the indexes of the

residue and the loop momentum q. The decomposition in Eq. (3.17) with parametric residues

of Eq. (3.27) is often referred to as the OPP integrand decomposition. It is schematically

depicted in Fig. 3.2.

The parametrization in Eq. (3.27) can easily be extended to e↵ective and non-renormalizable

theories where the rank r of the numerator can be larger than the number n of loop propa-

gators [96]. In the case with r = n+ 1, such parametrization can be generalized by allowing

rmax = k + 1 in Eq. (3.26). The result,
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2 + c15 x3x4, (3.28)

agrees with the one we first found with a di↵erent (and less general) method in Ref. [96].
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where the numerator function appearing in the r.h.s. is a polynomial in λ2 with coefficients

depending on d,

∆int
i0i1i2i3 = c0 +

c2
d− 3

λ2 +
3

(d− 1)(d− 3)
c4λ

4. (3.41)

the coefficients of the numerator function c̃i can now exhibit and explicit dependence on d,

By dividing ∆int
i0i1i2i3 modulo the Gröebner basis Gi0 ··· i3 defined by (3.17), we find

∆int
i0i1i2i3 =

3
∑

k=0

ak(q[3],λ
2, d)Dik +∆′

i0i1i2i3(d). (3.42)

where ∆′
i0i1i2i3(d) is coefficient only depending on d.

Therefore, this additional polynomial divisions shows that the scalar box in d-dimensions is

the only independent four-point MI to be considered. Similar results, which are summarized

in Table 1, can be found for all lower-point topologies, with the only exception of the p2 = 0

two-point integral, where the two higher-rank integrals involving the component of the loop

momentum along pα, which is not fixed by the cut-conditions, survive the second reduction.

However, These tensor integrals can be further reduced to scalar ones through different

methods, such as IBP identities.

Topology ∆i0 ··· in ∆int
i0 ··· in ∆

′

i0 ··· in

I01234
1 − −
{1} − −

I0123
5 3 1

{1, x4, x24, x34, x44} {1,λ2,λ4} {1}

I012
10 2 1

{1, x3, x4, x23, x3x4, x24, x33, x23x4, x3x24, x34} {1,λ2} {1}

I02
10 2 1

{1, x2, x3, x4, x22, x2x3, x2x4, x23, x3x4, x24} {1,λ2} {1}

I01
10 4 3

{1, x1, x3, x4, x21, x1x3, x1x4, x23, x3x4, x24} {1, x1, x21,λ2} {1, x1, x21}

I0
5 1 −

{1, x1, x2, x3, x4} {1} −

Table 1: Residue parametrization for irreducible one-loop topologies. Here ∆i0 ··· in indicates the

residue obtained after the polynomial division of an arbitrary rank-n numerator, and ∆int
i0 ··· in

the

result of its integral over transverse directions. ∆′

i0 ··· in
corresponds to the minimal residue obtained

from a further division of ∆int
i0 ··· in

. In the figures, wavy lines indicate massive particles, whereas

solid ones stands for arbitrary masses.
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In this way, the two denominators are function of z = {x1,λ2} only, so that the

cut-conditions

Di0(z) = Di1(z) = 0 (3.28)

is, again, maximal. Therefore, Gi0i1 = {g1, g2} is linear,

gi(z) = κi + zi, i = 1, 2 (3.29)

and the residue is a rank-2 polynomial in the transverse variables {x2, x3, x4},

∆i0i1 =c0 + c1x2 + c2x3 + c3x4 + c4x2x3

+ c5x2x4 + c6x3x4 + c7x
2
2 + c8x

2
3 + c9x

2
4. (3.30)

The integration of the residue ∆i0i1 can be treated as a particular case of (2.52) and,

recalling (2.54) we find

∫

ddq

πd/2

∆i0i1

Di0Di1
= c0I

d
2 [1] +

1

(d− 3)
(c7 + c8 + c9)I

d
2 [λ

2]

= c0I
d
2 [1] +

1

2
(c7 + c8 + c9)I

d+2
2 [1]. (3.31)

In case of vanishing external momentum, p2 = 0, we can only define two transverse

directions and the loop momentum is parametrized as

qα = qα[2] + λα. (3.32)

Accordingly, the denominators will depend on the set of variables z = {x1, x2,λ2} and
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where the numerator function appearing in the r.h.s. is a polynomial in λ2 with coefficients

depending on d,

∆int
i0i1i2i3 = c0 +

c2
d− 3

λ2 +
3

(d− 1)(d− 3)
c4λ

4. (3.41)

the coefficients of the numerator function c̃i can now exhibit and explicit dependence on d,

By dividing ∆int
i0i1i2i3 modulo the Gröebner basis Gi0 ··· i3 defined by (3.17), we find

∆int
i0i1i2i3 =

3
∑

k=0

ak(q[3],λ
2, d)Dik +∆′

i0i1i2i3(d). (3.42)

where ∆′
i0i1i2i3(d) is coefficient only depending on d.

Therefore, this additional polynomial divisions shows that the scalar box in d-dimensions is

the only independent four-point MI to be considered. Similar results, which are summarized

in Table 1, can be found for all lower-point topologies, with the only exception of the p2 = 0

two-point integral, where the two higher-rank integrals involving the component of the loop

momentum along pα, which is not fixed by the cut-conditions, survive the second reduction.

However, These tensor integrals can be further reduced to scalar ones through different

methods, such as IBP identities.

Topology ∆i0 ··· in ∆int
i0 ··· in ∆

′

i0 ··· in

I01234
1 − −
{1} − −

I0123
5 3 1

{1, x4, x24, x34, x44} {1,λ2,λ4} {1}

I012
10 2 1

{1, x3, x4, x23, x3x4, x24, x33, x23x4, x3x24, x34} {1,λ2} {1}

I02
10 2 1

{1, x2, x3, x4, x22, x2x3, x2x4, x23, x3x4, x24} {1,λ2} {1}

I01
10 4 3

{1, x1, x3, x4, x21, x1x3, x1x4, x23, x3x4, x24} {1, x1, x21,λ2} {1, x1, x21}

I0
5 1 −

{1, x1, x2, x3, x4} {1} −

Table 1: Residue parametrization for irreducible one-loop topologies. Here ∆i0 ··· in indicates the

residue obtained after the polynomial division of an arbitrary rank-n numerator, and ∆int
i0 ··· in

the

result of its integral over transverse directions. ∆′

i0 ··· in
corresponds to the minimal residue obtained

from a further division of ∆int
i0 ··· in

. In the figures, wavy lines indicate massive particles, whereas

solid ones stands for arbitrary masses.
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where the numerator function appearing in the r.h.s. is a polynomial in λ2 with coefficients

depending on d,
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c2
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3

(d− 1)(d− 3)
c4λ

4. (3.41)

the coefficients of the numerator function c̃i can now exhibit and explicit dependence on d,

By dividing ∆int
i0i1i2i3 modulo the Gröebner basis Gi0 ··· i3 defined by (3.17), we find

∆int
i0i1i2i3 =

3
∑

k=0

ak(q[3],λ
2, d)Dik +∆′

i0i1i2i3(d). (3.42)

where ∆′
i0i1i2i3(d) is coefficient only depending on d.

Therefore, this additional polynomial divisions shows that the scalar box in d-dimensions is

the only independent four-point MI to be considered. Similar results, which are summarized

in Table 1, can be found for all lower-point topologies, with the only exception of the p2 = 0

two-point integral, where the two higher-rank integrals involving the component of the loop

momentum along pα, which is not fixed by the cut-conditions, survive the second reduction.

However, These tensor integrals can be further reduced to scalar ones through different

methods, such as IBP identities.

Topology ∆i0 ··· in ∆int
i0 ··· in ∆

′

i0 ··· in

I01234
1 − −
{1} − −

I0123
5 3 1

{1, x4, x24, x34, x44} {1,λ2,λ4} {1}

I012
10 2 1

{1, x3, x4, x23, x3x4, x24, x33, x23x4, x3x24, x34} {1,λ2} {1}

I02
10 2 1

{1, x2, x3, x4, x22, x2x3, x2x4, x23, x3x4, x24} {1,λ2} {1}
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{1, x1, x3, x4, x21, x1x3, x1x4, x23, x3x4, x24} {1, x1, x21,λ2} {1, x1, x21}

I0
5 1 −

{1, x1, x2, x3, x4} {1} −

Table 1: Residue parametrization for irreducible one-loop topologies. Here ∆i0 ··· in indicates the

residue obtained after the polynomial division of an arbitrary rank-n numerator, and ∆int
i0 ··· in

the

result of its integral over transverse directions. ∆′

i0 ··· in
corresponds to the minimal residue obtained

from a further division of ∆int
i0 ··· in

. In the figures, wavy lines indicate massive particles, whereas

solid ones stands for arbitrary masses.
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5. n = 1 The integrand of the most general renormalisable one-point function must be

linear in the component of the four-dimensional part of the loop momentum,

Ni0 = c0 +
4

∑

i=1

cixi. (3.36)

Conversely, Di0 , which is the only element in Gi0 , is quadratic in the loop variable.

Therefore, the quotient of the polynomial division must vanish and we can identify

Ni0 = ∆i0 . (3.37)

In addition, since odd powers of the transverse variables vanish upon integration, the

tadpole contribution is reduced to

∫

ddq

πd/2

∆i0

Di0
= c0I

d
1 [1]. (3.38)

By collecting all the remainders determined at every step of the reduction, we finally reach

the well-known integrand decomposition formula

Ii0···in−1
=

4
∑

k=0





n−1
∑

0=i0<···<ik

∆i0···ik

Di0 · · · Dik



 . (3.39)

3.3 Divide et integra et divide

As we have shown in the previous Section, the polynomial division of the most general

renormalizable numerator returned, for each cut, a residue exclusively depending on the

transverse components of the loop momentum (with the only exception of the p2 = 0 two-

point integral, whose reduced transverse space produces a residue depending on the physical

direction).

The integration technique developed in Section 2, allowed us to remove spurious terms

associated to transverse directions and to end up with a reduced number of monomials

depending on λ2, which have been then identified as higher-dimension scalar integrals.

Nevertheless, the number of independent monomials to be considered for each cut can be

further reduced by observing that, since in the {qα[k],λ
α} parametrization the denominators

depend on a reduced number of variables, monomials in λ2 turn out to be reducible, i.e.

they can be expressed as combination of denominators, with polynomial coefficients, and a

constant remainder.

As an example, let us consider the four-point integral, for which, after integration over

the transverse variables, we have found (see Eq.(3.19)),

∫

ddq

πd/2

∆i0i1i2i3

Di0Di1Di2Di3
=

1

π3/2Γ
(

d−3
2

)

∫

d3q[3]

∫ ∞

0
dλ2(λ2)

d−5
2

∆int
i0i1i2i3

D0D1D2D3
, (3.40)
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New residue parametrization

and, introducing spherical coordinates for the (d − 4)-subspace, the loop integral (2.1)

becomes

Idn[N ] =
1

π2Γ
(

d−4
2

)

∫

d4q[4]

∫ ∞

0
dµ2(µ2)

d−6
2

N (q[4], µ
2)

∏n−1
i=0 Di

. (2.7)

For practical purposes, it is often convenient to decompose the four-dimensional part of the

loop momentum into a specific basis of vectors {eαi },

qα[4] =
4

∑

i=1

xie
α
i , (2.8)

and rewrite (2.7) as

Idn[N ] =
K

π2Γ
(

d−4
2

)

∫ ∞

−∞

4
∏

i=1

dxi

∫ ∞

0
dµ2(µ2)

d−6
2

N (xi, µ2)
∏n−1

i=0 Di

, (2.9)

where K is the Jacobian factor

K =

√

det

(∂qµ[4]
∂xi

∂q[4]µ
∂xj

)

. (2.10)

The choice of the basis {eαi } is completely arbitrary. In particular, for a number of external

legs n ≤ 4, one can choose 5 − n vectors of such basis to lie into the subspace orthogonal

to the external kinematics, i.e. such that

ei · pj = 0, i ≥ n, ∀j, (2.11a)

ei · ej = δij , i, j ≥ n. (2.11b)

As a special case, it should be noted that the dimension of the transverse space for the

two-point integral with massless external momentum is reduced to 4− n.

The comparison between (2.5) and (2.11) suggests a parametrization of the loop mo-

mentum alternative to (2.3),

qα = qα[k] + λα, qα[k] =
k

∑

j=1

xje
α
j , (2.12)

where qα[k] is a vector of k-dimensional the space spanned by the external momenta and

λα =
4

∑

j=k+1

xje
α
j + µα, λ2 =

4
∑

j=k+1

x2j + µ2, (2.13)

belongs the (d − k)-dimensional orthogonal subspace. In this way, the square of the d-

dimensional loop momentum qα is given by as

q2 = q2[k] + λ2, (2.14)
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The choice of the basis {eαi } is completely arbitrary. In particular, for a number of external

legs n ≤ 4, one can choose 5 − n vectors of such basis to lie into the subspace orthogonal

to the external kinematics, i.e. such that

ei · pj = 0, i ≥ n, ∀j, (2.11a)

ei · ej = δij , i, j ≥ n. (2.11b)

As a special case, it should be noted that the dimension of the transverse space for the

two-point integral with massless external momentum is reduced to 4− n.

The comparison between (2.5) and (2.11) suggests a parametrization of the loop mo-

mentum alternative to (2.3),

qα = qα[k] + λα, qα[k] =
k

∑

j=1

xje
α
j , (2.12)

where qα[k] is a vector of k-dimensional the space spanned by the external momenta and

λα =
4

∑

j=k+1

xje
α
j + µα, λ2 =

4
∑

j=k+1

x2j + µ2, (2.13)

belongs the (d − k)-dimensional orthogonal subspace. In this way, the square of the d-

dimensional loop momentum qα is given by as

q2 = q2[k] + λ2, (2.14)
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Figure 3.2: Schematic illustration of the one-loop OPP decomposition.

which is allowed because 1 is proportional to µ2 in the quotient ring P [z]/Ji
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. The main

advantage of this choice is that the 5-point residues will vanish after integration. Besides,

with this parametrization, the four-dimensional part of the 4-point residues will coincide
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where we understand that the unknown coe�cients cj depend on the indexes of the residue
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(i

1

···ik)
j ), while the scalar products xi and xi,v depend on both the indexes of the

residue and the loop momentum q. The decomposition in Eq. (3.17) with parametric residues

of Eq. (3.27) is often referred to as the OPP integrand decomposition. It is schematically

depicted in Fig. 3.2.

The parametrization in Eq. (3.27) can easily be extended to e↵ective and non-renormalizable

theories where the rank r of the numerator can be larger than the number n of loop propa-
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agrees with the one we first found with a di↵erent (and less general) method in Ref. [96].

where the numerator function appearing in the r.h.s. is a polynomial in λ2 with coefficients

depending on d,

∆int
i0i1i2i3 = c0 +

c2
d− 3

λ2 +
3

(d− 1)(d− 3)
c4λ

4. (3.41)

the coefficients of the numerator function c̃i can now exhibit and explicit dependence on d,

By dividing ∆int
i0i1i2i3 modulo the Gröebner basis Gi0 ··· i3 defined by (3.17), we find

∆int
i0i1i2i3 =

3
∑

k=0

ak(q[3],λ
2, d)Dik +∆′

i0i1i2i3(d). (3.42)

where ∆′
i0i1i2i3(d) is coefficient only depending on d.

Therefore, this additional polynomial divisions shows that the scalar box in d-dimensions is

the only independent four-point MI to be considered. Similar results, which are summarized

in Table 1, can be found for all lower-point topologies, with the only exception of the p2 = 0

two-point integral, where the two higher-rank integrals involving the component of the loop

momentum along pα, which is not fixed by the cut-conditions, survive the second reduction.

However, These tensor integrals can be further reduced to scalar ones through different

methods, such as IBP identities.

Topology ∆i0 ··· in ∆int
i0 ··· in ∆

′

i0 ··· in

I01234
1 − −
{1} − −

I0123
5 3 1

{1, x4, x24, x34, x44} {1,λ2,λ4} {1}

I012
10 2 1

{1, x3, x4, x23, x3x4, x24, x33, x23x4, x3x24, x34} {1,λ2} {1}

I02
10 2 1

{1, x2, x3, x4, x22, x2x3, x2x4, x23, x3x4, x24} {1,λ2} {1}

I01
10 4 3

{1, x1, x3, x4, x21, x1x3, x1x4, x23, x3x4, x24} {1, x1, x21,λ2} {1, x1, x21}

I0
5 1 −

{1, x1, x2, x3, x4} {1} −

Table 1: Residue parametrization for irreducible one-loop topologies. Here ∆i0 ··· in indicates the

residue obtained after the polynomial division of an arbitrary rank-n numerator, and ∆int
i0 ··· in

the

result of its integral over transverse directions. ∆′

i0 ··· in
corresponds to the minimal residue obtained

from a further division of ∆int
i0 ··· in

. In the figures, wavy lines indicate massive particles, whereas

solid ones stands for arbitrary masses.
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2. n = 4 The numerator of each Ii0···i3 can admit at most four powers loop momentum

that, with a change of basis, can be decomposed, as discussed in Section 2.1 into

qα = qα[3] + λα. (3.14)

Thus, Ni0···i3 can be treated as a rank-4 polynomial in the variables {x1, x2, x3, x4,λ2},

Ni0···i3(x1, x2, x3, x4,λ
2) =

∑

"j∈J(4)

α"jx
j1
1 xj22 xj33 xj44 (λ2)j5 . (3.15)

As we have already observed, this parametrization of the loop momentum makes all

denominators independent from its component along the transverse direction x4, so

that the Di’s are functions of the variables z = {x1, x2, x3,λ2} only.

Therefore, the quadruple cut

Di0(z) = Di1(z) = Di2(z) = Di3(z) = 0 (3.16)

can be thought as a “maximum” cut meaning that, although it does not impose

constraints on the transverse component of the loop momentum, it completely fixes

the four variables the denominators depend on.

As a consequence, a Gröebner basis Gi0···i3 = {g1, ..., g4} of the ideal Ji0···i3 is found

in a simplified linear form analogous to the quintuple cut case,

gi(z) = κi + zi, i = 1, ... , 4. (3.17)

Eq.(3.17) makes the uniqueness of the cut-solution in the z variables manifest. As

a consequence, according to maximum-cut theorem, the residue must be a constant

with respect to z. Nevertheless, it can still show a polynomial dependence, up to

rank 4, on the transverse component x4, which is left unconstrained from the cut

conditions.

Accordingly, dividing Ni0···i3 modulo Gi0···i3 we find the remainder

∆i0···i3 = c0 + c1x4 + c2x
2
4 + c3x

3
4 + c4x

4
4, (3.18)

together with the three-point numerators Ii0···ik1 ik+1···i3 contained in Γi0···i3.

The integral of the residue (3.18) is nothing but a particular case of (2.28), so that the

integration over the transverse component of the loop momentum can be performed

using the orthogonality relation of Gegenbauer polynomials.

Therefore, we immediately recognized that odd powers of x4 are spurious whereas

even powers produce higher-dimension integrals. More precisely, recalling (2.32), we

find
∫

ddq

πd/2

∆i0i1i2i3

Di0Di1Di2Di3
= c0I

d
4 [1] +

1

(d− 3)
c2I

d
4 [λ

2] +
3

(d− 3)(d − 1)
c4I

d
4 [λ

4]

= c0I
d
4 [1] +

1

2
c2I

d+2
4 [1] +

3

4
c4I

d+4
4 [1]. (3.19)
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3. n = 3 Once each ot the three-point integrands Ii0···i3 is re-parametrised in terms of

qα = qα[2] + λα, (3.20)

its numerator can be treated as the rank-3 polynomial of the type

Ni0i1i2(x1, x2, x3, x4,λ
2) =

∑

"j∈J(3)

"αjx
j1
1 xj22 xj33 xj44 (λ2)j5 . (3.21)

As in the previous case, thanks to the choice of the integration variables, the triple

cut

Di0(z) = Di1(z) = Di2(z) = 0 (3.22)

is a “maximum” cut in the variables z = {x1, x2,λ2} and the Gröebner basis Gi0···i2 =

{g1, g2, g3} assumes the linear form

gi(z) = κi + zi, i = 1, 2, 3. (3.23)

Consistently with the maximum cut theorem, the residue must be a polynomial in

the transverse variable x3 and x4, completely independent from z. The division of

NI0i1i2 modulo Gi0i1i2 returns the remainder

∆i0i1i2 =c0 + c1x3 + c2x4 + c3x
2
3 + c4x3x4

+ c5x
2
4 + c6x

3
3 + c7x

2
3x4 + c8x3x

2
4 + c9x

3
4. (3.24)

together with the numerators of two-point integrands Ni0i1 , Ni0i2 and Ni1i2 . Also in

this case, identifying the residue ∆i0i1i2 as the numerator function appearing in (2.41)

we can integrate out the transverse variables and determine non-spurious contribu-

tions,

Recalling (2.43), we have

∫

ddq

πd/2

∆i0i1i2

Di0Di1Di2
= c0I

d
3 [1] +

1

(d− 3)
(c3 + c5)I

d
3 [λ

2]

= c0I
d
3 [1] +

1

2
(c3 + c5)I

d+2
3 [1]. (3.25)

4. n = 2 If we assume the external momentum to be non-vanishing, p2 "=, we can

express the two-point integrand Ii0i1 in terms of

qα = qα[1] + λα, (3.26)

and obtain a numerator of the form

Ni0i1(x1, x2, x3, x4,λ
2) =

∑

"j∈J(2)

"αjx
j1
1 xj22 xj33 xj44 (λ2)j5 . (3.27)
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we can integrate out the transverse variables and determine non-spurious contribu-

tions,

Recalling (2.43), we have

∫

ddq

πd/2

∆i0i1i2

Di0Di1Di2
= c0I

d
3 [1] +

1

(d− 3)
(c3 + c5)I

d
3 [λ

2]

= c0I
d
3 [1] +

1

2
(c3 + c5)I

d+2
3 [1]. (3.25)

4. n = 2 If we assume the external momentum to be non-vanishing, p2 "=, we can

express the two-point integrand Ii0i1 in terms of

qα = qα[1] + λα, (3.26)

and obtain a numerator of the form

Ni0i1(x1, x2, x3, x4,λ
2) =

∑

"j∈J(2)

"αjx
j1
1 xj22 xj33 xj44 (λ2)j5 . (3.27)
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In this way, the two denominators are function of z = {x1,λ2} only, so that the

cut-conditions

Di0(z) = Di1(z) = 0 (3.28)

is, again, maximal. Therefore, Gi0i1 = {g1, g2} is linear,

gi(z) = κi + zi, i = 1, 2 (3.29)

and the residue is a rank-2 polynomial in the transverse variables {x2, x3, x4},

∆i0i1 =c0 + c1x2 + c2x3 + c3x4 + c4x2x3

+ c5x2x4 + c6x3x4 + c7x
2
2 + c8x

2
3 + c9x

2
4. (3.30)

The integration of the residue ∆i0i1 can be treated as a particular case of (2.52) and,

recalling (2.54) we find

∫

ddq

πd/2

∆i0i1

Di0Di1
= c0I

d
2 [1] +

1

(d− 3)
(c7 + c8 + c9)I

d
2 [λ

2]

= c0I
d
2 [1] +

1

2
(c7 + c8 + c9)I

d+2
2 [1]. (3.31)

In case of vanishing external momentum, p2 = 0, we can only define two transverse

directions and the loop momentum is parametrized as

qα = qα[2] + λα. (3.32)

Accordingly, the denominators will depend on the set of variables z = {x1, x2,λ2} and

the double cut (3.28) leaves one of them unconstrained. Nevertheless Gi0i1 = {g1, g2}
is still linear in z,

g1(z) = λ2 + κ1x1 + κ0,

g2(z) = κ2 + x2 (3.33)

and allows to identify a residue with 10 monomials in {x1, x3, x4},

∆i0i1 |p2=0 =c0 + c1x1 + c2x3 + c3x4 + c4x1x3

+ c5x1x4 + c6x3x4 + c7x
2
1 + c8x

2
3 + c9x

2
4. (3.34)

In this case, when after plugging (3.34) into (2.59), we can perform a direct integration

via orthogonal polynomials on x3 and x4 only, whereas numerator depending on the

longitudinal component of the loop momentum remain unreduced,

∫

ddq

πd/2

∆i0i1

Di0Di1

∣

∣

∣

∣

p2=0

= c0I
d
2 [1] + c1I

d
2 [x1] + c7I

d
2 [x

2
1] +

1

(d− 3)
(c8 + c9)I

d
3 [λ

2]

= c0I
d
2 [1] + c1I

d
2 [x1] + c7I

d
2 [x

2
1] +

1

2
(c8 + c9)I

d+2
2 [1]. (3.35)
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5. n = 1 The integrand of the most general renormalisable one-point function must be

linear in the component of the four-dimensional part of the loop momentum,

Ni0 = c0 +
4

∑

i=1

cixi. (3.36)

Conversely, Di0 , which is the only element in Gi0 , is quadratic in the loop variable.

Therefore, the quotient of the polynomial division must vanish and we can identify

Ni0 = ∆i0 . (3.37)

In addition, since odd powers of the transverse variables vanish upon integration, the

tadpole contribution is reduced to

∫

ddq

πd/2

∆i0

Di0
= c0I

d
1 [1]. (3.38)

By collecting all the remainders determined at every step of the reduction, we finally reach

the well-known integrand decomposition formula

Ii0···in−1
=

4
∑

k=0





n−1
∑

0=i0<···<ik

∆i0···ik

Di0 · · · Dik



 . (3.39)

3.3 Divide et integra et divide

As we have shown in the previous Section, the polynomial division of the most general

renormalizable numerator returned, for each cut, a residue exclusively depending on the

transverse components of the loop momentum (with the only exception of the p2 = 0 two-

point integral, whose reduced transverse space produces a residue depending on the physical

direction).

The integration technique developed in Section 2, allowed us to remove spurious terms

associated to transverse directions and to end up with a reduced number of monomials

depending on λ2, which have been then identified as higher-dimension scalar integrals.

Nevertheless, the number of independent monomials to be considered for each cut can be

further reduced by observing that, since in the {qα[k],λ
α} parametrization the denominators

depend on a reduced number of variables, monomials in λ2 turn out to be reducible, i.e.

they can be expressed as combination of denominators, with polynomial coefficients, and a

constant remainder.

As an example, let us consider the four-point integral, for which, after integration over

the transverse variables, we have found (see Eq.(3.19)),

∫

ddq

πd/2

∆i0i1i2i3

Di0Di1Di2Di3
=

1

π3/2Γ
(

d−3
2

)

∫

d3q[3]

∫ ∞

0
dλ2(λ2)

d−5
2

∆int
i0i1i2i3

D0D1D2D3
, (3.40)
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Integration of the Residues over Transverse Angles 

and, introducing spherical coordinates for the (d − 4)-subspace, the loop integral (2.1)

becomes

Idn[N ] =
1

π2Γ
(

d−4
2

)

∫

d4q[4]

∫ ∞

0
dµ2(µ2)

d−6
2

N (q[4], µ
2)

∏n−1
i=0 Di

. (2.7)

For practical purposes, it is often convenient to decompose the four-dimensional part of the

loop momentum into a specific basis of vectors {eαi },

qα[4] =
4

∑

i=1

xie
α
i , (2.8)

and rewrite (2.7) as

Idn[N ] =
K

π2Γ
(

d−4
2

)

∫ ∞

−∞

4
∏

i=1

dxi

∫ ∞

0
dµ2(µ2)

d−6
2

N (xi, µ2)
∏n−1

i=0 Di

, (2.9)

where K is the Jacobian factor

K =

√

det

(∂qµ[4]
∂xi

∂q[4]µ
∂xj

)

. (2.10)

The choice of the basis {eαi } is completely arbitrary. In particular, for a number of external

legs n ≤ 4, one can choose 5 − n vectors of such basis to lie into the subspace orthogonal

to the external kinematics, i.e. such that

ei · pj = 0, i ≥ n, ∀j, (2.11a)

ei · ej = δij , i, j ≥ n. (2.11b)

As a special case, it should be noted that the dimension of the transverse space for the

two-point integral with massless external momentum is reduced to 4− n.

The comparison between (2.5) and (2.11) suggests a parametrization of the loop mo-

mentum alternative to (2.3),

qα = qα[k] + λα, qα[k] =
k

∑

j=1

xje
α
j , (2.12)

where qα[k] is a vector of k-dimensional the space spanned by the external momenta and

λα =
4

∑

j=k+1

xje
α
j + µα, λ2 =

4
∑

j=k+1

x2j + µ2, (2.13)

belongs the (d − k)-dimensional orthogonal subspace. In this way, the square of the d-

dimensional loop momentum qα is given by as

q2 = q2[k] + λ2, (2.14)
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where the numerator function appearing in the r.h.s. is a polynomial in λ2 with coefficients

depending on d,

∆int
i0i1i2i3 = c0 +

c2
d− 3

λ2 +
3

(d− 1)(d− 3)
c4λ

4. (3.41)

the coefficients of the numerator function c̃i can now exhibit and explicit dependence on d,

By dividing ∆int
i0i1i2i3 modulo the Gröebner basis Gi0 ··· i3 defined by (3.17), we find

∆int
i0i1i2i3 =

3
∑

k=0

ak(q[3],λ
2, d)Dik +∆′

i0i1i2i3(d). (3.42)

where ∆′
i0i1i2i3(d) is coefficient only depending on d.

Therefore, this additional polynomial divisions shows that the scalar box in d-dimensions is

the only independent four-point MI to be considered. Similar results, which are summarized

in Table 1, can be found for all lower-point topologies, with the only exception of the p2 = 0

two-point integral, where the two higher-rank integrals involving the component of the loop

momentum along pα, which is not fixed by the cut-conditions, survive the second reduction.

However, These tensor integrals can be further reduced to scalar ones through different

methods, such as IBP identities.

Topology ∆i0 ··· in ∆int
i0 ··· in ∆

′

i0 ··· in

I01234
1 − −
{1} − −

I0123
5 3 1

{1, x4, x24, x34, x44} {1,λ2,λ4} {1}

I012
10 2 1

{1, x3, x4, x23, x3x4, x24, x33, x23x4, x3x24, x34} {1,λ2} {1}

I02
10 2 1

{1, x2, x3, x4, x22, x2x3, x2x4, x23, x3x4, x24} {1,λ2} {1}

I01
10 4 3

{1, x1, x3, x4, x21, x1x3, x1x4, x23, x3x4, x24} {1, x1, x21,λ2} {1, x1, x21}

I0
5 1 −

{1, x1, x2, x3, x4} {1} −

Table 1: Residue parametrization for irreducible one-loop topologies. Here ∆i0 ··· in indicates the

residue obtained after the polynomial division of an arbitrary rank-n numerator, and ∆int
i0 ··· in

the

result of its integral over transverse directions. ∆′

i0 ··· in
corresponds to the minimal residue obtained

from a further division of ∆int
i0 ··· in

. In the figures, wavy lines indicate massive particles, whereas

solid ones stands for arbitrary masses.
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  minimal number of irreducible non-spurious monomials (irr. scal. prod.s)!

  Second polynomial division <==> Dimensional Recurrence @ integrand level
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Integrating over Transverse Spaceidea n.1

  both ideas can be applied @ all-loops
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Two-Loop Integrals

4 Two-loop integrals

In this Section we extended to two-loop integrals the parametrization {qα[k],λ
α} of the loop

momenta introduced in Section 2 and we show that the integration over transverse direc-

tions can be still performed through an expansion of the integrand in terms of Gegenbauer

polynomials.

We consider a general dimensional regulated n-point two-loop integral of the type

Idn[N ] =

∫

ddq1ddq2
πd

N (q1, q2)
∏

i Di
, (4.1)

with arbitrary tensor numerator N (q1, q2) and denominators defined as

Di = l2i +m2
i , with lαi =

∑

j

αijq
α
j +

∑

j

βijp
α
j , (4.2)

where α and β are incidence matrices taking values in {0,±1}. By introducing the parametriza-

tion (2.3) for both loop momenta,

qα1 = qα1[4] + µα
1 , qα2 = qα2[4] + µα

2 , (4.3)

which satisfies the set of relations

µi · µj = µij , qi · qj = qi[4] · qj[4] + µij, (4.4)

the denominators can be rewritten as

Di = l2i[4] +
∑

j,k

αikαik µjk +m2
i , with lαi[4] =

∑

j

αijq
α
i[4] +

∑

j

βijp
α
j . (4.5)

and, moving to spherical coordinates in the (d− 4)-subspaces, the integral (4.1) turns into

Idn[N ] =
2d−6

π5Γ(d− 5)

∫

d4q1,[4]d
4q2,[4]

∫ ∞

0
dµ11

∫ ∞

0
dµ22

∫

√
µ11µ22

−
√
µ11µ22
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where Ki correspond to the Jacobian factors

K1 =

√

det

(∂qµ1[4]
∂xi

∂q1[4]µ
∂xj

)

, K2 =

√

det

(∂qµ2[4]
∂yi

∂q2[4]µ
∂yj

)

. (4.9)

Analogously to the one loop case, for a number of external legs n ≤ 4, we can choose to

decompose both qαi[4] into a basis containing 5 − n (4− n for massless two-point integrals)

transverse directions, defined by (2.11)-(2.11b).

In this way, the loop momenta can be rewritten as

qα1 = qα1[k] + λα
1 , qα2 = qα2[k] + λα

2 , k ≤ 3, (4.10)

where

qα1[k] =
k

∑

j=1

xje
α
j , qα2[k] =

k
∑

j=1

yje
α
j , (4.11)

are vectors belonging to k-dimensional space spanned by the external kinematics and

λα
1 =

4
∑

j=k+1

xje
α
j + µα

1 , λα
2 =

4
∑

j=k+1

yje
α
j + µα

2 (4.12)

are vectors of the (d− k)-dimensional orthogonal subspaces, satisfying

λi · λj = λij , λi · pj = 0. (4.13)

Once the integral is expressed in these new variables,

Idn[N ] =

∫

dkq1[k]d
kq2[k]

πd

∫

dd−kλ1d
d−kλ2

N (q1, q2)
∏

iDi
, (4.14)

all denominators become independent from the transverse components of the loop momenta,

Di = l2i[k] +
∑

j,l

αijαil λjl +m2
i , with lαi[k] =

∑

j

αijq
α
i[k] +

∑

j

βijp
α
j , (4.15)

and, since the numerator satisfies the requirements (1.8),

N (q1, q2) ≡ N (q1[k], q2[k],λij , {xk+1, . . . , x4}, {yk+1, . . . , y4}). (4.16)

the integral over the transverse space is exactly of the type (1.6). Hence, after introducing

spherical coordinates,














xk+1 =
√
λ11 cos θ11

· · ·
x4 =

√
λ11 cos θ4−k

∏4−k
i=1 sin θi1

(4.17)
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αijq
α
i[k] +

∑

j

βijp
α
j , (4.15)

and, since the numerator satisfies the requirements (1.8),

N (q1, q2) ≡ N (q1[k], q2[k],λij , {xk+1, . . . , x4}, {yk+1, . . . , y4}). (4.16)

the integral over the transverse space is exactly of the type (1.6). Hence, after introducing

spherical coordinates,














xk+1 =
√
λ11 cos θ11

· · ·
x4 =

√
λ11 cos θ4−k

∏4−k
i=1 sin θi1

(4.17)
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where Ki correspond to the Jacobian factors

K1 =

√

det

(∂qµ1[4]
∂xi

∂q1[4]µ
∂xj

)

, K2 =

√

det

(∂qµ2[4]
∂yi

∂q2[4]µ
∂yj

)

. (4.9)

Analogously to the one loop case, for a number of external legs n ≤ 4, we can choose to

decompose both qαi[4] into a basis containing 5 − n (4− n for massless two-point integrals)

transverse directions, defined by (2.11)-(2.11b).

In this way, the loop momenta can be rewritten as

qα1 = qα1[k] + λα
1 , qα2 = qα2[k] + λα

2 , k ≤ 3, (4.10)

where

qα1[k] =
k

∑

j=1

xje
α
j , qα2[k] =

k
∑

j=1

yje
α
j , (4.11)

are vectors belonging to k-dimensional space spanned by the external kinematics and

λα
1 =

4
∑

j=k+1

xje
α
j + µα

1 , λα
2 =

4
∑

j=k+1

yje
α
j + µα

2 (4.12)

are vectors of the (d− k)-dimensional orthogonal subspaces, satisfying

λi · λj = λij , λi · pj = 0. (4.13)
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and


























yk+1 =
√
λ22 (cos θ12 cos θ11 + cos θ22 sin θ11 sin θ12)

· · ·
y4 =

√
λ22

[

cos θ12 cos θ4−k 1
∏4−k−1

j=1 sin θj1 + cos θ5−k 2 sin θ4−k 1
∏4−k

j=1 sin θj2

− cos θ4−k 1
∑4−k

l=2 cos θl 2 cos θl−1 1
∏l−1

j=1 sin θj2
(

δ4−k l + (1− δk−4 l)
∏4−k−l

m=1 sin θl+m−1 1

)]

,

we can express the two-loop integral in analogy to Eq. (1.9)

Idn[N ] =
2d−6

π5Γ (n− k − 1)

∫

dkq1[k]d
kq2[k]

∫ ∞

0
dλ11(λ11)

d−k−2
2

∫ ∞

0
dλ22(λ22)

d−k−2
2 ×

∫ 1

−1
d cos θ12(sin θ12)

d−k−3
∫ 1

−1

4−k
∏

i=1

d cos θi1d cos θi+12(sin θi1)
d−k−i−2(sin θi+12)

d−k−i−3

× N (q1, q2)
∏

iDi
. (4.18)

In addition, since the numerator can only depend polynomially on the transverse direction,

angular integrals can be evaluated, exactly as in the one-loop case, exclusively by means

of the orthogonality relation (1.13) for Gegenbauer polynomials. It should be remarked,

however, that this procedure cannot be applied to the angle θ12 which, being associated to

the direction λ12, will appear in all denominators involving both loop momenta.

In the following we will provide the explicit parametrization of two loop-integral for all kine-

matics configuration, together with some explicit examples of integration over the transverse

space.

4.1 Four-point integrals

In the case of a general four-point integral,

Id4 [N ] =

∫

ddq1ddq2
πd

N (q1, q2)
∏

iDi(q1, q2)
, (4.19)

we decompose the loop momenta as

qα1 = qα1[3] + λα
1 , qα2 = qα2[3] + λα

3 , (4.20)

where

qα1[3] =
3

∑

i=1

xie
α
i , qα2[3] =

3
∑

i=1

yie
α
i

λα
1 = x4e

α
4 + µα

1 , λα
2 = y4e

α
4 + µα

2 . (4.21)

and we parametrise the integral as

Id4 [N ] =

∫

d3q1,[3]d
3q2,[3]

πd

∫

dd−3λ1d
d−3λ2

N (qi[3],λij , x4, y4)
∏

i Di
. (4.22)

– 23 –

and


























yk+1 =
√
λ22 (cos θ12 cos θ11 + cos θ22 sin θ11 sin θ12)

· · ·
y4 =

√
λ22

[

cos θ12 cos θ4−k 1
∏4−k−1

j=1 sin θj1 + cos θ5−k 2 sin θ4−k 1
∏4−k

j=1 sin θj2

− cos θ4−k 1
∑4−k

l=2 cos θl 2 cos θl−1 1
∏l−1

j=1 sin θj2
(

δ4−k l + (1− δk−4 l)
∏4−k−l

m=1 sin θl+m−1 1

)]

,

we can express the two-loop integral in analogy to Eq. (1.9)

Idn[N ] =
2d−6

π5Γ (n− k − 1)

∫

dkq1[k]d
kq2[k]

∫ ∞

0
dλ11(λ11)

d−k−2
2

∫ ∞

0
dλ22(λ22)

d−k−2
2 ×

∫ 1

−1
d cos θ12(sin θ12)

d−k−3
∫ 1

−1

4−k
∏

i=1

d cos θi1d cos θi+12(sin θi1)
d−k−i−2(sin θi+12)

d−k−i−3

× N (q1, q2)
∏

iDi
. (4.18)

In addition, since the numerator can only depend polynomially on the transverse direction,

angular integrals can be evaluated, exactly as in the one-loop case, exclusively by means

of the orthogonality relation (1.13) for Gegenbauer polynomials. It should be remarked,

however, that this procedure cannot be applied to the angle θ12 which, being associated to

the direction λ12, will appear in all denominators involving both loop momenta.

In the following we will provide the explicit parametrization of two loop-integral for all kine-

matics configuration, together with some explicit examples of integration over the transverse

space.

4.1 Four-point integrals

In the case of a general four-point integral,

Id4 [N ] =

∫

ddq1ddq2
πd

N (q1, q2)
∏

iDi(q1, q2)
, (4.19)

we decompose the loop momenta as

qα1 = qα1[3] + λα
1 , qα2 = qα2[3] + λα

3 , (4.20)

where

qα1[3] =
3

∑

i=1

xie
α
i , qα2[3] =

3
∑

i=1

yie
α
i

λα
1 = x4e

α
4 + µα

1 , λα
2 = y4e

α
4 + µα

2 . (4.21)

and we parametrise the integral as

Id4 [N ] =

∫

d3q1,[3]d
3q2,[3]

πd

∫

dd−3λ1d
d−3λ2

N (qi[3],λij , x4, y4)
∏

i Di
. (4.22)

– 23 –

and


























yk+1 =
√
λ22 (cos θ12 cos θ11 + cos θ22 sin θ11 sin θ12)

· · ·
y4 =

√
λ22

[

cos θ12 cos θ4−k 1
∏4−k−1

j=1 sin θj1 + cos θ5−k 2 sin θ4−k 1
∏4−k

j=1 sin θj2

− cos θ4−k 1
∑4−k

l=2 cos θl 2 cos θl−1 1
∏l−1

j=1 sin θj2
(

δ4−k l + (1− δk−4 l)
∏4−k−l

m=1 sin θl+m−1 1

)]

,

we can express the two-loop integral in analogy to Eq. (1.9)

Idn[N ] =
2d−6

π5Γ (n− k − 1)

∫

dkq1[k]d
kq2[k]

∫ ∞

0
dλ11(λ11)

d−k−2
2

∫ ∞

0
dλ22(λ22)

d−k−2
2 ×

∫ 1

−1
d cos θ12(sin θ12)

d−k−3
∫ 1

−1

4−k
∏

i=1

d cos θi1d cos θi+12(sin θi1)
d−k−i−2(sin θi+12)

d−k−i−3

× N (q1, q2)
∏

iDi
. (4.18)

In addition, since the numerator can only depend polynomially on the transverse direction,

angular integrals can be evaluated, exactly as in the one-loop case, exclusively by means

of the orthogonality relation (1.13) for Gegenbauer polynomials. It should be remarked,

however, that this procedure cannot be applied to the angle θ12 which, being associated to

the direction λ12, will appear in all denominators involving both loop momenta.

In the following we will provide the explicit parametrization of two loop-integral for all kine-

matics configuration, together with some explicit examples of integration over the transverse

space.

4.1 Four-point integrals

In the case of a general four-point integral,

Id4 [N ] =

∫

ddq1ddq2
πd

N (q1, q2)
∏

iDi(q1, q2)
, (4.19)

we decompose the loop momenta as

qα1 = qα1[3] + λα
1 , qα2 = qα2[3] + λα

3 , (4.20)

where

qα1[3] =
3

∑

i=1

xie
α
i , qα2[3] =

3
∑

i=1

yie
α
i

λα
1 = x4e

α
4 + µα

1 , λα
2 = y4e

α
4 + µα

2 . (4.21)

and we parametrise the integral as

Id4 [N ] =

∫

d3q1,[3]d
3q2,[3]

πd

∫

dd−3λ1d
d−3λ2

N (qi[3],λij , x4, y4)
∏

i Di
. (4.22)

– 23 –

loop momentum 
parametrization

where we assume both vectors λi to be decomposed in terms of an orthonormal basis {vi},

λ1 =
n
∑

i=1

aivi, λ2 =
n
∑

i=1

bivi. (1.7)

For general two-loop applications, we are interested in integrands depending on the scalar

products λij = λi ·λj as well as on subset of k < n− 1 components of both vectors, which

can be freely chosen to be {a1, a2, . . . , ak} and {b1, b2, . . . , bk},

I2(λ1,λ2) = I2(λij , {a1, a2, . . . , ak}, {b1, b2, . . . , bk}). (1.8)

As for the previous case, it is convenient the express the integrals over the n-dimensional

spaces in terms of spherical coordinates,

I2 =
(2π)n−k−1

2Γ (n− k − 1)

∫ ∞

0
dλ11(λ11)

n−2

2

∫ ∞

0
dλ22(λ22)

n−2

2

∫ 1

−1
d cos θ12(sin θ12)

n−3×

∫ 1

−1

k
∏

i=1

d cos θi1d cos θi+12(sin θi1)
n−i−2(sin θi+12)

n−i−3I2(λmm, {cos θmn, sin θmn}),

(1.9)

where

cos θ12 =
λ12√
λ11λ22

, (1.10)

whereas the relation between the angular variables θi1,2 and the components of λ1 and λ2

which appear in the integrand is given by the sets of transformations















a1 =
√
λ11 cos θ11

· · ·
ak =

√
λ11 cos θk1

∏k−1
i=1 sin θi1

(1.11)

and


























b1 =
√
λ22 (cos θ12 cos θ11 + cos θ22 sin θ11 sin θ12)

· · ·
bi =

√
λ22

[

cos θ12 cos θi1
∏i−1

j=1 sin θj1 + cos θi+12 sin θi1
∏i

j=1 sin θj2

− cos θi1
∑i

k=2 cos θk2 cos θk−1 1
∏k−1

j=1 sin θj2
(

δik + (1− δik)
∏i−k

l=1 sin θk+l−1 1
)]

.

(1.12)

From (1.5) we observe that, whenever the dependence of I1 on the explicit components of the

vectors λ is a polynomial one, after the change of variable the integrand is transformed into

a polynomial in {cos θi, sin θi}, with coefficient depending on λ2, which can be expanded

in terms of Gegenbauer polynomials C(α)
n (cos θi), whose main properties are recalled in

Appendix B.
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  Denominators do not depend on “the angular variables” of the Transverse Space
  Numerators depend on “all” loop variables
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  Integration over      : Gegenbauer orthogonality condition
 Spurious integrals vanish automatically @ all-loop! 
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It should be remarked that, although we have used similar a labelling, the coefficients the

master integrals appearing (3.26) are different from the ones in (3.25a). Moreover, in (3.26),

these coefficients can present an explicit dependence on the space-time dimension, due to

the angular prefactors produced by the integration over the transverse variables. We give a

summary of the results obtained from the application of the adaptive integrand reduction

algorithm at one loop in Table 1.

Ii0 ··· ik τ ∆i0 ··· ik ∆int
i0 ··· ik ∆

′

i0 ··· ik

Ii0i1i2i3i4
1 − −

{x1, x2, x3, x4, µ2} {1} − −

Ii0i1i2i3
5 3 1

{x1, x2, x3,λ2} {1, x4, x24, x34, x44} {1,λ2,λ4} {1}

Ii0i1i2
10 2 1

{x1, x2,λ2} {1, x3, x4, x23, x3x4, x24, x33, x23x4, x3x24, x34} {1,λ2} {1}

Ii0i2
10 2 1

{x1,λ2} {1, x2, x3, x4, x22, x2x3, x2x4, x23, x3x4, x24} {1,λ2} {1}

Ii0i1
10 4 3

{x1, x2,λ2} {1, x1, x3, x4, x21, x1x3, x1x4, x23, x3x4, x24} {1, x1, x21,λ2} {1, x1, x21}

Ii0
5 1 −

{λ2} {1, x1, x2, x3, x4} {1} −

Table 1: Residue parametrization for irreducible one-loop topologies. In the first column, τ

labels the variables the denominators depend on. ∆i0 ··· ik indicates the residue obtained after the
polynomial division of an arbitrary (k + 1)-rank numerator and ∆int

i0 ··· ik
the result of its integral

over transverse directions. ∆
′

i0 ··· ik
corresponds to the minimal residue obtained from a further

division of ∆int
i0 ··· ik

. In the figures, wavy lines indicate massless particles, whereas solid ones stands
for arbitrary masses.

3.4 Two-loop adaptive integrand decomposition

In this section we use the adaptive integrand decomposition algorithm in order to determine

the universal parametrization of the residues appearing in the integrand representation (3.2)

of the three eight-point topologies shown in Fig. 4a-4c. The results hereby presented are

valid for arbitrary (internal and external) kinematic configuration.
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Figure 4: Maximum-cut topologies
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Adaptive Unitarity @ 2-loop
Novel Integrand red’n

  Arbitrary (external and internal) kinematics!



Ii1···in ∆i1···in

IP
12345678910 11

1

{1}

INP1
12345678910 11

1

{1}

INP2
12345678910 11

1

{1}

IP
2345678910 11

6

{1, x41}

INP1
2345678910 11

10

{1, x42}

INP2
1234578910 11

6

{1, x42}

INP2
1234678910 11

10

{1, x42}

IP
234678910 11

15

{1, x31, x41}

IP
234578910 11

33

{1, x41, x42}

INP1
234578910 11

39

{1, x41, x42}

INP1
123456910 11

15

{1, x32, x42}

INP2
234678910 11

45

{1, x41, x42}

Ii1···in ∆i1···in

IP
1245678910 11

6

{1, x41}

INP1
1245678910 11

10

{1, x42}

INP1
1234568910 11

6

{1, x42}

INP2
1245678910 11

10

{1, x42}

INP1
245678910 11

15

{1, x31, x41}

INP2
234567910 11

33

{1, x41, x42}

INP1
124568910 11

39

{1, x41, x42}

INP1
123456810 11

15

{1, x32, x42}

INP2
124678910 11

45

{1, x41, x42}

INP1
2478910 11

20

{1, x21, x31, x41}

INP1
23478910 11

76

{1, x31, x41, x42}

INP1
24578910 11

116

{1, x41, x32, x42}

INP1
12457810 11

80

{1, x31, x41, x42}

Table 2: Residue parametrization for irreducible eight- and seven-point two-loop topologies. De-
nominators depend on the variables z = {x11, x21, x31, x41, x12, x22, x32, x42, µ11, µ22, µ12}. In the
second column we list the number of monomials of each residue and the set of variables appearing
in it.
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8 and 7 legs



Ii1···in ∆i1···in

IP
135678910 11

15

{1, x31, x41}

IP
124567910 11

62

{1, x41, x42}

INP1
23568910 11

39

{1, x41, x42}

INP1
123456910 11

15

{1, x32, x42}

INP2
135678910 11

45

{1, x41, x42}

IP
25678910 11

20

{1, x21, x31, x41}

IP
23568910 11

76

{1, x31, x41, x42}

INP1
25678910 11

80

{1, x31, x41, x42}

INP1
24568910 11

116

{1, x41, x32, x42}

IP
3678910 11

15

{1, x11, x21, x31, x41}

IP
2578910 11

94

{1, x21, x31, x41, x42}

IP
2357910 11

160

{1, x31, x41, x32, x42}

INP1
2457910 11

185

{1, x31, x41, x32, x42}

Ii1···in ∆i1···in

IP
15678910 11

20

{1, x21, x31, x41}

IP
13567910 11

76

{1, x31, x41, x42}

INP1
15678910 11

80

{1, x31, x41, x42}

IP
1678910 11

15

{1, x11, x21, x31, x41}

INP1
13568910 11

116

{1, x31, x32, x42}

IP
1467910 11

94

{1, x21, x31, x41, x42}

IP
1678911

66

{1, x11, x21, x31, x41, x42}

IP
1256910 11

160

{1, x31, x41, y32, x42}

INP1
1357910 11

185

{1, x31, x41, x32, x42}

IP
1256911

180

{1, x11, x31, x41, x32, x42}

INP1
246910 11

246

{1, x31, x41, x22, x32, x42}

Table 3: Residue parametrization for irreducible six- and five-point two-loop topologies. Denomi-
nators depend on the variables z = {x11, x21, x31, x41, x12, x22, x32, x42, µ11, µ22, µ12}. In the second
column we list the number of monomials of each residue and the set of variables appearing in it.
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6 and 5 legs



Ii1···in ∆i1···in ∆int
i1···in ∆′

i1···in

IP
1567910 11

94 53 10

{1, x21, x31, x41, x42} {1, x21, x31,λ11,λ22,λ12} {1, x21, x31}

IP
12256910 11

160 93 22

{1, x31, x41, x32, x42} {1, x31, x32,λ11,λ22,λ12} {1, x31, x32}

INP1
1356910 11

184 105 25

{1, x31, x42, x32, x42} {1, x31, x32,λ11,λ22,λ12} {1, x31, x32}

IP
1356811

180 101 39

{1, x31, x41, x22, x32, x42} {1, x31, x22, x32,λ11,λ22,λ12} {1, x31, x22, y32}

IP
168910 11

66 35 10

{1, x11, x21, x31, x41, x42} {1, x11, x21, x31,λ11,λ22,λ12} {1, x11, x21, x31}

INP1
246910 11

245 137 55

{1, x31, x41, x21, x32, x42} {1, x31, x22, x32,λ11,λ22,λ12} {1, x31, x22, y32}

IP
36810 11

115 66 35

{1, x31, x41, x12, x22, x32, x42} {1, x31, x12, x22, x32,λ11,λ22,λ12} {1, x31, x12, x22, x32}

IP
136811

180 103 60

{1, x11, x31, x41, x22, x32, x42} {1, x11, x31, x22, x32,λ11,λ22,λ12} {1, x11, x31, x22, x32}

Table 4: Residue parametrization for irreducible four-point two-loop topologies. Denominators
depend on the variables τ = {x11, x21, x31, x12, x22, x32,λ11,λ22,λ12}. For every step of the reduc-
tion algorithm, we list the number of monomials of each residues and the set of variables appearing
in it.

Ii1···in ∆i1···in ∆int
i1···ik ∆′

i1···ik

IP
1356911

180 22 4

{1, x31, x41, x22, x32, x42} {1, x22,λ11,λ22,λ12} {1, x22}

INP1
156910 11

240 30 6

{1, x31, x41, x22, x32, x42} {1, x22,λ11,λ22,λ12} {1, x22}

IP
15710 11

180 33 13

{1, x21, x31, x41, x12, x32, x42} {1, x21, x12,λ11,λ22,λ12} {1, x21, x12}

IP
16910 11

115 20 6

{1, x31, x41, x12, x22, x32, x42} {1, x11, x22λ11,λ22,λ12} {1, x12, x22}

IP
3610 11

100 26 16

{1, x11, x21, x31, x41, x22, x32, x42} {1, x11, x21, x22,λ11,λ22,λ12} {x11, x21, x22}

Table 5: Residue parametrization for irreducible three-point two-loop topologies. Denominators
depend on the variables τ = {x11, x21, x12, x22,λ11,λ22,λ12}. For every step of the reduction
algorithm, we list the number of monomials of each residues and the set of variables appearing in
it.
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4 legs: divide-integra-divide

reducible

where we assume both vectors λi to be decomposed in terms of an orthonormal basis {vi},

λ1 =
n
∑

i=1

aivi, λ2 =
n
∑

i=1

bivi. (1.7)

For general two-loop applications, we are interested in integrands depending on the scalar

products λij = λi ·λj as well as on subset of k < n− 1 components of both vectors, which

can be freely chosen to be {a1, a2, . . . , ak} and {b1, b2, . . . , bk},

I2(λ1,λ2) = I2(λij , {a1, a2, . . . , ak}, {b1, b2, . . . , bk}). (1.8)

As for the previous case, it is convenient the express the integrals over the n-dimensional

spaces in terms of spherical coordinates,

I2 =
(2π)n−k−1

2Γ (n− k − 1)

∫ ∞

0
dλ11(λ11)

n−2

2

∫ ∞

0
dλ22(λ22)

n−2

2

∫ 1

−1
d cos θ12(sin θ12)

n−3×

∫ 1

−1

k
∏

i=1

d cos θi1d cos θi+12(sin θi1)
n−i−2(sin θi+12)

n−i−3I2(λmm, {cos θmn, sin θmn}),

(1.9)

where

cos θ12 =
λ12√
λ11λ22

, (1.10)

whereas the relation between the angular variables θi1,2 and the components of λ1 and λ2

which appear in the integrand is given by the sets of transformations















a1 =
√
λ11 cos θ11

· · ·
ak =

√
λ11 cos θk1

∏k−1
i=1 sin θi1

(1.11)

and


























b1 =
√
λ22 (cos θ12 cos θ11 + cos θ22 sin θ11 sin θ12)

· · ·
bi =

√
λ22

[

cos θ12 cos θi1
∏i−1

j=1 sin θj1 + cos θi+12 sin θi1
∏i

j=1 sin θj2

− cos θi1
∑i

k=2 cos θk2 cos θk−1 1
∏k−1

j=1 sin θj2
(

δik + (1− δik)
∏i−k

l=1 sin θk+l−1 1
)]

.

(1.12)

From (1.5) we observe that, whenever the dependence of I1 on the explicit components of the

vectors λ is a polynomial one, after the change of variable the integrand is transformed into

a polynomial in {cos θi, sin θi}, with coefficient depending on λ2, which can be expanded

in terms of Gegenbauer polynomials C(α)
n (cos θi), whose main properties are recalled in

Appendix B.
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Ii1···in ∆i1···in ∆int
i1···in ∆′

i1···in

IP
1567910 11

94 53 10

{1, x21, x31, x41, x42} {1, x21, x31,λ11,λ22,λ12} {1, x21, x31}

IP
12256910 11

160 93 22

{1, x31, x41, x32, x42} {1, x31, x32,λ11,λ22,λ12} {1, x31, x32}

INP1
1356910 11

184 105 25

{1, x31, x42, x32, x42} {1, x31, x32,λ11,λ22,λ12} {1, x31, x32}

IP
1356811

180 101 39

{1, x31, x41, x22, x32, x42} {1, x31, x22, x32,λ11,λ22,λ12} {1, x31, x22, y32}

IP
168910 11

66 35 10

{1, x11, x21, x31, x41, x42} {1, x11, x21, x31,λ11,λ22,λ12} {1, x11, x21, x31}

INP1
246910 11

245 137 55

{1, x31, x41, x21, x32, x42} {1, x31, x22, x32,λ11,λ22,λ12} {1, x31, x22, y32}

IP
36810 11

115 66 35

{1, x31, x41, x12, x22, x32, x42} {1, x31, x12, x22, x32,λ11,λ22,λ12} {1, x31, x12, x22, x32}

IP
136811

180 103 60

{1, x11, x31, x41, x22, x32, x42} {1, x11, x31, x22, x32,λ11,λ22,λ12} {1, x11, x31, x22, x32}

Table 4: Residue parametrization for irreducible four-point two-loop topologies. Denominators
depend on the variables τ = {x11, x21, x31, x12, x22, x32,λ11,λ22,λ12}. For every step of the reduc-
tion algorithm, we list the number of monomials of each residues and the set of variables appearing
in it.

Ii1···in ∆i1···in ∆int
i1···ik ∆′

i1···ik

IP
1356911

180 22 4

{1, x31, x41, x22, x32, x42} {1, x22,λ11,λ22,λ12} {1, x22}

INP1
156910 11

240 30 6

{1, x31, x41, x22, x32, x42} {1, x22,λ11,λ22,λ12} {1, x22}

IP
15710 11

180 33 13

{1, x21, x31, x41, x12, x32, x42} {1, x21, x12,λ11,λ22,λ12} {1, x21, x12}

IP
16910 11

115 20 6

{1, x31, x41, x12, x22, x32, x42} {1, x11, x22λ11,λ22,λ12} {1, x12, x22}

IP
3610 11

100 26 16

{1, x11, x21, x31, x41, x22, x32, x42} {1, x11, x21, x22,λ11,λ22,λ12} {x11, x21, x22}

Table 5: Residue parametrization for irreducible three-point two-loop topologies. Denominators
depend on the variables τ = {x11, x21, x12, x22,λ11,λ22,λ12}. For every step of the reduction
algorithm, we list the number of monomials of each residues and the set of variables appearing in
it.
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Ii1···in ∆i1···in ∆int
i1···in ∆′

i1···in

IP
15610 11

180 8 1

{1, x21, x31, x41, x22, x32, x42} {1,λ11,λ22,λ12} {1}

IP
1610 11

100 8 3

{1, x11, x21, x31, x4, x22, y3, x42} {1, x11,λ11,λ22,λ12} {1, x11}

IP
1310 11

100 26 16

{1, x11, x21, x31, x41, x12, x32, x42} {1, x11, x21, x12,λ11,λ22,λ12} {1, x11, x21, x12}

IP
210 11

45 9 6

{1, x11, x21, x31, x41, x12, x22, x32, x42} {1, x11, x12,λ11,λ22,λ12} {1, x11, x12}

IP
210 11

45 18 15

{1, x11, x21, x31, x41, x12, x22, x32, x42} {1, x11, x21, x12, x22,λ11,λ22,λ12} {1, x11, x22, x21, x22}

Table 6: Residue parametrization for irreducible two-point two-loop topologies. Denominators
depend on the variables τ = {x11, x12,λ11,λ22,λ12} in the case of massive external momenta and
on τ = {x11, x21, x12, x22,λ11,λ22,λ12} in the case of massless one. For every step of the reduction
algorithm, we list the number of monomials of each residues and the set of variables appearing in
it. In the figures, wavy lines indicate massless particles, whereas solid ones stands for arbitrary
masses.

Ii1···in ∆i1···in ∆int
i1···in ∆′

i1···in

IP
110 11

45 4 1

{1, x11, x21, x31, x41, x12, x22, x32, x42} {1,λ11,λ22,λ12} {1}

Table 7: Residue parametrization for the irreducible one-point two-loop topology. Denominators
depend on the variables τ = {λ11,λ22,λ12}. For every step of the reduction algorithm, we list the
number of monomials of the residue and the set of variables appearing in it.
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Ii1···in ∆i1···in ∆int
i1···in ∆′

i1···in

IP
15610 11

180 8 1

{1, x21, x31, x41, x22, x32, x42} {1,λ11,λ22,λ12} {1}

IP
1610 11

100 8 3

{1, x11, x21, x31, x4, x22, y3, x42} {1, x11,λ11,λ22,λ12} {1, x11}

IP
1310 11

100 26 16

{1, x11, x21, x31, x41, x12, x32, x42} {1, x11, x21, x12,λ11,λ22,λ12} {1, x11, x21, x12}

IP
210 11

45 9 6

{1, x11, x21, x31, x41, x12, x22, x32, x42} {1, x11, x12,λ11,λ22,λ12} {1, x11, x12}

IP
210 11

45 18 15

{1, x11, x21, x31, x41, x12, x22, x32, x42} {1, x11, x21, x12, x22,λ11,λ22,λ12} {1, x11, x22, x21, x22}

Table 6: Residue parametrization for irreducible two-point two-loop topologies. Denominators
depend on the variables τ = {x11, x12,λ11,λ22,λ12} in the case of massive external momenta and
on τ = {x11, x21, x12, x22,λ11,λ22,λ12} in the case of massless one. For every step of the reduction
algorithm, we list the number of monomials of each residues and the set of variables appearing in
it. In the figures, wavy lines indicate massless particles, whereas solid ones stands for arbitrary
masses.

Ii1···in ∆i1···in ∆int
i1···in ∆′

i1···in

IP
110 11

45 4 1

{1, x11, x21, x31, x41, x12, x22, x32, x42} {1,λ11,λ22,λ12} {1}

Table 7: Residue parametrization for the irreducible one-point two-loop topology. Denominators
depend on the variables τ = {λ11,λ22,λ12}. For every step of the reduction algorithm, we list the
number of monomials of the residue and the set of variables appearing in it.
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3, 2 , 1 legs: divide-integra-divide

reducible

where we assume both vectors λi to be decomposed in terms of an orthonormal basis {vi},

λ1 =
n
∑

i=1

aivi, λ2 =
n
∑

i=1

bivi. (1.7)

For general two-loop applications, we are interested in integrands depending on the scalar

products λij = λi ·λj as well as on subset of k < n− 1 components of both vectors, which

can be freely chosen to be {a1, a2, . . . , ak} and {b1, b2, . . . , bk},

I2(λ1,λ2) = I2(λij , {a1, a2, . . . , ak}, {b1, b2, . . . , bk}). (1.8)

As for the previous case, it is convenient the express the integrals over the n-dimensional

spaces in terms of spherical coordinates,

I2 =
(2π)n−k−1

2Γ (n− k − 1)

∫ ∞

0
dλ11(λ11)

n−2

2

∫ ∞

0
dλ22(λ22)

n−2

2

∫ 1

−1
d cos θ12(sin θ12)

n−3×

∫ 1

−1

k
∏

i=1

d cos θi1d cos θi+12(sin θi1)
n−i−2(sin θi+12)

n−i−3I2(λmm, {cos θmn, sin θmn}),

(1.9)

where

cos θ12 =
λ12√
λ11λ22

, (1.10)

whereas the relation between the angular variables θi1,2 and the components of λ1 and λ2

which appear in the integrand is given by the sets of transformations















a1 =
√
λ11 cos θ11

· · ·
ak =

√
λ11 cos θk1

∏k−1
i=1 sin θi1

(1.11)

and


























b1 =
√
λ22 (cos θ12 cos θ11 + cos θ22 sin θ11 sin θ12)

· · ·
bi =

√
λ22

[

cos θ12 cos θi1
∏i−1

j=1 sin θj1 + cos θi+12 sin θi1
∏i

j=1 sin θj2

− cos θi1
∑i

k=2 cos θk2 cos θk−1 1
∏k−1

j=1 sin θj2
(

δik + (1− δik)
∏i−k

l=1 sin θk+l−1 1
)]

.

(1.12)

From (1.5) we observe that, whenever the dependence of I1 on the explicit components of the

vectors λ is a polynomial one, after the change of variable the integrand is transformed into

a polynomial in {cos θi, sin θi}, with coefficient depending on λ2, which can be expanded

in terms of Gegenbauer polynomials C(α)
n (cos θi), whose main properties are recalled in

Appendix B.
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2-loop Automation

  Simplifying the integrands to be reduced (nleg < 5)
 Removing the transverse direction ==> less coefficients to be determined

Integrand generation + Integration over Transverse Angles >> JonesGoSam



The change of variables






































































λ12 =
√
λ11λ22 cos θ12

λ23 =
√
λ22λ33 cos θ13

λ13 =
√
λ11λ33(cos θ12 cos θ13 + sin θ12 sin θ13 cos θ23)

x41 =
√
λ11 cos θ11

x42 =
√
λ22(cos θ11 cos θ12 + sin θ11 sin θ12 cos θ22)

x43 =
√
λ33(cos θ11 cos θ12 cos θ13 + sin θ11 sin θ12 cos θ22 cos θ13

− sin θ11 sin θ13 cos θ12 cos θ22 cos θ23 + sin θ12 sin θ13 cos θ11 cos θ23

+sin θ11 sin θ13 sin θ22 sin θ23 cos θ33)

(2.40)

allows us to express the transverse components x4i in terms of the angular variables

and then integrate over Θ⊥ with the help of (2.21). For the scalar integral we obtain

Id (3)4 [ 1 ] =
2d−5

π13/2Γ(d− 4)Γ
(

d−5
2

)

∫ 3
∏

i=1

d3q[3] i

∫ ∞

0

3
∏

i=1

dλii(λii)
d−5
2 ×

∫ 1

−1

∏

1≤i<j≤3

dcos θij(sin θij)
d−5−i 1

∏9
m=0 Dm(q[3] i,λii, cos θ12, cos θ13, cos θ23)

,

(2.41)

and, similarly to the previous case, it can be verified that

Id (3)4 [x4ix4j ] =
1

d− 3
Id (3)4 [λij ], ∀i, j = 1, 2, 3. (2.42)

2.5 Factorized integrals and ladder topologies

p1

p2 p3

p4
q1 q2

(a) $ = 2 bowtie

q1 q2 q3

p1

p2 p3

p4

(b) $ = 3 ladder

Figure 2: Bow-tie topology 2a and three-loop ladder 2b.

The d = d‖+d⊥ parametrization (2.16) applies to all Feynman integrals with k+1 ≤ 4

but, as we have already mentioned, there are special classes of multiloop integrals, associated

to factorized and ladder topologies, which allow further simplifications. These integrals

are characterized by a set of denominators which are independent of a certain number of

transverse orientations λij , i.e. on a subset of the angular variables ΘΛ. This implies

that, as it can be immediately understood from the properties of the change of variables

(2.15) and the integration measure (2.17b), the integration via expansion in Gegenbauer

– 10 –

Factorized diagrams Ladder diagrams

 Denominators do not depend on  Denominators do not depend on 

polynomials can be applied, besides to all Θ⊥ angles, also the angles ΘΛ which do not

appear in the denominators. In the following, in order to better emphasise the different

strategies to be adopted for factorized and ladder integrals, we discuss the d = d‖ + d⊥
parametrization in two concrete examples.

2.5.1 Factorized integrals

When the loop corresponding to qαi is factorized, no denominator depends on qi · qj, with

j != i. In general, whether a factorized integral originates from Feynman diagrams or from

the pinching of all propagators connecting one loop to the rest of the graph, the integrand is

not completely factorized, since the numerator can still depend on the (d− 4)-dimensional

part of qi · qj, corresponding to µij. Nevertheless, it can be shown that, after using the

orthogonality relation (2.21) to integrate out µij, the d = d‖ + d⊥ parametrization of a fac-

torized integral is given by the product of the d = d‖+ d⊥ parametrizations of the integrals

corresponding to the subtopologies, whose transverse space can have different dimensions.

As an example, let us consider a bow tie integral of the type shown in Fig. 2a, for which

the d = 4− 2ε parametrization (2.6) reads

Id (2)4,fact[N ] =
2d−6

π5Γ(d− 5)

∫

d4q[4] 1d
4q[4] 2

∫ ∞

0
dµ11

∫ ∞

0
dµ22×

∫

√
µ11µ22

−√
µ11µ22

dµ12(µ11µ22 − µ2
12)

d−7
2

N
∏2

i=0 Di(q[4] 1, µ11)
∏5

j=3Dj(q[4] 2, µ22)
.

(2.43)

Any tensor numerator can always be split into terms of the form

N (q[4],1, q[4] 2, µij) = (µ12)
αN1(q[4],1, µ11)N2(q[4],2, µ22), α ∈ N. (2.44)

so that, if we introduce the change of variable cosφ ≡ µ12/
√
µ11µ22, the integral over µ12

can be reduced to an integral of the type (2.20), which can be evaluated through the usual

orthogonality relation (2.21),

∫ 1

−1
dcosφ(sinφ)d−7(cos φ)α =







0 for α = 2n+ 1
Γ(α+1

2 )Γ( d−5
2 )

Γ( d+α−4
2 )

for α = 2n.
(2.45)

After inserting this result in (2.44), the integral over each loop momentum is completely

factorized and, by comparison with the d = 4 − 2ε parametrization of one-loop integrals,

we can identify, for the non-trivial case α = 2n,

Id (2)4 fact
[ (µ12)

αN1N2] =
25−d−αB

(

1+α
2 , d−4

2

)

B
(

d−4+α
2 , d−4+α

2

)

(

∫

ddq1
πd/2

(µ11)
α
2 N1

∏2
i=0Di(q1)

)(

∫

ddq2
πd/2

(µ22)
α
2 N2

∏5
j=3Dj(q2)

)

.

(2.46)

For each of the term in brackets we can now introduce the d = d‖ + d⊥ parametrization

(2.16) by working with two completely different basis, each one containing two vectors
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orthogonal to the external legs connected to the corresponding loop. We remark again

that, in more general cases, the transverse space associated two factorized subdiagrams

might have different dimensions.

2.5.2 Ladder integrals

Starting from ! ≥ 3, ladder topologies corresponds to integrals whose denominators depend

on a limited number variables λij . In these cases, the d = d‖ + d⊥ parametrization (2.16)

reads exactly as in the general case (2.16) but the integration in terms of Gegenbauer

polynomials can be extended to the subsets of angles ΘΛ corresponding to the λij which

do not appear in the denominators. As an example, we consider the three-loop ladder box

(! = 3, k = 3) shown in Fig 2b, for which we introduce the same set of transverse variables

as for the three-loop diagram of Fig. 1c,

Λ ={λ11,λ22,λ33, θ12, θ13, θ23},
Θ⊥ ={θ11, θ22, θ33} (2.47)

and parametrize the integral exactly as in (2.39). This integral has no propagator depending

on both qα1 and qα3 , i.e. the denominators are independent of λ13 and hence of θ23, as it

can be seen from (2.40). Therefore, the integral over θ23 is reduced to the form (2.20), and

it can be evaluated in the usual way

∫ 1

−1
dcos θ23(sin θ23)

d−7−β(cos θ23)
α =







0 for α = 2n + 1
Γ(α+1

2 )Γ( d−5+β
2 )

Γ( d+α+β−4
2 )

for α = 2n.
(2.48)

In (2.48) the indices α and β are determined by the specific form of the numerator. In the

scalar case (α = β = 0), this additional integration returns

Id (3)4 ladder
[ 1 ] =

2d−5

π6Γ(d− 4)Γ
(

d−4
2

)

∫ 3
∏

i=1

d3q[3] i

∫ ∞

0

3
∏

i=1

dλii(λii)
d−5
2 ×

∫ 1

−1
dcos θ12dcos θ13(sin θ12)

d−6(sin θ13)
d−6 1
∏9

m=0 Dm(q[3] i,λii, cos θ12, cos θ13)
.

(2.49)

2.6 Simplified integrand form

The d = d‖ + d⊥ parametrization of Feynman integrals and the angular integration over

transverse directions can be used in order to decompose scattering amplitudes in terms of

a reduced number of scalar integrals without explicitly performing any tensor reduction.

In fact, transverse integration can be used ab initio in order to obtain a simplified form

of the integrand free from spurious contributions, which can be more easily reduced, by

means of traditional methods such as integration by parts, in terms of a minimal set of

master integrals. In particular, as we show in the following example, this procedure is

suited for application to helicity amplitudes which, in general, may enjoy better properties

(such as gauge invariance) than the form factors defined in the usual tensor decomposition.
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The Geometry of Cut-Residues

l-Loop Recurrence Relation

4. FOR the COLLOQUIUM

4.1 Massless Spin-1 propagator (photon, gluon)

�i
gµ⌫

k2 � i0
(4.1)

1

k2 � i0
! �(k2) ) �gµ⌫ !

X

polarization��

✏µ�(k)
⇣
✏⌫�(k)

⌘⇤
(4.2)

4.2 Fermion propagator

i
(/p+m)

p2 �m2 � i0
(4.3)

1

p2 �m2 � i0
! �(p2 �m2) ) (/p+m) !

X

spin�s

us(p) ūs(p) (4.4)

4.3 Phase-space

d4� ⌘ d4`1 d4`2 �(4)
⇣
`1 + `2 � P12

⌘
�(+)

⇣
`21 �m2

1

⌘
�(+)

⇣
`22 �m2

2

⌘
(4.5)

4.4 BCFW

(qi � zi⌘)
2 �m2

i = 0 , zi =
q2i �m2

i

2⌘.qi
, (qi � zj⌘)

2 �m2
i = 2⌘.qi(zi � zj) (4.6)

(�1)
1

q21 �m2
1

1

q22 �m2
2

· · · 1

q2n �m2
n
=

1

q21 �m2
1

1

(q2 � z1⌘)2 �m2
2

· · · 1

(qn � z1⌘)2 �m2
n

+
1

(q1 � z2⌘)2 �m2
1

1

q22 �m2
2

· · · 1

(qn � z2⌘)2 �m2
n

+ . . . . . .

+
1

(q1 � zn⌘)2 �m2
1

1

(q2 � zn⌘)2 �m2
2

· · · 1

q2n �m2
n

(4.7)

I
dz

z(z � z1)(z � z2) · · · (z � zn)
= 0 (4.8)

(�1)

z1z2 · · · zn
=

1

z1(z1 � z2) · · · (z1 � zn)

+
1

(z2 � z1)z2 · · · (z2 � zn)
+ . . . . . .

+
1

(zn � z1)(zn � z2) · · · (zn � zn�1)zn
(4.9)
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Basis :: Master Functions

Tree level

One Loop

Higher Loops

Known!

Known!

?Unknown?
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Z

n

✓
d�Born + d�Virtual

◆
+

Z

n+1
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Z

1
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+

Z

n+1
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(p2 �m

2) = (/p�m)(/p+m) (4.10)

�g

µ⌫ =
X

polarization��

✏

µ

�

(k)
⇣
✏

⌫

�

(k)
⌘⇤

(4.11)

(/p+m) =
X

spin�s

u

s

(p) ū
s

(p) (4.12)

D = 4� 2✏

Z
d

4�2✏
K ⌘

Z
d

4
k

Z
d

�2✏
µ ⌘

Z
d

4
k

Z
d⌦(✏)

Z 1

0
dµ

2 (µ2)�1�✏ (4.13)

K

↵

= k

↵

+ µ

↵

, /K = /k + /µ , K

2 = k

2 � µ

2
,

�
/k, /µ

 
= 0 =

⇥
�5, /µ

⇤
, /µ = iµ�5

X

s=±
u

s

(k) ū
s

(k) = (/k +m� iµ�5) (4.14)

X

�=±,0

✏

↵

�

(k)
⇣
✏

�

�

(k)
⌘⇤

= �g

↵� +
k

↵

k

�

µ

2
(4.15)

@

x

= A(d, x) (4.16)
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Let us assume that H can be split in two terms as

H(t) = H0(t) + εH1(t) , (2.2)

where H0 is a solvable Hamiltonian and ε ! 1 is a small perturbation parameter. We may

move to the interaction picture by performing a transformation via a unitary operator B.

In this representation any operator A transforms according to

A(t) = B(t)AI(t)B
†(t) . (2.3)

In the interaction picture one imposes that only H1 (H0) enters the time evolution of the

states (of the operators), thus B is obtained by imposing

i! ∂tUI(t) = εH1,I(t)UI(t) +
(

H0,I(t)− i!B†(t) ∂tB(t)
)

UI(t)
!
= εH1,I(t)UI(t), (2.4)

so that B fulfills

i! ∂tB(t) = H0(t)B(t) . (2.5)

In the interaction picture the Schrödinger equation can be cast in a canonical form,

i! ∂t|ΨI(t)〉 = εH1,I(t)|ΨI(t)〉 , (2.6)

where the ε-dependence is factorized. If the Hamiltonian H0 at different times commute,

the solution of Eq. (2.5) is

B(t) = e
− i

!

∫ t
t0

dτH0(τ) . (2.7)

The important remark in this derivation is that, as a consequence of the linear ε-

dependence of the original Hamiltonian Eq. (2.2), the states fulfill an equation in a canonical

form by means of a transformation matrix B that obeys the differential equation (2.5). This

simple quantum mechanical example contains the two main guiding principles for building

canonical systems of differential equations for Feynman integrals:

• choose a set of Master Integrals obeying a system of differential equations linear in ε;

• find the transformation matrix by solving a differential equation governed by the

constant term.

In this example H0(t) and B(t) commute. In the case of Feynman integrals, no assumption

can be made on the properties of the matrix associated to the systems of DE’s built out

of IBP-id’s. Therefore, in the following, we need to consider the generic case of non-

commutative operators.
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Quantum Mechanics
Schroedinger Eq’n (ɛ-linear Hamiltonian)

Interaction Picture

Matrix Transform

Schroedinger Eq’n (canonical form)

10. Remainder Theorem

f(x)

g(x)
= q(x) +

r(x)

g(x)
, deg(r) < deg(g) (10.1)

g(x) = (x� x0) : ) f(x)

(x� x0)
= q(x) +

r0
(x� x0)

, r0 = f(x0) (10.2)

11. Quantum Mechanics

i~ @t| (t)i = H(✏, t)| (t)i , H(✏, t) = H0(t) + ✏H1(t) (11.1)
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8. Di↵. Eqs.

H
i,I

(t) = B†(t) H
i

(t) B(t) (8.1)

@
x

f(x, y, ✏) =
⇣
A

10

(x, y) + ✏A
11

(x, y)
⌘
f(x, y, ✏) (8.2)

@
y

f(x, y, ✏) =
⇣
A

20

(x, y) + ✏A
21

(x, y)
⌘
f(x, y, ✏) (8.3)

@
x

g(x, y, ✏) = ✏Â
1

(x, y) g(x, y, ✏) (8.4)

@
y

g(x, y, ✏) = ✏Â
2

(x, y) g(x, y, ✏) (8.5)

dg(x, y, ✏) = ✏ dÂ(x, y) g(x, y, ✏) , dÂ ⌘ Â
1

dx+ Â
2

dy (8.6)

{x, 1� x, y, 1� y, 1� x� y, x+ y} (8.7)
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Magnus Expansion

BCH-formula

Iterated Integrals

solution: Matrix Exponential 

System of 1st ODE

............

where H0 is a solvable Hamiltonian and ε ! 1 is a small perturbation parameter. We may
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3. Magnus series expansion

Consider a generic linear matrix differential equation [17]

∂xY (x) = A(x)Y (x) , Y (x0) = Y0 . (3.1)

If A(x) commutes with its integral
∫ x
x0

dτA(τ), e.g. in the scalar case, the solution can be

written as

Y (x) = e
∫ x
x0

dτA(τ)
Y0 . (3.2)
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A(x) non-commutative
In the general non-commutative case, one can use the Magnus theorem [15] to write the

solution as,

Y (x) = eΩ(x,x0) Y (x0) ≡ eΩ(x) Y0 , (3.3)

where Ω(x) is written as a series expansion, called Magnus expansion,

Ω(x) =
∞
∑

n=1

Ωn(x) . (3.4)

The proof of the Magnus theorem is presented in the Appendix A, together with the actual

expression of the terms Ωn. The first three terms of the expansion (3.4) read as follows:

Ω1(x) =

∫ x

x0

dτ1A(τ1) ,

Ω2(x) =
1

2

∫ x

x0

dτ1

∫ τ1

x0

dτ2 [A(τ1), A(τ2)] ,

Ω3(x) =
1

6

∫ t

x0

dτ1

∫ τ1

x0

dτ2

∫ τ2

x0

dτ3 [A(τ1), [A(τ2), A(τ3)]] + [A(τ3), [A(τ2), A(τ1)]] . (3.5)

We remark that if A and its integral commute, the series (3.4) is truncated at the first

order, Ω = Ω1, and we recover the solution (3.2). As a notational aside, in the following we

will use the symbol Ω[A](x) to denote the Magnus expansion obtained using A as kernel.

3.1 Magnus and Dyson series expansion

Magnus series is related to the Dyson series [17], and their connection can be obtained

starting from the Dyson expansion of the solution of the system (3.1),

Y (x) = Y0 +
∞
∑

n=1

Yn(x) , Yn(x) ≡
∫ x

x0

dτ1 . . .

∫ τn−1

x0

dτn A(τ1)A(τ2) · · ·A(τn) , (3.6)

in terms of the time-ordered integrals Yn. Comparing Eq. (3.3) and (3.6) we have

∞
∑

j=1

Ωj(x) = log

(

Y0 +
∞
∑

n=1

Yn(x)

)

, (3.7)

and the following relations

Y1 = Ω1 ,

Y2 = Ω2 +
1

2!
Ω2
1 ,

Y3 = Ω3 +
1

2!
(Ω1Ω2 + Ω2Ω1) +

1

3!
Ω3
1 ,

...
...

Yn = Ωn +
n
∑

j=2

1

j
Q(j)

n . (3.8)
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We remark that if A and its integral commute, the series (3.4) is truncated at the first

order, Ω = Ω1, and we recover the solution (3.2). As a notational aside, in the following we

will use the symbol Ω[A](x) to denote the Magnus expansion obtained using A as kernel.

3.1 Magnus and Dyson series expansion

Magnus series is related to the Dyson series [17], and their connection can be obtained

starting from the Dyson expansion of the solution of the system (3.1),

Y (x) = Y0 +
∞
∑

n=1

Yn(x) , Yn(x) ≡
∫ x

x0

dτ1 . . .

∫ τn−1

x0

dτn A(τ1)A(τ2) · · ·A(τn) , (3.6)

in terms of the time-ordered integrals Yn. Comparing Eq. (3.3) and (3.6) we have

∞
∑

j=1

Ωj(x) = log

(

Y0 +
∞
∑

n=1

Yn(x)

)

, (3.7)

and the following relations

Y1 = Ω1 ,

Y2 = Ω2 +
1

2!
Ω2
1 ,

Y3 = Ω3 +
1

2!
(Ω1Ω2 + Ω2Ω1) +

1

3!
Ω3
1 ,

...
...

Yn = Ωn +
n
∑

j=2

1

j
Q(j)

n . (3.8)
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In the above expression, the path-ordered exponential is a compact notation for the series

P exp

⇢
✏

Z

�

dA
�

= + ✏

Z

�

dA+ ✏

2
Z

�

dA dA+ ✏

3
Z

�

dA dA dA . . . , (2.29)

in which the line integral of the product of k matrix-valued 1-forms dA is understood in

the sense of Chen’s iterated integrals (see [? ]) and � is a piecewise-smooth path

� : [0, 1] 3 t 7! �(t) = (�1(t), �2(t)) , (2.30)

such that �(0) = ~x0 and �(1) = ~x. The iterated integrals in eq. (2.29) do not depend on

the actual choice of the path, provided the curve does not contain any singularity of dA
and it does not cross any of its branch cuts, but only on the endpoints. In this sense, if one

fixes ~x0 and lets ~x vary, eq. (2.28) can be thought of as a function of ~x. We assume that

the vector of MIs at any point I(~x) is normalized in such a way that it admits a Taylor

series in ✏:

I(~x) = I(0)(~x) + ✏ I(1)(~x) + ✏

2I(2)(~x) + . . . . (2.31)

The solution I(~x) is then in principle determined through (2.28) at any order of the ✏-

expansion, and reads (up to the coe�cient of ✏4)

I(0)(~x) = I(0)(~x0) (2.32)

I(1)(~x) = I(1)(~x0) +

Z

�

dA I(0)(~x0) (2.33)

I(2)(~x) = I(2)(~x0) +

Z

�

dA I(1)(~x0) +

Z

�

dA dA I(0)(~x0) (2.34)

I(3)(~x) = I(3)(~x0) +

Z

�

dA I(2)(~x0) +

Z

�

dA dA I(1)(~x0)

+

Z

�

dA dA dA I(0)(~x0) (2.35)

I(4)(~x) = I(4)(~x0) +

Z

�

dA I(3)(~x0) +

Z

�

dA dA I(2)(~x0)

+

Z

�

dA dA dA I(1)(~x0) +

Z

�

dA dA dA dA I(0)(~x0) . (2.36)

The problem of solving (2.26), given a set of initial conditions, reduces therefore to the

evaluation of matrices of the type
Z

�

dA . . . dA| {z }
k times

, (2.37)

whose entries, due to (2.27), are linear combinations of Chen’s iterated integrals of the

form
Z

�

d log ⌘
i1 . . . d log ⌘i

k

⌘
Z

0t1...t

k

1
g

�

i

k

(t
k

) . . . g�
i1
(t1) dt1 . . . dt

k

, (2.38)
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with

g

�

i

(t) =
d

dt

log ⌘
i

(�(t)) . (2.39)

The empty integral (eq. (2.38) for k = 0) is defined to be equal to 1. We stress that only

the matrices (2.37) do not depend on the explicit choice of the path [Ste: conditions for

path-independence?], while the individual summands (contributing to their entries) do.

2.3.2 Chen’s iterated integrals

For compactness of notation, we introduce the equivalent symbols

C [�]
i

k

,...,i1
⌘ C

k,...,1[�] ⌘
Z

�

d log ⌘
i1 . . . d log ⌘i

k

, (2.40)

which also emphasize that the iterated integral in (2.38) is in general a functional of the

path �. It easy to prove, anyway, that C [�]
i

k

,...,i1
is invariant under reparametrization of the

path. [Ste: 1. reparametrization invariance] Likewise, one can show that if the path

�

�1 is the path � is traversed in reverse order, then [Ste: 2. reverse path]

C [��1]
i

k

,...,i1
= (�1)kC [�]

i

k

,...,i1
. (2.41)

From (2.38) and (2.39) it follows that the line integral of one d log is defined as usual
Z

�

d log ⌘ ⌘
Z

0t1

d log ⌘(�(t))

dt

dt , (2.42)

and only depends on the endpoints ~x0, ~x
Z

�

d log ⌘ = log ⌘(~x)� log ⌘(~x0) . (2.43)

It is convenient to introduce the path integral “up to some point along �”: given a path �

and a parameter s 2 [0, 1], one can define the 1-parameter family of paths

�

s

: [0, 1] 3 t 7! ~x = (�1(s t), �2(s t)) . (2.44)

If s = 1, then trivially �

s

= �. If s = 0 the image of the interval [0, 1] is just {~x0}. If

s 2 (0, 1), then the curve �

s

([0, 1]) starts at �(0) = ~x0 and overlaps with the curve �([0, 1])

up to the point �(s), where it ends. It is then easy to see that the path integral along �

s

can be written as

C [�
s

]
i

k

,...,i1
=

Z

0t1...t

k

s

g

�

i

k

(t
k

) . . . g�
i1
(t1) dt1 . . . dt

k

, (2.45)

which di↵ers from eq. (2.38) by the fact that the outer integration (i.e. the one in dt

k

)

is performed over [0, s] instead of [0, 1]. Having introduced �

s

, we can rewrite (2.38) in a

recursive manner:

C [�]
i

k

,...,i1
=

Z 1

0
g

�

i

k

(s) C [�
s

]
i

k�1,...,i1
ds . (2.46)
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�

s

: [0, 1] 3 t 7! ~x = (�1(s t), �2(s t)) . (2.44)

If s = 1, then trivially �

s

= �. If s = 0 the image of the interval [0, 1] is just {~x0}. If

s 2 (0, 1), then the curve �

s

([0, 1]) starts at �(0) = ~x0 and overlaps with the curve �([0, 1])

up to the point �(s), where it ends. It is then easy to see that the path integral along �

s

can be written as

C [�
s

]
i

k

,...,i1
=

Z

0t1...t

k

s

g

�

i

k

(t
k

) . . . g�
i1
(t1) dt1 . . . dt

k

, (2.45)

which di↵ers from eq. (2.38) by the fact that the outer integration (i.e. the one in dt

k

)

is performed over [0, s] instead of [0, 1]. Having introduced �

s

, we can rewrite (2.38) in a

recursive manner:

C [�]
i

k

,...,i1
=

Z 1

0
g

�

i

k

(s) C [�
s

]
i

k�1,...,i1
ds . (2.46)
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From eq. (2.45) we can also immediately derive the following identity:

d

ds

C [�
s

]
i

k

,...,i1
= g

�

i

k

(s) C [�
s

]
i

k�1,...,i1
. (2.47)

Chen’s iterated integrals can be shown to fulfill shu✏e algebra relations: if ~m =

m

M

, . . . ,m1 and ~n = n

N

, . . . , n1 (with M and N natural numbers)

C [�]
~m

C [�]
~n

= C [�]
~m

tt C [�]
~n

=
X

~p=~mtt~n

C [�]
~p

, (2.48)

where shu✏e product ~mtt~n denotes all possible merges of ~m and ~n preserving their

respective orderings. [Ste: 3. shu✏e]

If ↵,� : [0, 1] ! M are such that ↵(0) = ~x0, ↵(1) = �(0), and �(1) = ~x, then the

composed path � ⌘ ↵� is obtained by first traversing ↵ and then �. One can prove that

the integral over such a composed path satisfies [Ste: 4. composed path]

C [↵�]
i

k

,...,i1
=

kX

p=0

C [↵]
i

k

,...,i

p+1
C [�]
i

p

,...,i1
. (2.49)

In order to compute the path ordered integral of k d log forms using the definition,

eq. (2.38) (or, equivalently, eq. (2.46)), in principle one would have to perform k nested

integrations. While in particular cases this can be done analytically, in general this will be

accomplished by means of numerical methods. The innermost integration can always be

performed analytically using (2.43), so that only k � 1 integrations are left. For instance,

in the case k = 2,

C [�]
b,a

=

Z 1

0
g

b

(t) C [�
t

]
a

dt

=

Z 1

0
g

b

(t)(log ⌘
a

(~x(t))� log ⌘
a

(~x0)) dt . (2.50)

For k � 3, one can proceed recursively using eq. (2.46), assuming that the numerical

evaluation up to the first k � 1 iterations is a solved problem. Using integration by parts,

one can show that the numerical integration over the outermost weight g
k

can actually be

avoided, leaving only k � 2 integrations to be performed

C [�]
i

k

,...,i1
= log ⌘

i

k

(~x) C [�]
i

k�1,...,i1
�
Z 1

0
log ⌘

i

k

(~x(t)) g
i

k�1(t) C
[�

t

]
i

k�2,...,i1
dt . (2.51)

2.3.3 Goncharov

[Ste: shouldn’t we just say that they arise as particular cases and refer to the

3loop paper for the notation, and to Henn and Caron-Huot App.C for the

correspondence Chen-GPLs, without writing anything?]

Goncharov polylogarithms (see [14–17]) arise as particular cases of Chen’s iterated

integrals. If the alphabet (i.e. all the ⌘

i

) is linear in x and y, the iterated integral can be
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Quantum Mechanics Feynman Integrals

Feynman integrals can be determined from differential equations that looks like 
gauge transformations

�NLO =

Z

n

✓
d�Born + d�Virtual

◆
+

Z

n+1
d�Real

�NLO =

Z

n

✓
d�Born + d�Virtual +

Z

1
d�Subtractions

◆
+

Z

n+1

✓
d�Real � d�Subtractions

◆

(p2 �m

2) = (/p�m)(/p+m) (4.10)

�g

µ⌫ =
X

polarization��

✏

µ

�

(k)
⇣
✏

⌫

�

(k)
⌘⇤

(4.11)

(/p+m) =
X

spin�s

u

s

(p) ū
s

(p) (4.12)

D = 4� 2✏

Z
d

4�2✏
K ⌘

Z
d

4
k

Z
d

�2✏
µ ⌘

Z
d

4
k

Z
d⌦(✏)

Z 1

0
dµ

2 (µ2)�1�✏ (4.13)

K

↵

= k

↵

+ µ

↵

, /K = /k + /µ , K

2 = k

2 � µ

2
,

�
/k, /µ

 
= 0 =

⇥
�5, /µ

⇤
, /µ = iµ�5

X

s=±
u

s

(k) ū
s

(k) = (/k +m� iµ�5) (4.14)

X

�=±,0

✏

↵

�

(k)
⇣
✏

�

�

(k)
⌘⇤

= �g

↵� +
k

↵

k

�

µ

2
(4.15)

@

x

= A(d, x) (4.16)

= e⌦(d,x) (4.17)

= e
R
dx A(d,x) (4.18)

– 7 –

boundary term
(simpler integral)



Introduction
Integrand Reduction and Color-Kinematic Duality

Di�erential Equations
Open Problems and Conclusion

Basics
Matrix Approach
Solution
Boundary Conditions
Examples

Two-loop Correction to Drell-Yan Bonciani, Di Vita, Mastrolia, U.S.

_ _

Three di�erent classes of processes with zero,one and two equal massive
internal legs
Master integrals for the latter two are still unknown

Dimensionless variables

x =
s

m2 y =
t

m2

‘-linear basis
ˆx f̨ (x , y , ‘) = (A1,0(x , y) + ‘A1,1(x , y)) f̨ (x , y , ‘)

ˆy f̨ (x , y , ‘) = (A2,0(x , y) + ‘A2,1(x , y)) f̨ (x , y , ‘)

Canonical form with Magnus
ˆx g̨(x , y , ‘) = ‘Â1(x , y)g̨(x , y , ‘)
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Figure 1: One-loop topologies. Thin plain lines represent mass-less esternal particles and

propagators, while bold lines represent massive propagators.

Figure 2: Two-loop topologies. Thin plain lines represent mass-less esternal particles

and propagators, while bold lines represent massive propagators.

At the one-loop level, the topologies involved in the QCD and EW corrections are

shown in Fig. 1 a), mass-less case, b), one massive exchange, and c), two-massive exchange.

In the next section our routing will be specified and the calculation of the Masters will be
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1 Notations and Conventions

In this paper we study the two-loop corrections to the following partonic scattering pro-

cesses:

q(p1) + q̄(p2) ! l

�(p3) + l

+(p4) , (1.1)

q(p1) + q̄

0(p2) ! l

�(p3) + ⌫(p4) . (1.2)

The external particles are considered mass-less and they are on their mass-shell, p21 = p

2
2 =

p

2
3 = p

2
4 = 0. The scattering can be described in terms of the Mandelstam variables2

s = �(p1 + p2)
2
, t = �(p1 � p3)

2
, u = �(p1 � p4)

2
, (1.3)

in such a way that, for momentun conservation, we have s+ t+ u = 0.

The quantum corrections to the processes 1.2 can be expanded in power series of the

coupling constants. At one loop, the QCD corrections consist on the exchange of a virtual

gluon between the initial-state quarks. The final state is not a↵ected, and at most mass-less

three-point functions have to be evaluated. The EW corrections, instead, consist on the

exchange of photons, Z and W bosons. Moreover, these quanta can be exchanged between

the quarks in the initial state as well as the leptons in the final state, but they can also be

exchanged between a quark in the initial state and a lepton in the final state. Consequently,

in the calculation of the one-loop corrections one has to evaluate massive box and vertex

diagrams. In the process of qq̄ ! l⌫ one has to evaluate diagrams in which a Z and a W

bosons are exchanged simultaneously. In order to reduce the number of scales present in

the calculation, we expand the Z propagators around m

W

:

1

p

2 +m

2
Z

=
1

p

2 +m

2
W

+�m

2
⇡ 1

p

2 +m

2
W

+
�m

2

(p2 +m

2
W

)2
+ ... (1.4)

where �m

2 = m

2
Z

�m

2
W

and the e↵ective parameter of the expansion is ⇠ = �m

2
/m

2
W

⇠
1/4. Expanding in ⇠ the Feynman diagrams results in calculating diagrams with degenerate

masses (then, three scales have to be considered, s, t and the mass m), but with increased

powers in the expanded denominator. However, this does not cause any problem in the

calculation, since diagrams with higher powers of the propagators are in any case reduced to

the same set of Master Integrals. For phenomenological purposes the first order in ⇠ might

be su�cient, but in principle any order in ⇠ can be calculated without e↵ort, just relying

on the reduction procedure. We apply same approximation to the two-loop diagrams as

well.

We calculate the quantum corrections to the processes 1.2 using a Feynman diagrams

approach. After the interference with the leading order and summation over the spins

and colors, we express the modulus squared of the amplitude in terms of dimensionally

regularized scalar integrals. These integrals are reduced to a set of Master Integrals by

means of integration-by-parts identities [] and Lorentz-invariance identities [], implemented

in the computer program3 REDUZE 2 [].

2In this paper we use the Pauli-Veltman metric conventions.
3Other public programs are available for the reduction to the Master Integrals [].
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5. The matrix A

[3]
y,0 has no diagonal term as well,

A

[3]
y,0 = N

[3]
y,0 , (2.21)

so we can define the last basis change

A

[3]
�

! A

[4]
�

, B

[4] ⌘ e

⌦[N [3]
y,0]

. (2.22)

After the last transformation we observe that

A

[4]
x,0 = 0 = A

[4]
y,0 . (2.23)

This means that the basis change of (2.8), with the matrix B given by

B ⌘ B

[0]
B

[1]
B

[2]
B

[3]
B

[4] = e

⌦[A
m

2
,0]

e

⌦[D[0]
x,0]

e

⌦[D[1]
y,0]

e

⌦[N [2]
x,0]

e

⌦[N [3]
y,0]

, (2.24)

absorbs the constant terms of A
x

and A

y

in the ✏-linear systems in (??) and brings them

to the canonical form (2.9):

A

�

(✏,m2
, x, y) ! ✏Â

�

(x, y). (2.25)

We can conveniently combine all di↵erential equations to a total di↵erential

dI = ✏ dÂ I with dÂ = Â

x

dx+ Â

y

dy , (2.26)

which in our case is a sum of d log forms

dA =
nX

i=1

M

i

d log ⌘
i

(2.27)

2.3 Iterated Integrals

[Ste: the subsubsections are temporary, just while I type!] [Ste: shouldn’t we

put this in a separate chapter?]

2.3.1 Building the solution

The solution of a canonical system of di↵erential equations (2.26), with given initial con-

ditions I(~x0), can be compactly written at a point4~x = (x1, x2) = (x, y) as

I(~x) = P exp

⇢
✏

Z

�

dA
�
I(~x0) . (2.28)

4 The following discussion holds in n-dimensions, but for simplicity we specialize it to the case of a

2-dimensional space, relevant for our calculation. [Ste: It should hold also in the case of more

general exact di↵erentials df
i

, not just d log ⌘
i

, shouldn’t it? Maybe there are MIs for which

the di↵erential equation is more general than just d log but can still be expressed as iterated

integrals.]
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system of di↵erential equations in canonical form based on Magnus series and we discuss

the solution of the system in terms of Chen’s iterated integrals. In section 4, we explicitely

present the system of di↵erential equations and the solutions for the one- and two-loop

MIs that contain one massive propagator. In Section 5, we give the system of di↵erential

equations for the one- and two-loop MIs containing two massive propagators. Conclusions

are given In Section 6. In Appendix A, we discuss the kinematic domain of our analytic

results. In Appendix B, we provide the reader with the explicit form of the matrices of the

system of di↵erential equations in canonical form.

Our results are collected in an ancillary file, that we include to the arXiv submission.

2 Notations and Conventions

In this paper we study the two-loop corrections to the following partonic scattering pro-

cesses:

q(p1) + q̄(p2) ! l�(p3) + l+(p4) , (2.1)

q(p1) + q̄0(p2) ! l�(p3) + ⌫(p4) . (2.2)

The external particles are considered mass-less and they are on their mass-shell, p21 = p22 =

p23 = p24 = 0. The scattering can be described in terms of the Mandelstam variables

s = (p1 + p2)
2 , t = (p1 � p3)

2 , u = (p1 � p4)
2 , (2.3)

in such a way that, for momentun conservation, we have s+ t+u = 0. The physical region

is defined by

s > 0 , t = �s

2
(1� cos(✓)) , (2.4)

where ✓ is the scattering angle in the partonic center of mass frame, lying in the range

0 < ✓ < ⇡. Therefore, while s > 0, t is always negative and �s < t < 0.

The quantum corrections to the processes (2.1,2.2) can be expanded in power series

of the coupling constants. At one loop, the QCD corrections consist on the exchange of a

virtual gluon between the initial-state quarks. The final state is not a↵ected, and at most

mass-less three-point functions have to be evaluated. The EW corrections, instead, consist

on the exchange of photons, Z and W bosons. Moreover, these quanta can be exchanged

between the quarks in the initial state as well as the leptons in the final state, but they

can also be exchanged between a quark in the initial state and a lepton in the final state.

Consequently, in the calculation of the one-loop corrections one has to evaluate massive

box and vertex diagrams. In the process of qq̄ ! l⌫ one has to evaluate diagrams in which

a Z and a W bosons are exchanged simultaneously. In order to reduce the number of scales

present in the calculation, we expand the Z propagators around mW :

1

p2 �m2
Z

=
1

p2 �m2
W ��m2

⇡ 1

p2 �m2
W

+
m2

Z

(p2 �m2
W )2

⇠ + ... (2.5)

where

⇠ =
�m2

m2
Z

=
m2

Z �m2
W

m2
Z

⇠ 1

4
(2.6)
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T1 T2 T3 T4 T5 T6 T7

T8 T9 T10 T11 T12 T13 T14

T15 T16 T17 T18 T19 T20 T21

T22 T23 T24 T25 T26 T27 T28

T29 T30 T31

Hk1-p1+p3L2

Figure 4: Two-loop one-mass Master Integrals {T
i

}
i=1,...,31. The solid lines stand for

massless particles; the dashed line represents a massive particle; dots indicate squared

propagators; numerators may appear as indicated (p
ij

⌘ p

i

+ p

j

).

For definiteness we work in the region 0 < x < 1, 0 < y < 1. Since the alphabet is linear in

x and y, the solution consists of G-polylogarithms and can be obtained by integrating the

di↵erential equation in y first, where x is taken to be constant and then fix the function of

x we missed, by matching its derivative to the di↵erential equation in x.

The boundary constant of integrals I
i=2...5 can be fixed by demanding the regularity of the

pseudothresholds t ! m

2, u ! 0, s ! 0 and their reality in the euclidean region. Integral

I1 can be determined by direct integration and is given by

I1 =
�(1� 2✏)

�(1� ✏)2
(3.6)
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1-Mass

31 MIs 

alphabet: 6 rational letters

solution: GPL’s

using GiNac vs SecDecnumerical checks

constants: GPL’s @ 1

C [�]

a,~b|~m|~n
⌘

Z 1

0
g�a(t) C [�t]

~b|~m|~n
dt , (3.34)

where G�
~m(x) and G�

~n(y) stand for the GPLs G~m(x) and G~n(y) evaluated at (x, y) =

(�1(t), �2(t)).

3.4 Constant GPLs

In the determination of the boundary values of the MIs we encountered constant GPLs of

argument 1 with weights drawn from three sets. For the one-mass MIs there is only one

relevant set, with four weights,

• {�1, 0, 12 , 1} .
For the two-mass MIs we encountered the following two sets, with seven weights each

• {�1, 0,�i, i, 1, (�1)
1
3 ,�(�1)

2
3 },

• {�1, 0,�i, i, 1,�(�1)
1
6 ,�(�1)

5
6 },

where the former includes the third roots of �1 and the latter involves a subset of the sixth

roots of �1. With the help of GiNaC, we verified that, at order ✏k, the Taylor coe�cient of

each MI I(k)i contains a combinations of constant GPLs that turnes out to be proportional

to ⇣k, namely amounting to qi,k ⇣k, with qi,k 2 Q. The resulting identities were verified at

high numerical accuracy. As examples, we show,

0 = Gr +G�r2 , (3.35)

⇣2 = 3G0,�r2 + 4Gr,�r2 + 4G�r2,0 � 2G�r2,1 + 4G�r2,r

+ 4G�r2,�r2 + 3G0,r + 4Gr,0 � 2Gr,1 + 4Gr,r , (3.36)

�77

8
⇣3 = G�1,�1, 12

+G�1, 12 ,�1 +G�1, 12 ,1
+ 3G0,0, 12

+ 3G0, 12 ,1
+G 1

2 ,�1,�1

+G 1
2 ,�1,1 �G 1

2 ,0,
1
2
+ 4G 1

2 ,0,1
+G 1

2 ,1,�1 +
3

2
⇣2G 1

2
, (3.37)

where for simplicity we omitted the argument (x = 1) of the GPLs and we defined the

weight r ⌘ (�1)1/3.

4 One-mass Master Integrals

In this section we describe the computation of the MIs with one internal massive line,

namely topology (b) of figure 1 and topologies (b1)-(b3) of figure 2.

4.1 One-loop

The following set of MIs for the one-loop one-mass box obeys a di↵erential equation in x

and y, defined in eq. (3.1), which is linear in ✏

F1 = ✏ T1 , F2 = ✏ T2 , F3 = ✏ T3 ,
F4 = ✏2 T4 , F5 = ✏2 T5 . (4.1)
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Figure 6: Two-loop two-mass Master Integrals {T
i

}
i=1,...,36. The solid lines stand for

massless particles; the dashed line represents a massive particle; dots indicate squared

propagators

which rationalize after a variable transformation of the form

� s

m

2
=

(1� w)2

w

� t

m

2
=

w(1 + z)2

(1 + w)2z
.

(4.4)

Combining the di↵erential equations in w and z into a total di↵erential we find a dlog-form

(2.27) with the alphabet

⌘1 = z, ⌘2 = 1 + z, ⌘3 = 1� z,

⌘4 = w, ⌘5 = 1 + w, ⌘6 = 1� w,

⌘7 = z � w, ⌘8 = z + w

2
⌘9 = 1� w z

⌘10 = 1 + w

2
z, (4.5)
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2-Mass

36 MIs 

alphabet: 12 rational + 5 irrational letters

solution: Iterated integrals ::
                   mixed Chen-Goncharov representation 

using GiNac vs SecDecnumerical checks
 1-fold representation over GPLs-kernel by using ibp for Chen-integrals
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Summary and Outlook

 Multi-Loop Integrand Reduction

 Multi-Loop Master Integrals evaluation 

Complete Development :: for generic kinematics

Differential Equations (analytic as well as numerical) :: Magnus Exponential

 

 

Numerical methods: the big short

  IntegrANDS

  IntegrALS

Applying symmetries to the coefficients w/in the integrand decomposition

BCJ relations @ 1-Loop

Exploiting DimReg :: Adaptive Unitarity and Transverse space integration

Fazio, Mirabella, Torres, PM (2014)

Primo, Schubert, Torres, PM (2015)

Primo, Torres (2016)

Chester (2016)

FDF: simple implementation of FDH scheme for generalized unitarity cuts

BCJ relations @ tree-level in DimReg w/in FDF

MI’s in different dimensions ==> Adaptive Differential Equations?

exploiting Path invariance 

any loop :: we are at the same point as OPP for 1-loop.


