Comparison of two calorimeter concepts for the International Linear Collider (ILC)

Study of different energy reconstruction methods

Coralie Neubüser DPG Frühjahrestagung Wuppertal, 11.03.15

Main Linac

Calorimeters for the ILC

CALICE hadron calorimeters overview

Coralie Neubüser | DPG 2015, Wuppertal | 11.03.15 | Page 3

Idea and outline

With analogue read-out, (semi-) digital energy reconstruction is possible, too

- Understand impact on energy resolution
- Study trade-offs between spatial and energy information

- > Data selection
- > Analogue, digital and semi-digital reconstruction modes
- Response and resolution
- Further steps

CALICE AHCAL test beam 2007 at CERN

- > SPS at CERN 2007 (10-80GeV π/e/μ)
- Silicon-Electromagnetic Calorimeter (Si-ECAL) +
 1m³ Analog Hadronic Calorimeter (Fe-AHCAL) +
 Tail Catcher/Muon Tracker (TCMT)
- > Fe-absorber ~2cm
- > 38 layers Scintillator tile Analog HCAL (12bit readout)
- Granularity: 12x12, 6x6 and 3x3cm² tiles/cells
- Read out of scintillation light by SiPMs

π⁻ runs 10-80GeV: Event Selection

> Test beam is a composition of different particle types

- MC sample with GEANT 4 version 9.6, physics list FTFP_BERT
- Same runs like data with corresponding noise files
- FTFP_BERT describes HCAL response for energies below 45GeV

Pion responses in AHCAL

10⁻³

10

10⁻⁵

normalized entries

Mean pion responses in AHCAL

Non-linear response

- > Multi-traversing particles & pad size
- Requires more sophisticated reconstruction method to linearise

Analogue energy reconstruction

- Mean deposited track energy in ECAL 0.3805GeV
- Conversion factor ω taken from positron runs
- Non-compensation (response for electrons 1.19 times higher than for pions)
- Non-linearity less than 5%
- Good agreement between data and MC

80 E_{beam} [GeV]

10

20

30

40

50

60

¥0.0 ЧШ ЧШ (∨

Digital energy reconstruction

- > Tail on left hand side of distributions due to multiple particles traversing same cell
- > Non-linearity less than 8% after correction
- > Agreement between data and MC better with increasing energies

Semi-digital energy reconstruction

$$E_{rec,3thr} = \alpha N_1 + \beta N_2 + \gamma N_3$$

- > Weighting hits depending on energy content $N_1: 0.5MIP < E_{hit} < 5MIP$ $N_2: 5MIP < E_{hit} < 15MIP$ $N_3: E_{hit} > 15MIP$
- α,β and γ assumed to be quadratic polynomials of N_{hits}

$$\chi^{2} = \sum_{i=1}^{N} \frac{\left(E_{beam}^{i} - E_{rec,semi-digital}^{i}\right)^{2}}{E_{beam}^{i}}$$

- From minimisation: α,β and γ show none or linear dependence on N_{hits}
- Results in bad linearity, additional linearisation step needed

Semi-digital energy reconstruction

Energy Resolution

Study the impact on an AHCAL with 1x1cm² granularity, in simulation

Geant4 output

mip <= hit energy

5.4

Real AHCAL response

1x1cm² AHCAL response

Further steps

Study the impact on an AHCAL with 1x1cm² granularity, in simulation

Full analysis coming soon

Backup: Event Selection

> Test beam is a composition of different particle types

Event selection follows "Hadronic energy resolution of a highly granular scintillator-steel hadron calorimeter using software compensation techniques" 2012_JINST_7_P09017: 29 Runs, 11 Energies

Backup: Mean extraction procedure

- 1. Gaussian pre-fit within Mean±3RMS
- 2. Novosibirsk fit within $\mu \pm 3\sigma$ of Gaussian ($\chi 2 < 3$)
- Novosibirsk parameters for filling histogram randomly from 0 to 3σ
- 4. Mean & RMS of histogram

(d) Novosibirsk hist, 80 GeV

Analogue reconstruction without (detailed) ECAL and TCMT compared to ECAL+AHCAL+TCMT analysis from "Software Compensation"-paper

- > 0.5% (in absolute values) above "paper"-values
- Fitting method including tail show expected increase with increasing energy

Run list & event selection

~20% of all event selected from data and MC

run	beam	pre-	selected	in %	selected	in %
number	energy	selection	pions in		pions in	
	[GeV]	data	data		MC	
330332,	10	587,793	111,133	18.9	81,974	20.5
330643,						
330777,						
330850						
330328	15	140,441	28,024	20.0	21,063	21.1
330327	18	148,516	29,600	19.9	21,040	21.0
330649,	20	379,270	73,942	19.5	41,718	20.9
330771						
330325,	25	364,170	72,530	19.9	41,474	20.7
330650						
330551,	35	404,309	70,438	17.4	40,868	20.4
330960						
330390,	40	509,168	101,617	20.0	61,394	20.5
330412,						
330560						
330550,	45	520,600	102,898	19.8	61,181	20.4
330559,						
330961						
330391,	50	384,581	76,855	20.0	41,081	20.5
330558						
331556,	60	787,208	153,464	19.5	81,565	20.4
331568,						
331655,						
331664						
330392,	80	898,307	176,476	19.7	100,278	20.1
330962,						
331554,						
331567,						
331654						

ECAL track energy contribution:

- Energy deposits from all selected events
- Deviation from different beam energies max. 10%

