Status of the CALICE AHCAL Engineering prototype.

DPG Wuppertal 2015.

- > Introduction
- > Status :
 - Mechanics and Electronics
 - DAQ
 - Software
- > Data Monitoring
- > Commissioning phase
- > Conclusion & Outlook

Eldwan Brianne DPG-Frühjahrstagung 10.03.15, Wuppertal

The Analog Hadronic Calorimeter for ILD

- Sandwich calorimeter based on scintillator tiles (3x3 cm2) using Silicon photomultiplier readout.
- > Hcal Base Unit (HBU) : $36x36 \text{ cm}2 \rightarrow 144 \text{ channels}$
- > Embedded front end using ASICs (36 channels per ASIC \rightarrow 4 ASICs per HBU)
- > Full ILD detector : 8 millions channels \rightarrow big challenge for particle flow detectors!
- > Physics : Principle demonstrated with physics prototype

Engineering prototype

- Goals of the technological prototype :
 - Going towards full 1m3 prototype
 - Scalability to full ILD detector
 - Control and understanding of the electronics
 - Flexibility with fast SiPM technology development
 - Test of several board designs and SiPM (best suitable)
 - Physics : Timing development of hadronic showers (comparison between steel and tungsten absorber), Energy calibration validation
- > Past Testbeam periods :
 - DESY January 2014 (First test of DAQ fast commands via HDMI, readout via USB)
 - CERN PS : October 2014 (First try with DAQ fallback on USB readout due to kernel problems) November 2014 (DAQ with 2 mini-xLDAs working stable – full HDMI)
 - February 2015 : DESY with Airstack configuration in tungsten frames (channel-wise MIP calibration – 2x2 HBU configuration – 5 layers)

Old ITEP tiles with WLS fiber 800 px

New ITEP tiles Ketek 12k px

Very Complex system!!

EBU strip Hamamatsu 10k px - 3600 px

NIU megatile SMD MPPC 1600 px (50 µm) MPPC 25 µm

UHH + Heidelberg tiles Ketek 2300 px SenSL 1300 px

Status : Mechanics and Electronics

- > EUDET Absorber structure :
 - Principle validated at DESY and CERN PS
 - Craning without any problems
- > Power supply :
 - Now : Scalable commercial system channel wise power distribution (3 voltages : electronics, LED calibration system, SiPM HV). Up to 16 layers, upgradable to 48 layers.
 - Future : Power supply developed at Dubna : low-cost, scalable to full ILD size.
- > Cooling :
 - First test of active cooling during last TB at CERN PS → success
 - Mechanically not easy, not much room to insert layers into the stack
 - Improvements needed in cooling plate / power board coupling

Status : Mechanics and Electronics

> Electronics :

- Different HBU generations : HBU2, HBU3 and SMD
- Several new HBUs arrived last summer from Heidelberg, UHH, NIU
- Several EBUs from Japan (Shinshu, Tokyo)
- New SMD HBU from Mainz (Feb 2015)
- Commissioning of the boards was made at DESY (further in my talk)

Status : Data Acquisition System

- New full HDMI based DAQ tested and fully working
- > Wing LDA not useable yet : design problems. Received new Wing LDA last January → in progress concerning firmware development (Kintek-Zync link)
- Instead using 2 mini-xLDAs (based on Zedboards) : maximum 10 layers per xLDAs.
- Combined runs with Si-ECAL at CERN PS
- First step toward full DAQ integration : EUDAQ used for Run Control at PS

(a) Ali EbrahimiAHCAL Main Meeting 2014

Status : Software

- Use of the knowledge gain from the past and Commissioning for data monitoring and control of the electronics
- Event display required for geometry and data validation
- > Achieved :
 - Proper reconstruction chain + GUI done
 - Database containing all information needed : Light yield, Pedestal, SiPM Gain.. Still need more work concerning user interaction
 - Online Monitors : 2 types for raw information and reconstructed data

Software : Data monitoring

- Reconstruction GUI being developed
- Event display GUI : mapping/geometry validation
- > Online Monitoring : Raw information already available + first version for reconstructed data (root-based client) → going towards a Qt GUI server / client
- Goal : Check physics performance of the detector based on few plots
- > Needs :
 - Scalability : More layers = more data. Idea of servers looping over the data and sending the plots to a client (from anywhere)
 - Flexibility : Can add any kind of variable one want to look at
 - User-friendly : Development of a GUI needed (Qt or root)
- Many more software aspects :
 - Simulations
 - Digitization

Commissioning phase

- > Before last TB at CERN, many new boards were received → need to characterize them and calibrated them
- > Old boards : Reuse of SC files, only full run (already calibrated crosschecks)
- > Commissioning :
 - Set up bias voltage for SiPMs
 - First characterization of the board (Gain measure)
 - Gain equalization
 - Final characterization
 - Assembly into cassette and insertion into stack
- Few Numbers :
 - CERN PS TB Setup : 15 layers (27 boards) including around 15 new HBUs/EBUs boards
 - ~ 3.800 channels to calibrate!!! With different SiPM types and geometries (SMD, Megatiles, EBUs..)

SiPM Voltage

(a) Konrad

CALICE Madrid 2014

- Chosen a posteriori by light yield measurements
- For SMD : generally no LY measurement → Estimate noise @ supplier over-voltage and gain measurements. Setup for light yield measure in development at Uni Mainz (P. Chau).
- > SiPM diversity → Very different bias voltage per layers (each layer is unique)

SiPM	V_{bd}	V _{op}			
Hamamatsu (EBU)	~ 65 V	~ 70 V			
Hamamatsu (NIU)	~ 65 V	~ 70 V			
Old ITEP	~ 35 – 45 V	~ 37 - 50 V			
New ITEP	~ 28 V	~ 32 V			
UHH Ketek	~ 27 V	~ 30 V			
SenSL	~ 26 V	~ 30 V			

First Characterization

- For new boards, a first characterization of the SiPMs is needed. → Use of the integrated LED Calibration system.
- > To do so, a LED scan over a certain voltage range is done by steps of 100 mV.
- Default chip parameters : Pre-Amplifier feedback capacity at 100 fF, External trigger, 16 triggers (one for each memory cells of the chip)
- > Give us a first estimation of the gain (in ADC/px)

MPPC SiPM – SMD NIU

Gain equalization

- Goal : Matching the SiPM response to the ADC range of the chip and equalize the signal response between channels on the same chip/board.
- The gain can be modified by changing the PA of the chip. For each type of SiPM, a targeted gain is calculated.
- Then a second characterization is done in order to check if the targeted gain is achieved. Generally not more than 2 runs are needed.
- After the gain equalization, a final LED run is done with finer steps in order to get a gain value for each channels (to be put into the database for reconstruction) and threshold calculation.

Layer	4	5	6	7	8	9	10	11	12	13	14	15
Gain	~ 20	~ 22	~ 22	~ 22	~ 22	~ 22	~ 6	~ 6	~ 16	~ 16	~ 24	~ 24

Conclusion & Outlook

- Going towards a full prototype (1m3)
 - EUDET steel stack
 - First active cooling prototype
 - 27 boards equipped (including 4 big layers of 2x2 HBUs)
 - More boards to expect this year
- DAQ with 2 mini-xLDAs stably working
 - Stepping into a common DAQ (EUDAQ)
 - Next step : Wing LDA (up to 96 layers!!)
- Software
 - Fully implemented (supported by FLC desy)
 - Event display and Online Monitoring to check physics performance during data taking
- Commissioning
 - Lots of experience acquired during last summer
 - Trying to improve further the procedure and reduce time for commissioning
- > Outlook
 - TB periods planned for June at DESY (dress rehearsal)
 - TB period this summer at CERN SPS
 - Maybe more...

Thank you for your attention

