Studies on irradiated single-crystal diamond sensors

Martin Stegler

Deutsches Elektronen-Synchrotron A Research Centre of the Helmholtz Association

Brandenburg University of Technology Cottbus - Senftenberg

BRIL

Very high particle flux and energies at LHC.

CMS installed several independent subdetectors for Beam and Radiation Instrumentation and Luminosity measurements (BRIL):

- safety: beam losses \rightarrow damage to the experiments sub detectors - performance: more luminosity \rightarrow less pressure on DAQ \rightarrow better data

- Fast Beam Condition Monitor BCM1F
- Low Beam Condition Monitor BCM1L
- Pixel Luminosity Telescope PLT
- Beam Condition Monitor BCM2

sCVD Diamond

 - low leakage current and radiation hard
 → used as solid state ionization chamber for particle detection in high radiation enviroment

Property	Diamond	Silicon	Units	Results for diamond
Band gap	5.5	1.12	eV	insulator
Specific resistance	$> 10^{11}$	$6.4 \cdot 10^2$	$\Omega { m cm}$	low leakage current
Breakdown field	20	0.3	MV/cm	high bias voltage possible
Electron mobility	4500	1450	$\mathrm{c}m^2/\mathrm{Vs}$	fast signal
Hole mobility	3800	480	${ m c}m^2/{ m Vs}$	
Displacement energy	43	< 20	eV per atom	radiation hard
Thermal conductivity	2000	150	$Wm^{-1}K^{-1}$	heat spreader
Energy to create e-h pair	13	3.61	eV	low signal
Aver. signal created	3602	8892	e ₀ per 100 μm	

electrical measurements

electrical measurements

Charge Collection Efficiency CCE

radiation damage

electrical measurements after irradiation

Irradiated diamond sensors from BCM1F installed from 2008 to 2014 show still low leakage currents and stable signal currents.

signal current after irradiation

After ramping from 0V to 500V polarization builds up about over several hours.

CCE after irradiation

CCE is decreased by trapping and polarization after irradiation.

further investigation on radiation damage

CCE dependence on intensity and energy of Light

zero intensity – no light higher intensities – more trapped charges released, less polarization effects lower wavelength – higher photon energy, more trapped charges released

Conclusion

- diamonds were successfully used at LHC to measure beam conditions and luminosity
- properties of such diamonds before and after irradiation:
 - leakage current stays low and signal current stays stable over time after irradiation
- signal current and CCE is reduced by irradiation effects
 - trapping and polarization
- method using light to mitigate irradiation based effects
 - \rightarrow polarization is reduced
 - \rightarrow CCE increas depends on wavelength and intensity of light

 \rightarrow diamond sensors signal yield can be enhanced by illuminating