Toy MC for Calorimeter Calibration

Hartmut Stadie

Calorimeter Calibration Meeting July, 4th 2008

Introduction

Motivation

We can use a toy Monte Carlo to

- test the fitter
- study possible biases due to the fitting model
- develop improved fitting procedures to overcome the biases

Generation steps: γ -jet

Steps:

Introduction

- **select** photon p_t, η and ϕ from flat spectra
- **select** corresponding p_t, η and ϕ for the generator jet
- split jet energy in n_c chunks (e.g. $n_c = 200$)
- \blacksquare select η and ϕ for this chunk from a Gaussian distribution around the real jet axis with a width of 0.1
- scale and smear each tower
- sum up the four vectors of the towers to get the jet four momentum

Usage

Generation steps: tower treatment

Steps:

Introduction

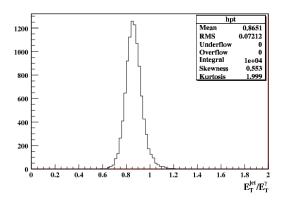
- sum up the chunks hitting the same tower
- select em-fration of the tower from a flat distribution between 0.0 and 0.5
- calculate E_{em}
- **a** calculate E_{had} , divide it by the tower constant (c_T) and smear it with a Gaussian with mean $\mu = 1.0$ and width

$$\sigma = E_{ extit{had}} \sqrt{c_{ extit{stochastic}}^2 / E_{ extit{had}} + c_{ extit{noise}}^2}$$

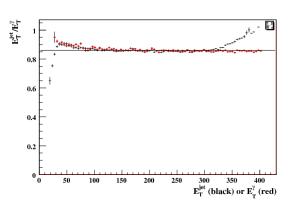
- if(E_{had} < 0) E_{had} = 0
- $\mathbf{E}_{\text{outer}} = \mathbf{0}$

Response

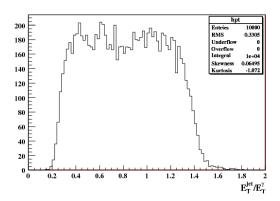
Introduction


em-fraction

- flat between 0 and 0.5.
- $f_{em} = 0.25$,
- $V[f_{em}] = \int_0^{\frac{1}{2}} (f_{em} \bar{f}_{em})^2 df_{em} = \frac{1}{96}$
- for n_T tower: $\bar{t}_{em} = 0.25 \pm 1/\sqrt{96n_T}$ e.g. $n_T = 20$; $\bar{f}_{em} = 0.25 \pm 0.02$


response

- $\bar{R} = \bar{f}_{em} \cdot 1.0 + (1 \bar{f}_{em}) \cdot \frac{1}{CT}$
- \blacksquare for $c_T = 1.25$: $\bar{R} = 0.25 + 0.75/1.25 = 0.85$


Tower constant $c_T = 1.25$

Tower constant $c_T = 1.25$

Tower constant random

Usage

Configuration in toy.cc

```
int main() {
 ToyMC* mc = new ToyMC();
 mc->mMinEta
                     = -2.5;
 mc \rightarrow mMaxEta = 2.5;
 mc->mMinPt = 30;
 mc->mMaxPt = 400;
 mc \rightarrow mTowConst = 1.25;
 mc->mResoStochastic = 1.25;
 mc \rightarrow mResoNoise = 0.056;
 mc->mJetSpread = 0.10;
 mc->mNoOutOfCone = true;
 //settings for symmetric distributions
 //mc->mModel
                       = ToyMC::Gauss;
 //setting for flat distribution (noise)
 mc->mModel
                     = ToyMC::Flat;
 mc->makePhotonJet("input/toy_photonjet.root",10000);
```

Building and running

make toy
./toy