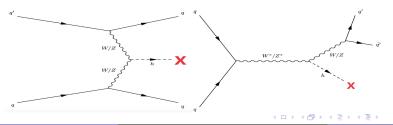
Overview of H→ *invisible* Searches and Coupling Combination

Jike Wang (DESY)

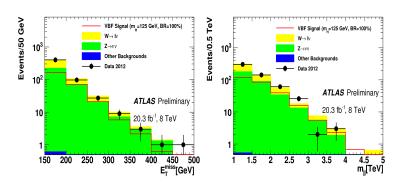
March 23, 2015

Structure of this Talk

- Will focus on the new results
- Cover H→inv. and SM coupling combination
- Summary


H→invisible Particles

Higgs couple with dark sector

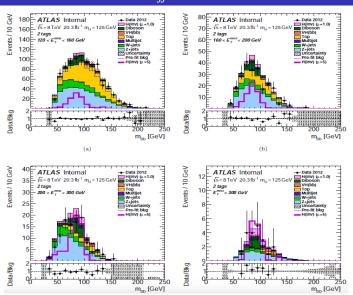

- sizable deviations from the SM expectation cannot be yet excluded; the total branching ratio of BSM decays of the Higgs boson is only weakly constrained
- One possible decay is to weakly interacting particles, as predicted by many extensions of the SM
- Looking for excess in the $E_{\rm T}^{\rm miss}$ spectrum. To suppress the hugh BGs, need a "tag".

Different tags:

- VBF: two well-separated forward jets; high invariant mass m_{ij}
- hadronic VH: two or thee central jets, mass consistent with V

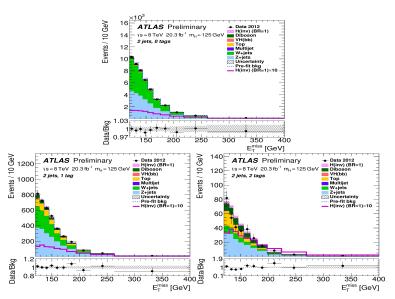
VBF Channel

- $Z\nu\nu$ +jets, $Wl\nu$ +jets dominated;
- Simultaneous fit to Z \rightarrow ll, W \rightarrow $l\nu$ CRs
- Br(H→inv) < 0.29 (0.35 exp)95% CL

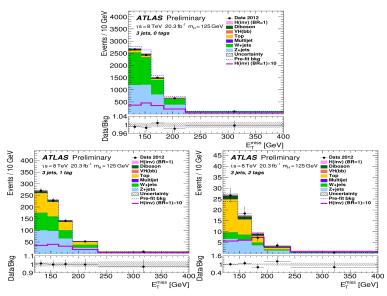


hadronic VH Channel, Selections

- Categorization: 0/1/2-tag \otimes 2/3-jets \otimes 4 different $E_{\rm T}^{\rm miss}$ bins
- different cuts for different categories, well physics motivated


$E_{\mathrm{T}}^{\mathrm{miss}}$ range (GeV)	120 - 160	160 - 200	200 - 300	> 300
Variable	Selection			
ΔR_{jj} , 2- and 3-jet events	0.7 - 2.0	0.7 - 1.5	< 1.0	< 0.9
m_{jj} , 2-jet events (GeV)	70 - 100	70 - 100	70 - 100	75 - 100
m_{jj} , 3-jet events (GeV)	50 - 100	55 - 100	60 - 100	70 - 100

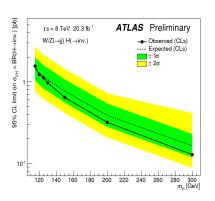
m_{ii} Plots


Higher $E_{\mathrm{T}}^{\mathrm{miss}}$, the best S/B

hadronic VH Channel, Final 2-jet Plots

7 / 20

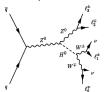
hadronic VH Channel, Final 3-jet Plots

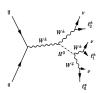


Details of the Systematic Impacts

Source	Impact on $\Delta \mu$				
Object systematic uncertainties					
Jets & $E_{\mathrm{T}}^{\mathrm{miss}}$	+0.22	-0.22			
Luminosity	+0.04	-0.03			
b-tagging	+0.05	-0.04			
Background systematic uncertainties					
Diboson	+0.26	-0.29			
Z+jets	+0.21	-0.22			
W+jets	+0.15	-0.16			
$t \bar{t}$	+0.06	-0.05			
Multijet	+0.07	-0.07			
Total					
Total systematic uncertainty	+0.41	-0.43			
Data statistical uncertainty	+0.12	-0.12			
Total uncertainty	+0.43	-0.44			

- Jet/E_T^{miss}, di-boson related systematics most important
- Then the modelling of Z+jets


Sensitivity

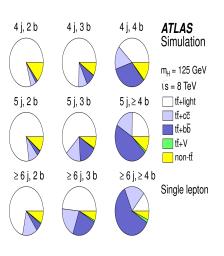

- With ggF signals included, Br(H→inv) < 0.78 (0.86 exp)95% CL.
- Note: $Z(\rightarrow ll)H(\rightarrow inv.)$ has $Br(H\rightarrow inv) < 0.75$ for 2011 + 2012 data.

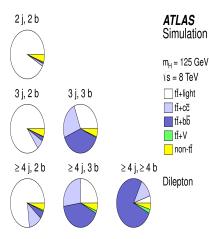
VH(WW) Analysis

4 leptons

3 leptons

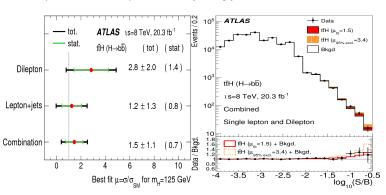
- 2 OS leptons
- W±/Z0
 W±/Z0
 W±/Z0
 W±/Z0
 W±/Z0
 V+
 ±
 U


 #0
- 2 SS leptons

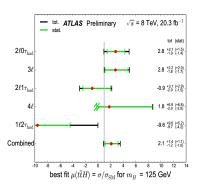

- Categories depending on number of leptons and jets, OS-SS
- VV, VVV are the main backgrounds, then top and Z/W+jets
- Results: $\mu^{WH} = 2.1^{+1.5}_{-1.3}(stat.)^{1.0}_{-0.9}(sys.),$ $\mu^{ZH} = 4.9^{+3.7}_{-2.9}(stat.)^{1.7}_{-1.0}(sys.)$ $\mu^{VH} = 2.9^{+1.2}_{-1.1}(stat.)^{0.8}_{-0.6}(sys.)$

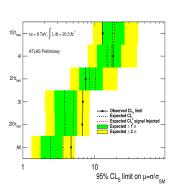
ttH(bb) Categorization

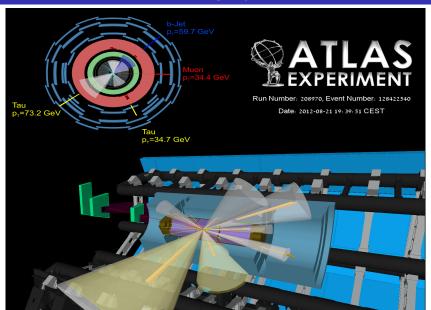
I+jet channel:



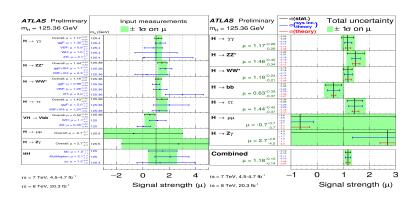
di-lepton channel:


ttH(bb) Results

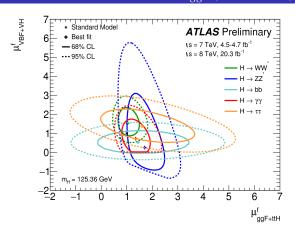

Combined $\mu = 1.5 \pm 1.1$; $\mu < 3.4 obs(2.2 exp)$ @95% CL


$ttH(WW/\tau\tau)$ Results

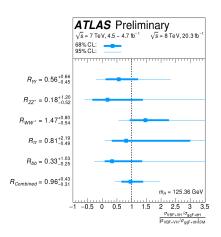
Combined $\mu = 2.1^{+1.4}_{-1.2}$; $\mu < 4.7 \ obs(2.4 \ exp)$ @95% CL



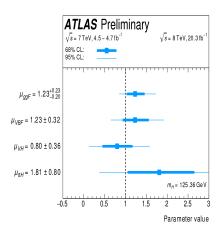
$\mathsf{ttH}(WW/\tau\tau)$ Event Display: 1l2tau candidate


Jike Wang (DESY) DESY LHC Discussion 15 / 20

Summary of the μ Measurements


- Summary of the signal-strength measurements, as published; ttH($\to \gamma\gamma)$ is included in ttH
- Higgs boson signals corresponding to the same decay channel are combined together

Likelihood contours in the ($\mu_{ggF+ttH}^f, \mu_{VBF+VH}^f$) plane


- categorised into two groups according to the Higgs boson couplings to fermions or vector bosons. Potential deviations from the SM can be tested with two signal-strength parameters,
- The SM expectation (1,1) is within the 68% CL contour of most of these measurements.

cross-section ratio

- this ratio reduces to the ratio of production cross sections as the Higgs boson decay branching ratios cancel
- The combination yields an overall value of the crosssection ratio between the boson- and fermion-mediated processes

signal-strength values of different production modes

- The signal-strength in reasonable agreement with the SM predictions
- Results indicates evidence for ttH production, this process remains to be firmly established in future LHC runs

Summary

- Many new ATLAS Higgs results have been released recently using RunI data. ttH, H→ inv., Spin/CP combination, coupling combination ...
- Check the ATLAS public results pages to get the full list
- All measurements are consistent with SM prediction
- Analyses are generally statistics-limited; Wait Run 2 data with great expectation!