Search for a light NMSSM Higgs boson produced in supersymmetric cascades and decaying into a b-quark pair

Rainer Mankel¹, Gregor Mittag (né Hellwig)¹, Alexei Raspereza¹, Christian Sander², Daniel Tröndle², Roberval Walsh¹

In collaboration with: Georg Weiglein¹, Oscar Stål^{1,3}

¹Deutsches Elektronen-Synchrotron (DESY) ²Universität Hamburg (UHH) ³now at Stockholm University (SU)

LHC Physics Discussion: Higgs 23 March 2015

SEFÖRDERT VDM

> H(125) is consistent with expectation from SM, but

- Gravity is not included in SM
- The SM suffers from the hierarchy problem
- Dark Matter is not included
- Anomalous magnetic moment of the muon shows a $\sim 3\,\sigma$ discrepancy
- What if the Higgs at 125 GeV corresponds to a state of an extended Higgs sector which is not the lightest one?
 - Implies a light Higgs boson, possibly lighter than the ${\rm Z}$ boson
 - The best way of experimentally proving that H(125) is not the SM Higgs is to find additional Higgs bosons!

Would such a light Higgs be detectable at the LHC?

- Not in decays of the state at $\sim 126~{\rm GeV}$ if mass of lightest Higgs $\gtrsim 63~{\rm GeV}$
- This possibility has not been explored at the LHC so far; first LHC searches for light Higgses in this mass range are in progress

Slide taken from Georg Weiglein Planck 2014, 05/2014

- The LHC could very well have access to light Higgs bosons that were impossible to see at LEP
- > Low Higgs mass range $(m_{
 m h} < m_{
 m Z^0})$ is largely unexplored at the LHC
- Only sporadically probed
 - ATLAS (HIGG-2014-04): $\phi \rightarrow \gamma \gamma$ probes $m_{\text{Higgs}} > 65 \text{ GeV}$
 - CMS (HIG-13-010)): $\phi \rightarrow {
 m a_1 a_1} \rightarrow 4\mu$ probes $m_{
 m Higgs} < 2m_{ au}$
- Variety of theoretical models predict light Higgs bosons which are not excluded by existing searches
 - Important condition: Accommodate \approx SM-like H(125)

> MSSM Higgs spectrum: h, H, A, H^{\pm}

- > A light MSSM Higgs is only possible through light A ($m_{\rm A} < 100$ GeV)
- \succ Implies light H^{\pm} as well
- Strongly disfavoured by charged Higgs measurements (CMS-HIG-14-020)

- Additional singlet superfield
 - No gauge interactions
 - Interacts with itself and Higgs doublets
- Resulting additional particles
 - > 1 neutralino
 - 1 CP-odd Higgs
 - ▶ 1 CP-even Higgs
- > Offers a solution to the μ problem of the MSSM

- > How to accomplish light Higgs in accord with existing measurements?
 - Identify h_2 with SM-like $H(125) \rightarrow$ Small singlet component
 - h_1 should have large singlet component to evade LEP constraints
- ⇒ This is the idea of the modified P4 scenario of the NMSSM pointed out by G. Weiglein and O. Stål¹

¹O. Stål, G. Weiglein, Light NMSSM Higgs bosons in SUSY cascade decays at the LHC, <u>JHEP</u> 1201, 071 (2012), 1108.0595.

Would such a light Higgs be detectable at the LHC?

- Not in decays of the state at $\sim 126~{\rm GeV}$ if mass of lightest Higgs $\gtrsim 63~{\rm GeV}$
- This possibility has not been explored at the LHC so far; first LHC searches for light Higgses in this mass range are in progress
- In case of SUSY, such a light Higgs could be produced in a SUSY cascade, e.g. [˜]χ⁰₂ → [˜]χ⁰₁h; could be similar for other types of BSM physics

Would such a light Higgs be detectable at the LHC?

- Not in decays of the state at $\sim 126~{
 m GeV}$ if mass of lightest Higgs $\gtrsim 63~{
 m GeV}$
- This possibility have been solved as the second secon
- In case of SUSY, such a light Higgs could be produced in a SUSY cascade, e.g. [˜]χ⁰₂ → [˜]χ⁰₁h; could be similar for other types of BSM physics

Event selection

- Direct production of h₁?
 - Suppressed due to reduced couplings to gauge bosons and fermions
- \Rightarrow Search in SUSY cascades
- > Signal: Peak in $m_{
 m b\overline{b}}$ distribution at $m_{
 m h_1}$

Event selection $(19.7 \text{ fb}^{-1} \text{ at } 8 \text{ TeV})$

- H_T-trigger with threshold of 650 GeV
- > $H_{\rm T} > 750 \,\,{\rm GeV}$
- At least 4 jets (250,100,25,25)
- At least 2 b-tagged jets (not leading two)
- Select two b-tagged jets with minimal ΔR(b₁, b₂)
- ▶ min $\Delta R(b_1, b_2) < 1.5$
- \blacktriangleright $E_{\rm T}^{\rm miss} > 200 {
 m GeV}$

►
$$\Delta \Phi(j_{1,2}, \vec{E}_{T}^{miss}) > 0.5 \Rightarrow QCD$$
 suppression

Background estimation

Dominant background: $t\overline{t} + jets$

- Normalization: NLO
- Shape: MC
- Verified in control region
- ≻ QCD Multijet
 - Normalization: data-driven
 - Shape: data-driven

Minor backgrounds: $Z^0 \rightarrow \nu \bar{\nu}$ and $W \rightarrow \ell \nu + jets$

- Normalization: NLO
- Shape: MC

QCD multijet background

- ► Vast majority of QCD events suppressed by [¬]/_e E^{miss}_T > 200 GeV
- Rest: Mainly fake-E^{miss} contributions due to mismeasurements of jets
 - \vec{E}_{T}^{miss} -vector aligned with one of the leading jets
 - High QCD suppression by requiring $\Delta \phi(j_1/j_2, \vec{E}_{\rm T}^{\rm miss}) > 0.5$
- ► Invert $\Delta \phi(j_2, \vec{E}_T^{\text{miss}})$ -cut to get QCD enriched regions
 - Subtract tt and minor EWK contributions using simulation
 - Used to estimate QCD contribution for $\Delta \phi(j_2, \vec{E}_{\mathrm{T}}^{\mathrm{miss}}) > 0.5$

The m_{bb} shape is well described by the method

Signal m_{bb} shape is modelled using NMSSM MC samples

- Input created with NMSSMTools
- PYTHIA6/MADGRAPH used for event generation
- NMSSM contributions in the signal region
 - $h_1 \rightarrow b\overline{b}$
 - $Z^0 \to b\overline{b}$
 - $h_2 \rightarrow b\overline{b}$
 - $a_1 \rightarrow b\overline{b}$
 - Non-resonant contributions
- Two approaches considered
 - Search for an h₁-peak over the SM expectations
 - Include non-h₁ contributions for NMSSM-specific interpretation

Systematic uncertainties

- Effect of systematic uncertainties quantified by their relative impact on expected cross section limit
 - Uncertainties with zero impact not listed
- Dominant uncertainties
 - tt normalization
 - QCD related uncertainties
- The analysis is statistics dominated

Systematics source	Event category	Туре	Impact
Normalization of $t\overline{t}$	Background	rate	1.7 %
Normalization of QCD	Background	rate	2 %
Shape correction QCD	Background	shape + rate	3 %
QCD shape parameterization	Background	$\dot{s}hape + rate$	1 %
MC statistics $t\overline{t}$	Background	shape + rate	1.3%
MC statistics $\mathrm{W} ightarrow \ell u$	Background	$\dot{s}hape + rate$	0.3%
Luminosity	Signal $+$ Background	rate	0.5 %
Trigger	Signal + Background	shape + rate	0.1%
Pile-up	Signal + Background	shape $+$ rate	0.1%
PDF uncertainty	Signal	shape + rate	0.2 %
Offline b-tag (bc)	Signal $+$ Background	shape + rate	1.0%
Offline b-tag (udsg)	Signal + Background	shape + rate	0.05 %
Jet energy scale	Signal + Background	shape + rate	1.3 %
Jet energy resolution	Signal $+$ Background	shape $+$ rate	0.1%
au energy scale	Signal + Background	shape + rate	0.6%

Gregor Mittag (DESY-CMS)

- ► Derived upper limits on $\sigma(pp \rightarrow h_1 + X) \times \mathcal{B}(h_1 \rightarrow b\overline{b})$ in the mass range of 30 - 100 GeV
- ⇒ Below 65 GeV our limits undershoot the light Higgs production predicted by the modified P4 scenario

- Derived upper limits using also non-h₁ contributions to the m(b₁, b₂)-spectrum
 - Model-dependent interpretation within the NMSSM P4 scenario
- ⇒ Analysis excludes the modified NMSSM P4 scenario with a scale of 1 TeV for coloured SUSY particles

- Focus of the following results is on sensitivity to certain NMSSM scenarios, while previous interpretation was focusing on the light Higgs part
 - Model-dependent interpretation
- > Different physics assumption than in previous studies using the P4 scenario
 - Decoupled scenario \rightarrow only gluino-gluino production contributes
- Detailed NMSSM parameter scan
- > Scanned mass parameters (squark mass parameter M_{SUSY} set to 2 TeV)
 - $m_{
 m h_1}=60-95~{
 m GeV}
 ightarrow$ driven by NMSSM parameter A_κ
 - = $M_1/M_2 = 100-600$ GeV ightarrow gaugino masses
 - $M_3 = 800 1400$ GeV ightarrow gluino mass
- Calculate upper limits with the <u>full</u> NMSSM spectrum as "signal"
- Limits are presented in M₃ m_{h1} plane for 3x3 combinations of M₁, M₂

- First search for light NMSSM Higgs production in supersymmetric cascades at the LHC
 - http://cds.cern.ch/record/2002557
- Probing a theoretically well motivated Higgs mass range which was previously unexplored at the LHC
- Sensitivity in the range of modified NMSSM P4 scenario
- ▶ No signal observed
 - Upper limits on topological cross section $\sigma(\mathrm{pp} \to \mathrm{h_1} + X) imes \mathcal{B}(\mathrm{h_1} \to \mathrm{b}\overline{\mathrm{b}})$
- > Analysis excludes the P4 scenario with $M_3 = M_{SUSY} = 1$ TeV
- > Model dependent interpretation within NMSSM parameter space
 - Decoupled squarks scenario
 - Limits depend mainly on gluino mass parameter M₃

Back-Up

- Parameters of P4 scenario
- \succ $t\bar{t}$ control region
- QCD multijet background estimation method
- Prefit distributions
- Fit results Higgs peak search
- Fit results NMSSM P4 scenario
- NMSSM parameter scan Decoupled squarks scenario

Higgs sector parameters	Higgs	Higgs masses Neutralino & Chargino masses		
\succ tan $eta=$ 2.6	$m_{\rm h_1}$	65 GeV	$\tilde{\chi}_1^0$	98 GeV
$\succ \lambda = 0.6$	$m_{ m h_2}$	125 GeV	$\tilde{\chi}_2^{\bar{0}}$	227 GeV
$> A_{1} = -510 \text{ GeV}$	$m_{ m h_3}$	577 GeV	$ ilde{\chi}_{ extsf{3}}^{ extsf{0}}$	228 GeV
m = 0.12	m_{a_1}	163 GeV	$ ilde{\chi}_4^{0}$	304 GeV
$\sim \kappa = 0.12$	$m_{ m a_2}$	577 GeV	$\tilde{\chi}_{5}^{0}$	622 GeV
\blacktriangleright $A_{\kappa} = 161$ GeV	$m_{ m H^\pm}$	566 GeV	$\tilde{\chi}_1^{\pm}$	208 GeV
$ ightarrow \mu_{ m eff} = -200 { m GeV}$			$\tilde{\chi}_2^{\pm}$	622 GeV

Non-H	liggs	sector parar	meters (a	as a referenc	æ)	
	M ₁ M ₂ M ₃	300 GeV 600 GeV 1 TeV	$egin{array}{c} {\cal A}_{ m t} \ {\cal A}_{ m b} \ {\cal A}_{ au} \ {\cal A}_{ au} \end{array}$	1145 GeV 1145 GeV 1145 GeV	M _{SUSY}	1 TeV
Back	▲ Bac	kup Index				

$t\overline{t}$ control region

Gregor Mittag (DESY-CMS)

QCD multijet background

QCD multijet background – Normalization factor

- > $f_{N,QCD}$ measured in single-b sample (center)
 - b-jet is paired with 3rd untagged jet
 - Double-b/Single-b correction (right) applied → extrapolated from QCD MC
 - All other cuts applied
- > Double-b/Single-b difference (QCD MC) in $E_{\rm T}^{\rm miss}$ bin > 200 GeV is used as systematic uncertainty on the normalization

QCD multijet background – Shape correction

> $f_{b_i,QCD}$ applied as scale factor on the two b-tagged jets

- Correction factor for data and $E_{\rm T}^{\rm miss}$ > 200 GeV is extrapolated from QCD MC
- > Uncertainty of these correction factors is taken into account as shape uncertainty

Gregor Mittag (DESY-CMS)

NMSSM Light Higgs Search

Prefit distributions

> Data are already well described by prefit background distributions

Gregor Mittag (DESY-CMS)

- Probed mass range from 30 GeV to 100 GeV
- Maximum upward deviation of 0.49σ at m_{h1} = 75 GeV

- Fitted NMSSM cross sections
 - Model-dependent measurement
- Maximum upward deviation of 0.99σ at m_{h1} = 75 GeV

NMSSM parameter scan – Decoupled squarks scenario

NMSSM Light Higgs Search