Calculating the Electric Field of Coherent THz Pulses

Markus Schwarz
3rd ARD ST3 Workshop

Simulation Chain for FLUTE

- Particle tracking from gun to end of chicane with ASTRA \& CSRtrack (includes SC and CSR)
S. Naknaimueang et al., FEL 2012, WEPD59

Own methods for calculations of emitted THz pulse

- First principle numeric calculations of THz pulse
- no code available for near-field THz synchrotron radiation
- include interference of radiation sources

Analytic calculation of coherent THz pulse

Goal:
Full simulation chain to optimise THz field streng and pulse shape

Electric Field of Pulse: Gaussian Bunch

E-Field given by $E(t)=2 \operatorname{Re} \int_{0}^{\infty} \tilde{E}_{0}(\omega) \tilde{\rho}(\omega) \mathrm{e}^{-\mathrm{i} \omega t} \mathrm{~d} \omega$

- Input:
- Gaussian bunch profile
 17 data points in interval 0.3 containing $>99.9 \%$ of charge $Q 0.2$
- low-frequency synchrotron spectrum $\tilde{E}_{0}(\omega)=\omega^{1 / 6}$
- Result

-References
- M. Schwarz et al. PRSTAB, 17, 050701 (2014)
- M. Schwarz et al. IPAC'14, MOPRO067
- M. Schwarz et al. IPAC'15, MOPHA043

Method/ Property	DPT	Analytic Gauss Profile	Analytic Interpolation	Semi- analytic
General bunch profile	\checkmark	x	\checkmark	\checkmark
General spectra	\checkmark	x	x	\checkmark
Δ peak field	x (22%)	\checkmark $(e x a c t)$	\checkmark $(1$ permille) $)$	\checkmark (1%)

