Hard Diffraction at LHC

Henri Kowalski DESY
SM-Workshop
Zeuthen, 24th of October 2006

Outline

Short review of Hard Diffraction at HERA at small x

Transition to pp collisions
Hard diffraction at LHC at small x

- Exclusive Jets
- Higgs
- Calibration Reactions

Forward Protons at 420m Project - FP420

- Calibration Reactions

Tevatron results

Gluon density

Gluon density dominates F_{2} for $x<0.01$

Diffractive Scattering

Diffractive Event

M_{X} - invariant mass of all particles seen in the central detector
t - momentum transfer to the diffractively scattered proton t - conjugate variable to the impact parameter

Observation of diffraction indicates that single ladder may not be sufficient (partons produced from a single chain have exponentially suppressed rap. gaps)

Inclusive DIS

Hard Diffraction

$$
\begin{array}{cc}
\text { Dipole Models } & \text { Glauber } \\
\text { equivalent to LO perturbative QCD for small dipoles } & \text { Mueller }
\end{array}
$$

$$
\text { Dipole XS } \frac{d \sigma}{d^{2} b}=2(1-\exp (-\Omega / 2))=\Omega-\Omega^{2} / 4+\ldots
$$

Dipole Models

 equivalent to LO perturbative QCD for small dipolesGBW - Golec-B, Wuesthoff
BGBK - Bartels, Golec-B, Kowalski
KT - Kowalski, Teaney
KMW - Kowalski, Motyka, Watt

$\Omega=\frac{\pi^{2}}{N_{C}} r^{2} \alpha_{s}\left(\mu^{2}\right) \times g\left(x, \mu^{2}\right) T(b)$ $Q^{2}=0$
$\begin{array}{ll}\text { ZEUS } \\ \text { - } 170<W<230 \mathrm{GeV} & \mathrm{e}^{+} e^{-} \\ 070<w<90 \mathrm{GeV} & \mathrm{e}^{+} e^{-} \\ \text {(} 70<w<90 \mathrm{GeV} & \mu^{+} \mu^{-} \\ \text {- } 30<\mathrm{W}<50 \mathrm{GeV} & \mu^{+} \mu^{-}\end{array}$

- $\| P-\mathbb{S}, \operatorname{Tor}(b)$ $\cdots \| P=\mathbb{S}, T_{G}(b)$

$$
\begin{aligned}
& \frac{d \sigma^{\text {diff }}}{d t} \sim \exp (B \cdot t) \\
& \Rightarrow T(b) \sim \exp \left(-\vec{b}^{2} / 2 B\right)
\end{aligned}
$$

$$
\begin{gathered}
\text { proton } \\
\text { phape } \\
\text { shar } \\
\text { shar } \\
\end{gathered}
$$

$$
\frac{d \sigma_{V M}^{*} \psi^{*}}{d t}=\frac{1}{16 \pi}\left|\int d^{2} \vec{r} \int d^{2} b e^{-i \vec{b} \cdot \bar{x}} \int_{0}^{1} d z \Psi_{V M}^{*} 2\left\{1-\exp \left(-\frac{\Omega}{2}\right)\right\} \Psi\right|^{2}
$$

Total $\gamma^{*} p$ cross-section
v H 1 96-97

- ZEUS 96-97
- IP-Sat
Q^{2}
0
0
0
0
$=0$
$Q^{2}\left(\mathrm{GeV}^{2}\right)$
(scole)
0.25 (3.1)
0.30 (2.4)
$0.40(1.8)$
$0.50(1.4)$
0.65 (1.1)
$2.5(1.3)$
2.7 (1.1)
$3.5(1)$
$4.5(1)$
$6.5(1)$
8.5 (1)

10. (1)
$\left.\begin{array}{l}\text { 12. } \\ -15 .(1)\end{array}\right)$
20.0 (1)
11. (1)
$-$

KMW

$$
\begin{aligned}
& \mu^{2}=\frac{C}{r^{2}}+\mu_{0}^{2} \\
& x g\left(x, \mu_{0}^{2}\right)=A_{g}\left(\frac{1}{x}\right)^{\lambda_{g}}(1-x)^{5.6}
\end{aligned}
$$

from fit to $\sigma_{\text {tot }}$ predict $\sigma^{\text {diff }}$ GBW, BGBK,

Inclusive Diffraction

Dipole cross section determined by fit to F_{2}
Simultaneous description of many reactions

Vector Mesons

Diffractive Di-jets
 $Q^{2}>5 \mathrm{GeV}^{2}$

ZEUS

KMR Calculation of the Exclusive Diffractive Process
Khoze Martin
 Ryskin
assuming

$$
f \sim\left(Q^{2}\right)^{\gamma}
$$

$$
Q \sim \frac{M_{H}}{2} \exp \left(-\frac{2 \pi}{N_{c} \alpha_{S}} \frac{\left[\frac{n}{2}-1-2 \gamma\right]}{2}\right)
$$

$$
\alpha_{s}=0.2, M_{N}=100 \mathrm{GcV}, n=4, \gamma=0.2
$$

$\Rightarrow\{2 \mathrm{GeV}\}$

$$
\begin{aligned}
& f\left(x_{1}, Q_{\perp}^{2}\right)=\frac{\partial G\left(x, Q_{\perp}^{2}\right)}{\partial Q_{\perp}^{2}} \quad\left(x_{i}=x_{i}\right)
\end{aligned}
$$

Dominant uncertainty: KMR estimate factor of 2-3. \square
Divergent: controlled by Sudakov
As $Q_{T} \rightarrow 0$ so the screaming gluon fails to screen and $P_{T} \approx 0$ emission is allowed. Hence e^{-s} vanishes fasts then any power of Q_{T}.

exponentiating generates a factor in amplitude of

$$
\exp (-S)=\exp \left(-\frac{c_{A}}{\pi} \int_{Q_{T}^{2}}^{\operatorname{sim}} \alpha \frac{m_{M}^{2}}{P_{T}^{2}} \int_{P_{T}}^{M_{M}} \frac{d E}{E}\right) \leftarrow \text { double logs }
$$

B. Cox based on Jeff Forshaw

Survival Probability

t - distributions at LHC

Effects of soft proton absorption modulate the hard t-distributions
t-measurement will allow to disentangle the effects of soft absorption from hard behavior

$$
F\left(\vec{p}_{1 t}, \vec{p}_{2 t}\right)=\frac{\beta^{2}\left(t_{1}\right) \beta^{2}\left(t_{2}\right)}{\left\langle S^{2}>\pi^{2} / b_{0}^{2}\right.} S^{2}\left(\vec{p}_{1 t}, \vec{p}_{2 t}\right)
$$

Exclusive Double Diffractive Reactions at LHC

$x_{I P}=\Delta p / p, p_{T}$ $x_{I P} \sim 0.2-1.5 \%$ Leading proton		Central Detector System $x_{I P}=\Delta p / p, p_{T}$ $x_{I P} \sim 0.2-1.5 \%$ Leading proton		
detector		1 event/sec		High momentor measurement mecision
:---				

low $\times Q C D$ reactions (KMR)

$$
\begin{aligned}
& \mathrm{pp}=>\mathrm{pp}+g_{\text {Jet }} g_{\text {Jet }} \sigma \sim 1 \mathrm{nb} \text { for } M(\mathrm{jj}) \sim 50 \mathrm{GeV} \\
& \sigma \sim 0.5 \mathrm{pb} \text { for } M(j \mathrm{j}) \sim 200 \mathrm{GeV} \\
& \eta_{\text {JET }} \mid<1 \\
& \mathrm{pp}=>\mathrm{pp}+\text { Higgs } \sigma \sim \mathrm{O}(3) \mathrm{fb} \mathrm{SM} \quad \text { (inclusive } \sim 20 \mathrm{pb} \text {) } \\
& \sim \mathrm{O}(100) \mathrm{fb} \text { MSSM }
\end{aligned}
$$

The 420 m region at the LHC

| Line | $T(K)$ | $\varnothing_{i}-\varnothing_{e}(\mathrm{~mm})$ |
| :--- | :--- | :--- | :--- | :--- |
| $M 1, M 2, M 3$
 Bus-bars | 1.9 | $80-84$ |
| N | | |
| Auxiliary bus-bars | | |

FP420 Silicon Detector Stations

FP 420 Connection Cryostat Design

Background Reactions

Main limits on the beam lifetime at LHC is due to strong interactions $\sigma_{\text {tot }} \sim \mathbf{O}(\mathbf{1 0 0}) \mathrm{mb}$

$$
\left(L=10^{34} \mathrm{~cm}^{-2} \sec ^{-1}\right) \cdot\left(\sigma=100 \cdot 10^{-3} \cdot 10^{-24} \mathrm{~cm}^{2}\right)=10^{9} \text { events } / \mathrm{sec}
$$

$$
\text { Beam lifetime } \quad 2808 \cdot 1.15 \cdot 10^{11} /\left(2 \cdot 10^{9} \cdot 3600\right) \sim \underline{O(40)} \text { hours }
$$

Elastic scattering - $\sigma_{e l} \sim O(30) \mathrm{mb}$

Inclusive scattering - $\sigma_{\text {inc }} \sim(50) m b$

Proton dissociation - $\sigma_{e l} \sim 2 O(10) \mathrm{mb}$ for $x_{I P} \sim 1-30 \%$ Main source of the machine background. Leads to a rate of $O\left(10^{8}\right)$ forward protons/sec. Attention!!! It is above the magnet quench limit of 810^{6} protons $/ \mathrm{m} / \mathrm{sec}$

Machine background from proton dissociation reactions LHC Project Note 240, 208
I. Baishev,
J.B. Jeanneret, G.R. Stevenson

Special collimator

Physics background from proton dissociation reactions

420 m detector sees protons with $x_{I P} \sim 0.2-1.5 \%$ and $\sigma_{\text {dis }} \sim 3 \mathrm{mb} \sim$ At luminosity of $10^{34} \mathrm{~s}^{-1} \mathrm{~cm}^{2}$ there will be $\sim 310^{7}$ protons/sec ~ 1 proton per bunch crossing

However, these protons are produced in a soft interaction together with a particle cloud of a mass $M_{X} \sim 700-1700 \mathrm{GeV}$. Such a large mass cannot escape undetected in the central detector.

FP420 Fast timing Detectors

Stating the obvious, but $\longrightarrow z_{0}=\left(\frac{c}{2}\right) \times\left(\frac{1}{t_{1}-t_{0}}+\frac{1}{t_{2}-t_{0}}\right)$

$$
\text { if } z_{1}=z_{2}
$$

- 1\% events at LHC have diffractive proton track in FP420
- @ $2 \times 10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}, 7$ interactions / bunch crossing
- -> 30% of FP420 events have an additional track
- Matching mass and rapidity of central system removes large fraction of these
- Of the remaining, 97.4% rejected by fast timing detectors with 10ps timing resolution (2.1 mm) .

FP420 alignment

$5 \mu \mathrm{~m}$ will be possible - test bench under construction at CERN

Intrinsic Higgs mass resolution: $\sim 5 \mu \mathrm{~m} / 1.5 \mathrm{~cm} \sim 3 \times 10^{-4}$ Helene Mainaud-Durand, CERN

FP420 Acceptance and Resolution

$3 \mathrm{~mm}+3 \mathrm{~mm}$

$7.5 \mathrm{~mm}+3 \mathrm{~mm}$

Plots : P. Bussey using ExHuME / FPTrack

Mass of Higgs (GeV)

Precise measurement of the Higgs Mass

New Physics in Diffraction?

J. Ellis, HERA-LHC Workshop

Higher symmetries (e.g. Supersymmetry) lead to existence of several scalar, neutral, Higgs states, H, h, A . . . Higgs Hunter Guide, Gunnion, Haber, Kane, Dawson 1990

In MSSM Higgs x-section are likely to be much enhanced as compared to Standard Model (tan β large because $M_{\text {Higgs }}>115 \mathrm{GeV}$)
$C P$ violation is highly probable in MSSM \longrightarrow all three neutral Higgs bosons have similar masses $\sim 120 \mathrm{GeV} \longrightarrow$ can ONLY be RESOLVED in DIFFRACTION

Ellis, Lee, Pilaftisis Phys Rev D, 70, 075010, (2004), hep-ph/0502251 Correlation between transverse momenta of the tagged protons give a handle on the CP-violation in the Higgs sector

FP420 Physics Highlights

The intense coupling regime is where the masses of the 3 neutral Higgs bosons are close to each other and $\tan \beta$ is large
$\gamma \gamma, W W^{\star}, Z Z^{\star}$ suppressed $g g \rightarrow \phi$ enhanced
0^{++}selection rule suppresses A production:

 CEDP 'filters out' pseudoscalar production, leaving pure H sample for study
$\mathrm{M}_{\mathrm{A}}=130 \mathrm{GeV}, \tan \beta=50$
$M_{h}=124 \mathrm{GeV}$: 71 signal / 10 background in $30 \mathrm{fb}^{-1}$ $\mathrm{M}_{\mathrm{H}}=135 \mathrm{GeV}: 124$ signal / 5 background in $30 \mathrm{fb}^{-1^{-10^{-2}} \frac{1}{100}}{ }^{125} \mathrm{~m}_{\mathrm{A}}(\mathrm{GeV})$
 $M_{A}=130 \mathrm{GeV}: 1$ signal / 5 background in $30 \mathrm{fb}^{-1}$

Well known difficult region for conventional channels, tagged channel may well be the discovery channel, and is certainly a powerful spin/parity filter

CP violation in the Higgs Sector

bb decay

$\tau \tau$ decay

$\tau \tau$ decay

This example shows that exclusive double diffraction may offer unique possibilities for exploring Higgs physics in ways that would be difficult or even impossible in inclusive Higgs production. In particular, we have shown that exclusive double diffraction constitutes an efficient CP and lineshape analyzer of the resonant Higgs-boson dynamics in multi-Higgs models. In the specific case of CP-violating MSSM Higgs physics discussed here, which is potentially of great importance for electroweak baryogenesis, diffractive production may be the most promising probe at the LHC.

FP420 alignment

- @ $1 \times 10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ expect $\sim 100 \mu^{+} \mu$ - events / fill with standard trigger thresholds
- Simulations (Louvain) indicate precision is better than necessary (theoretical limit is LHC beam energy uncertainty, $\sigma_{0}=0.77 \mathrm{GeV} \sim 50$ microns)
(also $\gamma \gamma \mathrm{WW}, \mathrm{M}_{\gamma \gamma}>200 \mathrm{GeV}, \sigma \sim 100 \mathrm{fb}$-> very high sensitivity to anomalous quartic couplings)

Diffractive Trigger

Example: central exclusive diffractive jet-jet system, $\left|\eta_{J E T}\right|<1$

Rapidity Gap Trigger - effective up to luminosity of $0.5 \times 10^{33} \mathrm{~cm}^{-2} \mathrm{sec}^{-1}$ ATLAS L1: no hits in the end-caps, $2<|\eta|<4$, threshold $\sim 1 \mathrm{GeV}$ in p_{T} ~ 6 particles/ per unit of rap expected with $\mathrm{p}_{\mathrm{T}}>1 \mathrm{GeV}$ (Pythia) suppression factor $O\left(10^{11}\right)$

Veto on LUCID - suppression factor $O\left(10^{3}\right)$

Physical importance: clean source of gluon jets X-section closely related to diffractive Higgs

Diffractive Trigger

Example: diffractive Higgs production in CMS (INFN investigation)

Up to 20\% of bb Higss decay events can be saved with μ triggers of the central detector at all luminosities, WW ${ }^{*}$) channels have high trigger efficiency.
Rapidity Gap Trigger - effective up to luminosity of $\sim 10^{32}$

Trigger Tag at $220 \mathrm{~m}+$ topological cuts - effective up to luminosity of 2×10^{33} (CMS)

Trigger with 420 m counters require increase in latency from 3 to $4 \mu s$
remark about ATLAS
220/240m counters more effective in the IP1 than in IP5 region

FP420 Collaboration

FP420 : An R\&D Proposal to Investigate the Feasibility of Installing Proton Tagging Detectors in the 420m Region at LHC

M. G. Albrow ${ }^{1}$, T. Anthonis ${ }^{2}$, M. Arneodo ${ }^{3}$, R. Barlow ${ }^{2,4}$, W. Beaumont ${ }^{5}$, A. Brandt ${ }^{6}$, P. Bussey ${ }^{7}$, C. Buttar ${ }^{7}$, M. Capua ${ }^{8}$ J. E. Cole ${ }^{9}$, B. E. Cox ${ }^{2, *}$, E. A. De Wolf ${ }^{5}$, C. DaVia ${ }^{10}$, A. DeRoeck ${ }^{11, *}$, J. Freeman 1, J. R. Forshaw ${ }^{2}$, P. Grafstrom ${ }^{11,+}$, J. Gronberg ${ }^{12}$, M. Grothe ${ }^{13}$, G. P. Heath ${ }^{9}$, V Hedberg ${ }^{14,+}$, B. W. Kennedy ${ }^{15}$, C. Kenney ${ }^{16}$, H. Kowalski ${ }^{17}$, V. A. Khoze ${ }^{18}$, Y. Liu ${ }^{5}$, F. K. Loebinger 2, J. Lamsa ${ }^{19}$, A. Mastroberardino ${ }^{8}$, O. Militaru ${ }^{5}$, D. M. Newbold ${ }^{9,15}$, R. Orava ${ }^{19}$, K Osterberg 19, V. O'Shea ${ }^{7}$, S. Parker ${ }^{20}$, J. Pinfold ${ }^{21}$, P. Petroff ${ }^{22}$, K. Piotrzkowski ${ }^{23}$, J. Rohlf ${ }^{24}$, M. G. Ryskin 16, G. Snow ${ }^{25}$, A. Sobol ${ }^{25}$, A. Solano ${ }^{12}$, M. Tasevsky ${ }^{26}$, M. Rijssenbeek ${ }^{27}$, L. Rurua ${ }^{5}$, M Ruspa ${ }^{3}$, D. H. Saxon ${ }^{7}$, W. J. Stirling ${ }^{16}$, E. Tassi ${ }^{8}$, P. Van Mechelen ${ }^{5}$, S. J. Watts ${ }^{10}$

1. FNAL
2. The University of Manchester
3. University of Eastern Piedmont, Novara and INFN-Turin
4. The Cockcroft Institute
5. University of Antwerpen
6. University of Texas at Arlington
7. The University of Glasgow
8. The University of Calabria and INFN
9. Bristol University
10. Brunel University
11. CERN
12. Lawrence Livermore National Laboratory
13. University of Turin and INFN-Turin
14. University of Lund
15. Rutherford Appleton Laboratory
16. Molecular Biology Consortium
17. DESY
18. Institute for Particle Physics Phenomenology, Durham University
19. Helsinki Institute of Physics and University of Helsinki
20. University of Hawaii
21. University of Alberta
22. LAL Orsay
23. UC Louvain
24. Boston University
25. University of Nebraska
26. Institute of Physics, Academy of Sciences of the Czech Republic
27. Stony Brook University
"The panel believed that this offers a unique opportunity to extend the potential of the LHC and has the potential to give a high scientific return." - UK PPRP (PPARC)

R\&D now fully funded : £500k from UK (Silicon, detector stations, beam pipe + LHC optics and cryostat design), \$100k from US (QUARTIC), €100k Belgium (+Italy / Finland) (mechanics)
!!
Detectors at 420 m are in the process of becoming an official ATLAS Upgrade Program

Summary

Central system produced in exclusive hard diffraction reactions is, to a good approximation, 0^{++}. A new states produced with proton tags has therefore know quantum numbers.

- CP violation in the Higgs sector shows up directly as azimuthal asymmetries
- Proton tagging may be the discovery channel in certain regions of the MSSM
- Tagging the protons means excellent mass resolution irrespective of the decay products of the central system
- Diffractive LHC ~ Gluon Collider - pure gluon jets
- ATLAS Upgrade Program in 420m region is in preparation

Exclusive $e^{+} e^{-}$pairs

16 events observed

> | Estimated background $=2.1_{-0.3}^{+0.6}$ |
| :--- |
| (mostly p-dissociation) |
| $\sigma_{\text {MEAS. }}=1.6_{-0.3}^{+0.5}$ (stat) $\pm 0.3($ syst $) \mathrm{pb}$ |
| Poisson Prob. $=3 \times 10^{-8} \approx 5.5 \mathrm{\sigma}$ |

QED: LPAIR Monte Carlo
$\longrightarrow \sigma_{\mathrm{QED}}=(1.711 \pm 0.008) \mathrm{pb}$

Exclusive $\gamma \gamma$ pairs

3 events observed

Estimated background $=0.0_{-0.0}^{+0.3}$ events (p-dissociation, exclusivity, fakes)
$\sigma_{\text {MEAS. }}=0.14_{-0.04}^{+0.14}$ (stat) ± 0.03 (syst) pb
Poisson Prob. $(0.3 \rightarrow \geq 3)=3.6 \times 10^{-3}$ (conservative)
KMR (Durham) prediction $=0.04 \times \div(3-5) \mathrm{pb}$

$$
\text { Note : } \sigma_{\text {MEAS }} \approx 2 \times 10^{-12} \sigma_{\text {INEL }}!
$$

It means exclusive H must happen (if H exists) and probably $\sigma \sim 10 \mathrm{fb}$ within factor ~ 2.5 .
σ higher in MSSSM

Evidence for Exclusive Production

(a)

$\mathrm{J}_{\mathrm{z}}=0$-> for colour singlet bbar production, the born level contributions of a) and b) cancel in the limit $\mathrm{m}_{\mathrm{b}}->0$

CDF Run II Preliminary

Coasted Beam Optics

x - transverse deviation from the beam position
x, - transverse angular deviation

β-amplitude function, Ψ-phases, D-dispersion can be obtained from the LHC Optic Webpage Coasted beam optics is considerably easier to handle than ray tracking in MAD
x, x, are moving on Phase Ellipse

$$
\alpha \neq 0 \quad \sigma_{x}=\sqrt{\varepsilon \beta_{x}} \quad \sigma_{x^{\prime}}=\sqrt{\frac{\varepsilon\left(1+\alpha_{x}^{2}\right)}{\beta_{x}}}
$$

LHC High Luminosity Optics

Interaction point $\begin{cases}\beta_{x}=\beta_{y}=0.55 \mathrm{~m} & \varepsilon_{N}=3.75 \mu \mathrm{rad} \cdot \mathrm{m} \\ \sigma_{x}=\sigma_{y}=\sqrt{\varepsilon \beta}=16.6 \mu \mathrm{~m} & \varepsilon=\varepsilon_{N} / \gamma \\ \sigma_{x^{\prime}}=\sigma_{y^{\prime}}=\sqrt{\frac{\varepsilon\left(1+\alpha^{2}\right)}{\beta}}=30.2 \mu \mathrm{rad} & \Rightarrow \mathbf{p}_{\mathbf{T}^{2}} \sim 200 \mathrm{MeV}\end{cases}$
420 m point $\begin{cases}\beta_{x}=130 \mathrm{~m} & \beta_{y}=50 \mathrm{~m} \\ \sigma_{x}=250 \mu \mathrm{~m} & \sigma_{y}=160 \mu \mathrm{~m} \\ \sigma_{x^{\prime}}=4.5 \mu \mathrm{rad} & \sigma_{y^{\prime}}=4.5 \mu \mathrm{rad}\end{cases}$
LHC HL Optics: transverse deviations are magnified, angular deviations are diminished

Beam Halo background from beam-beam tune shift

In bunch-bunch collision the particle of one bunch see the other bunch as a nonlinear lens. Focusing properties are changing => protons of large amplitude
are getting out of tune after many crossings
Estimate of the proton loss: \# protons / beam lifetime (4Oh)

1 beam halo proton per ~ 80 bunches at the top luminosity Presumably even considerably smaller in the 420 m region, in the shadow of the incoming collimator, after D2 (R. Assmann)

Multiple Interactions and Long Range Correlation

QCD diagrams

AGK rules in the Dipole Model

$$
\frac{d \sigma_{k}}{d^{2} b}=\frac{\Omega^{k}}{k!} \exp (-\Omega)
$$

$$
\Omega=\frac{\pi^{2}}{N_{C}} r^{2} \alpha_{s}\left(\mu^{2}\right) \times g\left(x, \mu^{2}\right) T(b)
$$

Note: AGK rules underestimate the amount of diffraction in DIS

$$
\frac{d \sigma_{q q}}{d^{2} b}=2 \cdot\left\{1-\exp \left(-\frac{\Omega}{2}\right)\right\}
$$

$$
\frac{d \sigma_{k}}{d^{2} b}=\frac{\Omega^{k}}{k!} \exp (-\Omega)
$$

Description of the size of interaction region B_{D}

$$
\frac{d \sigma^{\text {diff }}}{d t} \sim \exp \left(B_{D} \cdot t\right) \quad \Rightarrow T(b) \sim \exp \left(-\vec{b}^{2} / 2 B_{G}\right)
$$

Modification by Bartels, Golec-Biernat, Peters $e^{i \vec{b} \cdot \vec{\Delta}} \rightarrow e^{i(\vec{b}+(1-z) \vec{r}) \cdot \vec{\Delta}}$

$\gamma \mathbf{p} \rightarrow \phi \mathbf{p}$

Utilisation des modules ATM pour le Projet FP420

T. Renaglia

Résumé

Le but de cette note est de résumer les premières caractéristiques de l'intégration de 2 modules ATM pour le projet FP420 (voir note technique EDMS n ${ }^{\circ} 743628$) ainsi que la liste des problèmes découverts à ce jour sur l'utilisation de ces modules dans sa nouvelle fonctionnalité.

Computation of Diffractive Processes at LHC

Khoze - Martin - Ryskin Approach

$$
\begin{aligned}
& \sigma=L \cdot \hat{\sigma} \\
& M^{2} \frac{\partial L}{\partial y \partial M^{2}}=S^{2} L^{\text {exclusive }} \text { Gluon Luminosity } \\
& L^{\text {exclusive }}=\left(\frac{\pi}{\left(N_{c}^{2}-1\right) b} \int \frac{d Q_{t}^{2}}{Q_{t}^{4}} f_{g}\left(x_{1}, x_{1}^{\prime}, t, Q_{t}, \mu\right) f_{g}\left(x_{2}, x_{2}^{\prime}, t, Q_{t}, \mu\right)\right)^{2}
\end{aligned}
$$

f_{g} unintegrated (skewed) gluon densities obtained from low-x data of HERA

$$
\begin{aligned}
& g 9->\mathrm{Jet}+\mathrm{Jet} \\
& \frac{d \hat{\sigma}}{d t} \approx \frac{9}{4} \frac{\pi \alpha_{s}^{2}}{E_{T}^{4}} \\
& g 9 \rightarrow \text { Higgs } \\
& \hat{\sigma}_{\text {Higgs }} \propto \Gamma_{\text {Higgs }}
\end{aligned}
$$

$$
\begin{aligned}
& f_{g}\left(x, x^{\prime}, t, Q_{t}, \mu\right)=\beta(t) \cdot R_{g} \cdot \frac{\partial}{\partial \ln Q_{t}^{2}}\left[\sqrt{T\left(Q_{t}, \mu\right)} \cdot x g\left(x, Q_{t}^{2}\right)\right] \\
& T\left(Q_{t}, \mu\right)=\exp \left(-\int_{Q_{t}^{2}}^{\mu^{2}} \frac{\alpha_{S}\left(k_{t}^{2}\right)}{2 \pi} \frac{d k_{t}^{2}}{k_{t}^{2}} \int_{0}^{k_{t}^{\prime} /\left(\mu+k_{t}\right)} z P_{g g}(z) d z\right) \\
& f_{g}\left(x_{1}, x_{1}^{\prime}, t, Q_{t}, \mu\right)=\beta(t) f_{g}\left(x_{1}, x_{1}^{\prime}, t=0, Q_{t}, \mu\right) \quad b(t)=\exp (B t / 2)
\end{aligned}
$$

Note: $x g(x,$.$) drive the rise of F_{2}$ at HERA and Gluon Luminosity decrease at LHC

