

— Plan of Talk

- Profile of B-Physics at the LHC
- ullet Current Knowledge of $|V_{
 m CKM}|$
- B-Factory measurements of $lpha,eta,\gamma$ and improvements at the LHC
- Some selected Radiative Rare B-Decays
 - ullet $b
 ightarrow s \gamma$: SM vs. Experiment
 - ullet $b
 ightarrow d\gamma$: Example: $B
 ightarrow (
 ho, \omega)\gamma$: Current Status
- Dilepton Mass Spectrum and Leptonic Forward-Backward Asymmetry in $B \to K^* \ell^+ \ell^-$: Current Status and Benchmark Measurements
- ullet The Decay $B_s
 ightarrow \mu^+ \mu^-$ in the SM and SUSY

• Summary

B-factories vs. b-factory

Production σ_{bb} 1 nb~500 µbTypical bb rate10 Hz100–1000 kHzbb purity~1/4 $\sigma_{bb}/\sigma_{inel} = 0.6\%$ Trigger is a major issue !Pileup00.5–5b-hadron types $B^+B^-(50\%)$ $B^0B^0(50\%)$ $B^+(40\%)$, $B^0(40\%)$, $B_s(10\%)$ $B_c (< 0.1\%)$, b-baryons (10%)b-hadron boostSmallLarge (decay vertexes well separa Production vertexProduction vertexNot reconstructed Coherent $B^0\overline{B}^0$ pairIncoherent B^0 and B, mixing	e+e	$e^{-} \rightarrow \Upsilon (4S) \rightarrow B\overline{B}$	$pp \rightarrow b\overline{b}X (\sqrt{s} = 14 \text{ TeV}, \Delta t_{bunch} = 25 \text{ m}$	
Typical bb rate10 Hz100–1000 kHzbb purity~1/4 $\sigma_{bb}/\sigma_{inel} = 0.6\%$ Trigger is a major issue !Pileup00.5–5b-hadron types $B^+B^-(50\%)$ $B^0B^0(50\%)$ $B^+(40\%)$, $B^0(40\%)$, $B_s(10\%)$ $B_c(< 0.1\%)$, b-baryons (10%)b-hadron boostSmallLarge (decay vertexes well separa Reconstructed (many tracks)Production vertexNot reconstructed Coherent $B^0\overline{B}^0$ pairIncoherent B^0 and B_s mixing		PEPII, KEKB	LHC (LHCb–ATLAS/CMS)	
$b\overline{b}$ purity~1/4 $\sigma_{bb}/\sigma_{inel} = 0.6\%$ Trigger is a major issue !Pileup00.5-5b-hadron types $B^+B^-(50\%)$ $B^0\overline{B}^0(50\%)$ $B^+(40\%)$, $B^0(40\%)$, $B_s(10\%)$ $B_c(< 0.1\%)$, b-baryons (10%)b-hadron boostSmallLarge (decay vertexes well separated the sep	oduction σ_{bb}	1 nb	~500 µb	\bigcirc
BillingTrigger is a major issue !Pileup0b-hadron types $B^+B^-(50\%)$ $B^0\overline{B}^0(50\%)$ $B^+(40\%)$, $B^0(40\%)$, $B_s(10\%)$ $B_c(<0.1\%)$, b-baryons (10%)b-hadron boostSmallLarge (decay vertexes well separated the separate the separated th	pical bb rate	10 Hz	100–1000 kHz	
b-hadron types B^+B^- (50%) $B^0\overline{B}^0$ (50%) B^+ (40%), B^0 (40%), B_s (10%) B_c (< 0.1%), b-baryons (10%)b-hadron boostSmallLarge (decay vertexes well separate Reconstructed (many tracks)Production vertexNot reconstructedReconstructed (many tracks)Number of the production of the production vertexCoherent $B^0\overline{B}^0$ pairIncoherent B^0 and B_s mixing	bb purity	~1/4	$\sigma_{bb}/\sigma_{inel} = 0.6\%$ Trigger is a major issue !	
b-hadron boostSmallLarge (decay vertexes well separaProduction vertexNot reconstructedReconstructed (many tracks)Not reconstructedCoherent $B^0\overline{B^0}$ pairIncoherent B^0 and B, mixing	Pileup	0	0.5–5	
Production vertexNot reconstructedReconstructed (many tracks)Note to be and the second se	hadron types	${f B^+ B^- (50\%) \over B^0 B^0 (50\%)}$	B^+ (40%), B^0 (40%), B_s (10%) B_c (< 0.1%), b-baryons (10%)	
N $(1 \text{ D}) (1 \text{ D}) (1 \text{ Coherent } B^0 \overline{B}^0 \text{ pair } Incoherent B^0 \text{ and } B, mixing)$	hadron boost	Small	Large (decay vertexes well separated)	
Neutral B mixing Coherent $B^0\overline{B}^0$ pair Incoherent B^0 and B_s mixing (extra flavour tagging dilution)	duction vertex N	lot reconstructed	Reconstructed (many tracks)	
	itral B mixing	oherent B ⁰ B ⁰ pair mixing	Incoherent B ⁰ and B _s mixing (extra flavour-tagging dilution)	
Event structureBB pair aloneMany particles not associated with the two b hadrons	ent structure	BB pair alone	Many particles not associated with the two b hadrons	

Completing the program on B Physics...

> Precise measurement of $B_s^0-\overline{B}_s^0$ mixing: Δm_s , $\Delta \Gamma_s$ and phase ϕ_{s} .

- $\begin{array}{l} \mathsf{B}_{s} \rightarrow \mathsf{D}_{s} \pi, \ \dots \\ \mathsf{B}_{s} \rightarrow \mathsf{J}/\psi \phi, \ \mathsf{B}_{s} \rightarrow \mathsf{J}/\psi \eta^{(\prime)} \end{array}$
- Search for effects of NP appearing in suppressed and rare exclusive and inclusive B decays
- Precise γ determinations including processes only at tree-level, in order to disentangle possible NP contributions
- Other measurements of CP phases in different channels to over-constrain the Unitarity Triangles

Vancouver, 9-12 April 2006

 $\begin{array}{l} \mathsf{B}_{(s)}{}^{0} \rightarrow \mathsf{X}\gamma, \ \mathsf{B}^{0} \rightarrow \mathsf{K}^{\star 0}\mathsf{I}^{+}\mathsf{I}^{-}, \\ \mathsf{b} \rightarrow \mathsf{s}\mathsf{I}^{+}\mathsf{I}^{-}, \ \mathsf{B}_{s} \rightarrow \mu^{+}\mu^{-}... \end{array}$

 $\begin{array}{l} \mathsf{B}_{s} \rightarrow \mathsf{D}_{s}\mathsf{K}, \\ \mathsf{B}^{0} \rightarrow \mathsf{D}^{0}\mathsf{K}^{*0}, \ \mathsf{B}^{\pm} \rightarrow \mathsf{D}\mathsf{K}^{\pm}, \\ \mathsf{B}^{0} \rightarrow \pi\pi \ \& \ \mathsf{B}_{s} \rightarrow \mathsf{K}\mathsf{K}, \ \dots \end{array}$

 $B^{0} \rightarrow \phi K_{s}, B_{s} \rightarrow \phi \phi, \dots$ $B^{0} \rightarrow \rho \pi, B^{0} \rightarrow \rho \rho, \dots$

Andreas Schopper

Flavor Physics and CP Violation

Expected Physics Performance

B-mixing:

Vancouver, 9-12 April 2006

 \blacktriangleright "control channel" B⁰ \rightarrow J/ ψ K_s $\succ \Delta m_s$ with $B_s^0 \rightarrow D_s \pi$ $\blacktriangleright \phi_s$ and $\Delta \Gamma_s$ with $B^0_s \rightarrow J/\psi \phi(\eta)$ Suppressed and rare decays: \blacktriangleright Exclusive b \rightarrow s $\mu^+\mu^ \succ$ B_s⁰ \rightarrow $\mu^+\mu^-$ <u>Measurement of γ :</u> \succ from $B_s \rightarrow D_s K$ \succ from B⁰ \rightarrow D⁰K^{*0} \succ from $B^{\pm} \rightarrow DK^{\pm}$ \succ from B⁰ $\rightarrow \pi^+\pi^-$ and B_s $\rightarrow K^+K^-$

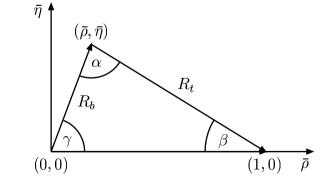
Andreas Schopper

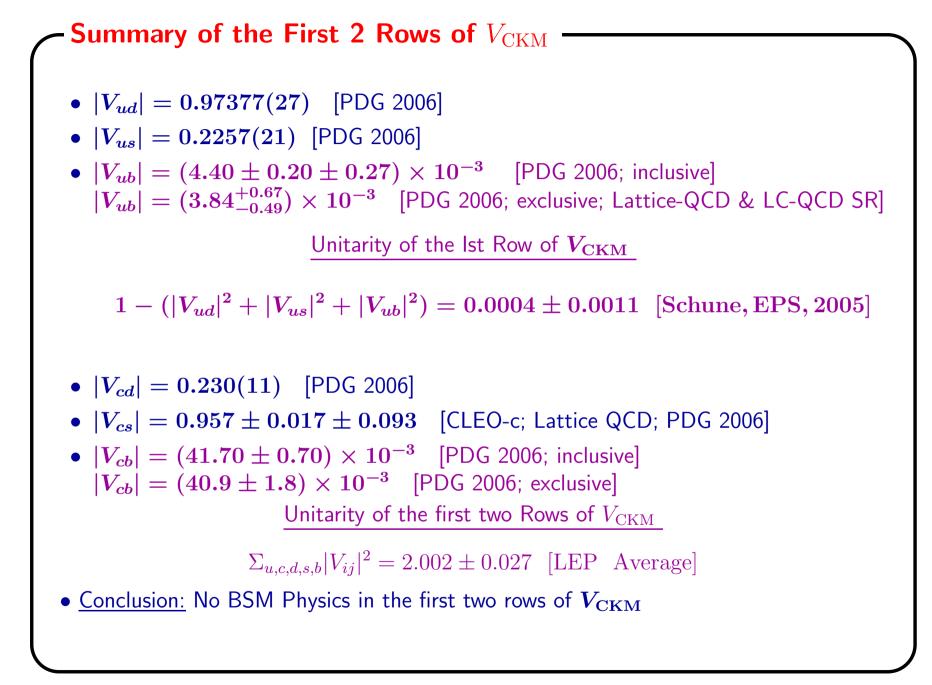
Flavor Physics and CP Violation

15

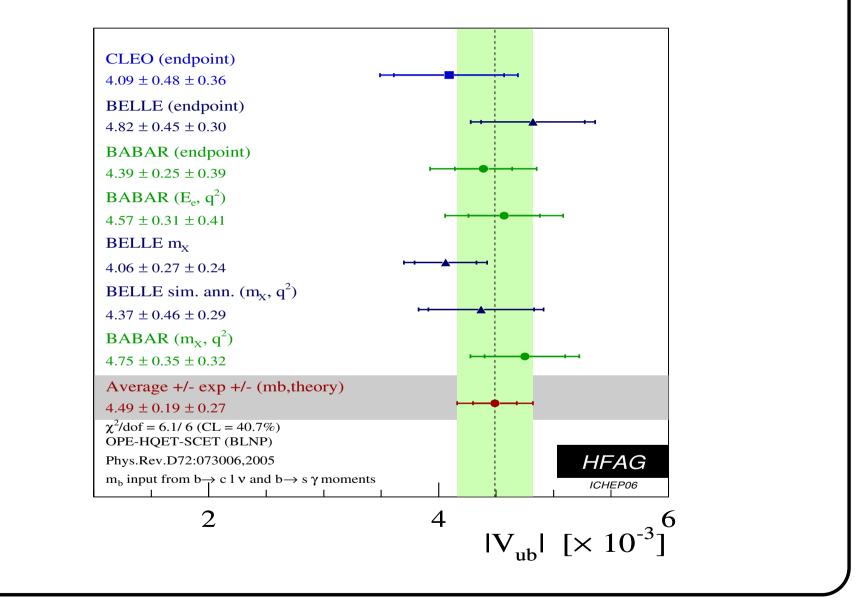
The Cabibbo-Kobayashi-Maskawa Matrix -

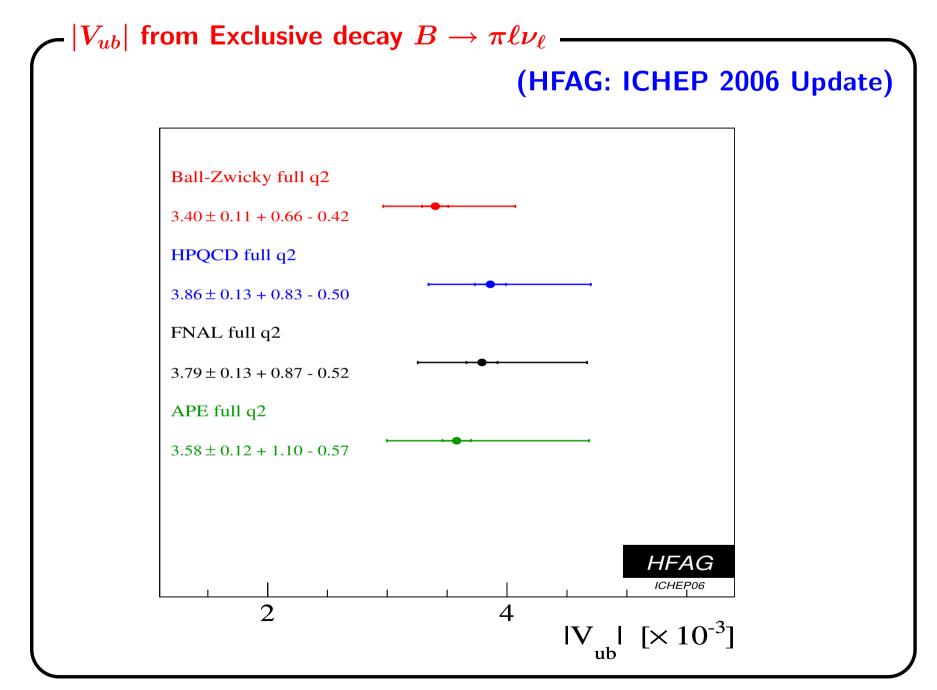
$$V_{
m CKM} \equiv egin{pmatrix} V_{ud} & V_{us} & V_{ub} \ V_{cd} & V_{cs} & V_{cb} \ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

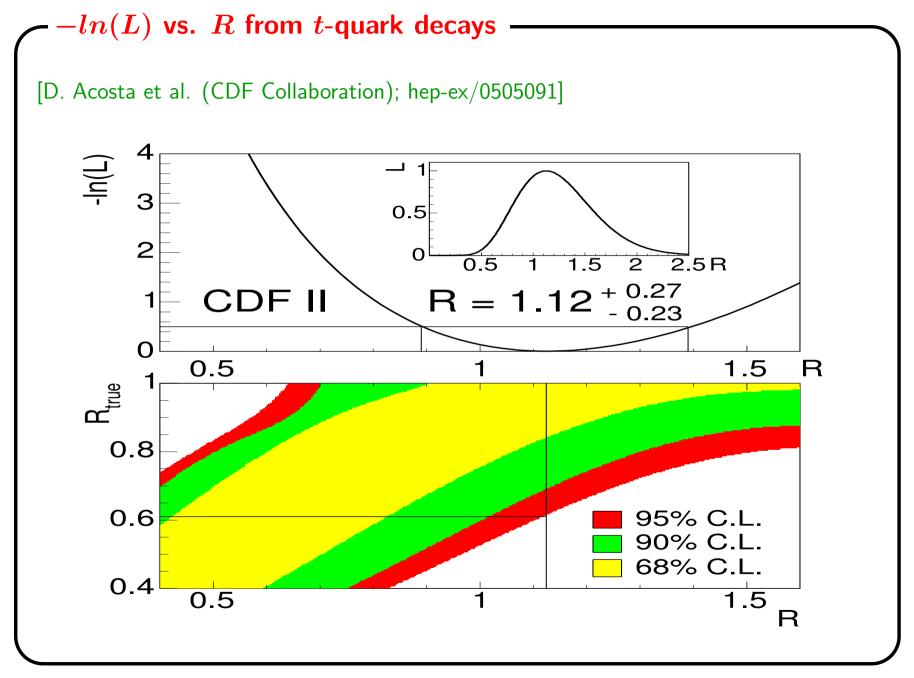

• Customary to use the handy Wolfenstein parametrization


$$V_{
m CKM} ~\simeq ~ egin{pmatrix} 1-rac{1}{2}\lambda^2 & \lambda & A\lambda^3 \left(
ho-i\eta
ight) \ -\lambda(1+iA^2\lambda^4\eta) & 1-rac{1}{2}\lambda^2 & A\lambda^2 \ A\lambda^3 \left(1-
ho-i\eta
ight) & -A\lambda^2 \left(1+i\lambda^2\eta
ight) & 1 \end{pmatrix}$$

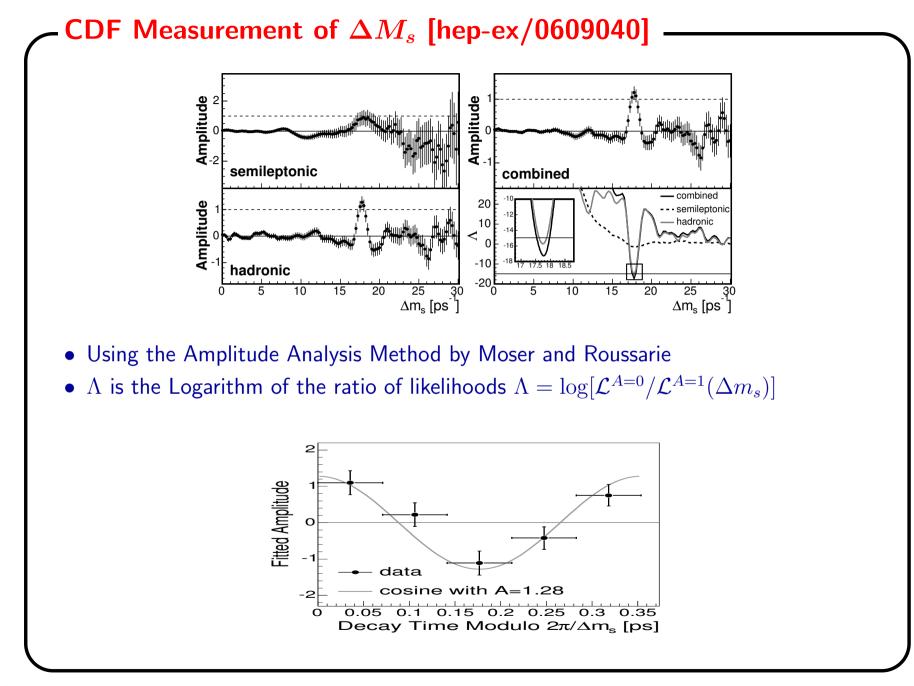
- Four parameters: $A,\ \lambda,\
 ho,\ \eta$
- Perturbatively improved version of this parametrization


$$ar{
ho}=
ho(1-\lambda^2/2),\ \ ar{\eta}=\eta(1-\lambda^2/2)$$


• The CKM-Unitarity triangle $[\phi_1=eta; \ \phi_2=lpha; \ \phi_3=\gamma]$



$|V_{ub}|$ from inclusive $B \rightarrow X_u \ell \nu_\ell$ decays (HFAG: ICHEP 2006 Update)



Status of the Third Row of $V_{\rm CKM}$ $|V_{tb}|$ • From direct production and decays of the top quark (hep-ex/0505091) $R\equiv rac{\mathcal{B}(t ightarrow W+b)}{\mathcal{B}(t ightarrow W+\sum_x q)}=rac{|V_{tb}|^2}{|V_{td}|^2+|V_{ts}|^2+|V_{tb}|^2}$ $R = 1.12^{+0.21}_{-0.19} (\text{stat})^{+0.17}_{-0.13} (\text{syst.})$ • Assuming CKM unitarity & CDF Data $\implies |V_{tb}| > 0.78$ (95% C.L.) $|V_{td}|$ • From B_d^0 - $\overline{B_d^0}$ Mixing; $\Delta M_d = (0.508 \pm 0.004)$ ps⁻¹ [HFAG 2006] • SM (Box contribution with NLO QCD corrections) $(x_t=m_t^2/m_W^2)$ $\Delta M_d = rac{G_F^2}{e^{-2}} \hat{\eta}_B |V_{td} V_{tb}^*|^2 M_{B_d} (f_{B_d}^2 \hat{B}_{B_d}) M_W^2 S_0(x_t)$ $S_0(x) = x \cdot \left[rac{1}{4} + rac{9}{4} rac{1}{(1-x)} - rac{3}{2} rac{1}{(1-x)^2} - rac{3}{2} rac{x^2 \ln x}{(1-x)^3} ight]$ $\langle ar{B}^0_q | (ar{b} \gamma_\mu (1-\gamma_5) q)^2 | B^0_q angle \equiv rac{8}{3} f_{B_q}^2 B_{B_q} M_{B_q}^2$

 $|V_{td}|$ and $|V_{ts}|$ with Lattice-QCD • Unquenched Lattice-QCD [Gray et al. (HPQCD); Aoki et al. (JLQCD)]: $\sqrt{\hat{B}_{B_d}f_{B_d}}=244\pm 26$ MeV; $ar{m}_t(m_t)=162.3(2.2)$ GeV; $S_0(x_t)=2.29(5)$ $|V_{td}^*V_{tb}| = 7.4 imes 10^{-3} [rac{244 {
m ~MeV}}{\sqrt{\hat{B}_{B_A} f_{B_A}}}] \sqrt{rac{2.29}{S_0(x_t)}}$ • Lattice-QCD & SM $\implies |V_{td}^*V_{tb}| = (7.4 \pm 0.8) \times 10^{-3}$ [PDG 2006] $|V_{ts}|$ • B_s^0 - $\overline{B_s^0}$ Mixing: $\Delta M_s = (17.77 \pm 0.10 \text{ (stat)} \pm 0.07 \text{ (syst)}) \text{ ps}^{-1}$ [CDF 2006] • SM: $\Delta M_s = rac{G_F^2}{6\pi^2} \hat{\eta}_B |V_{ts}^* V_{tb}|^2 M_{B_s} (f_{B_s}^2 \hat{B}_{B_s}) M_W^2 S_0(x_t)$ • Lattice-QCD: $\sqrt{\hat{B}_{B_s}f_{B_s}}=281\pm21$ MeV [HPQCD 2006] & $|V_{ts}^*V_{tb}| = 4.1(1) \times 10^{-2} \Longrightarrow \Delta M_s = (20.3 \pm 3.0 \pm 0.8)(\text{ps})^{-1}$ • Using the ratio $\Delta M_s/\Delta M_d$ and Lattice-QCD (Okamoto et al.) : $\xi=1.21^{+0.047}_{-0.035}$ $rac{\Delta M_s}{\Delta M_d} = \xi rac{M_{B_s}}{M_{B_d}} rac{|V_{ts}|^2}{|V_{td}|^2}; \hspace{1em} \xi = \sqrt{rac{f_{B_s}^2 B_{B_s}}{f_{B_s}^2 \hat{B}_{B_d}}}$ $\implies |V_{td}/V_{ts}| = 0.2060 \pm 0.0007(\text{exp}) \stackrel{+0.008}{_{-0.006}}(\text{th})$

 $-\Delta M_s$ (expt) vs. SM Estimates

Indirect UT-based fits

 $\Delta M_s = (20.9 \pm 2.6) \; (\mathrm{ps})^{-1} \; [\mathrm{UTfit} \; 2006]$

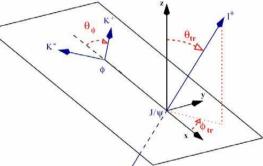
 $\Delta M_s = (21.7^{+5.9}_{-4.2}) \ (\mathrm{ps})^{-1} \ [\mathsf{CKMfitter} \ 2006]$

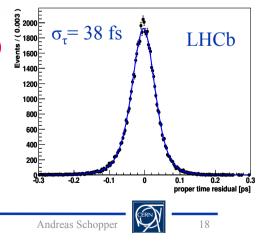
• Lattice QCD Calculation [HPQCD; hep-lat/0610104]

$$egin{aligned} &f_{B_s} = 0.281(21) \,\, ext{GeV} \,\, \& \, |V_{ts}^*V_{tb}| = 4.1(1) imes 10^{-2} \ & \Longrightarrow \,\, \Delta M_s = (20.3 \pm 3.0 \pm 0.8) \,\, (ext{ps})^{-1} \end{aligned}$$

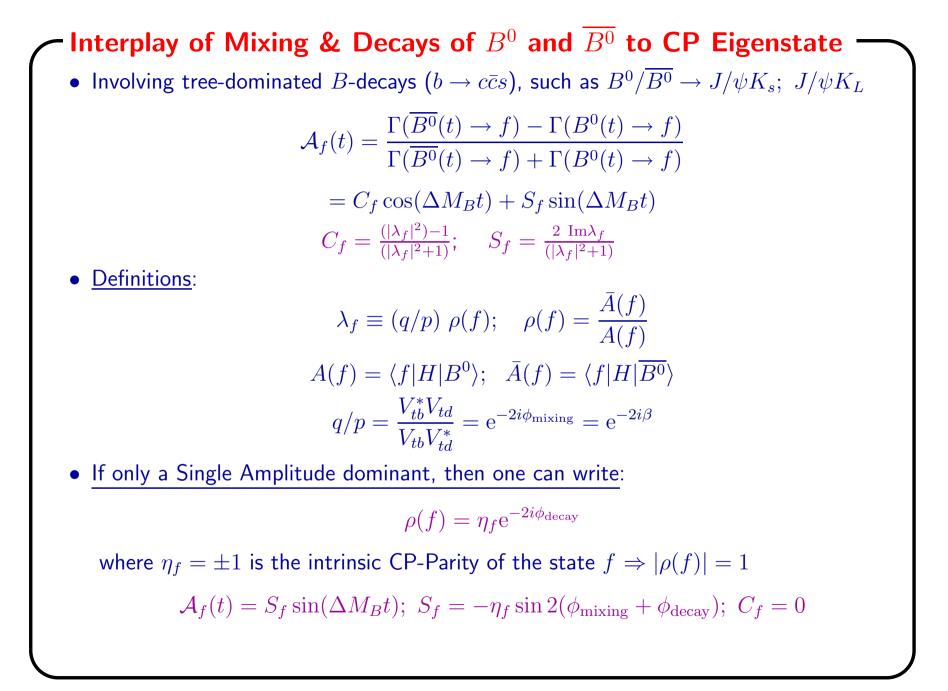
- <u>CDF Measurement:</u> $\Delta M_s = (17.77 \pm 0.10 \pm 0.07) \text{ (ps)}^{-1}$ [CDF 2006]
- $\frac{\Delta M_s^{\text{expt}}}{\Delta M_s^{\text{SM}}} = 0.85 \pm 0.10 \text{ [UTfit]}; 0.82 \pm 0.20 \text{ [CKMfitter]}; 0.88 \pm 0.13 \text{ [HPQCD]}$
- SM estimates for ΔM_s larger compared to CDF by circa 1σ
- Error dominated by theory

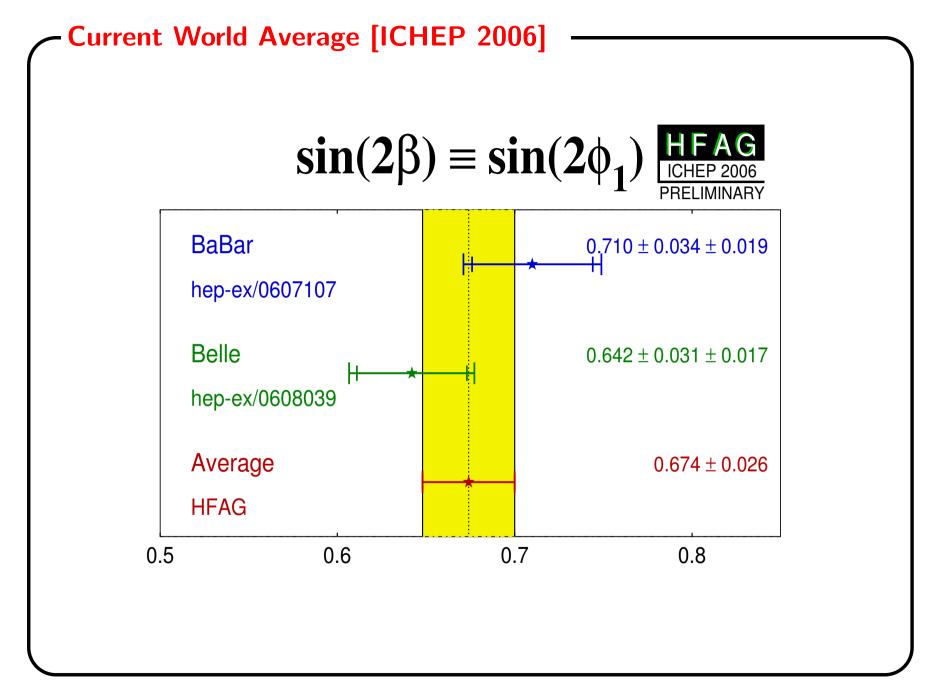
ϕ_s and $\Delta \Gamma_s$ from B_s \rightarrow J/ψ ϕ (η,η'...)


- > SU(3) analogue of B \rightarrow J/ ψ K_s, measuring the B_s- \overline{B}_s mixing phase
- → in SM $\phi_s = -\arg(V_{ts}^2) = -2\lambda\eta^2 \sim -0.04$ → increased sensitivity to New Physics
- Iarge CP asymmetry would signal Physics Beyond SM
- > also needed for extracting γ from $B_s \rightarrow D_s K$ or from $B \rightarrow \pi \pi$ and $B_s \rightarrow K K$
- $J/\psi\phi$ is not a pure CP eigenstate:
- ✓ 2 CP even, 1 CP odd amplitudes contributing
- ✓ need to fit angular distributions of decay final states as function of proper time (needs external Δm_s)
- \checkmark requires very good proper time resolution

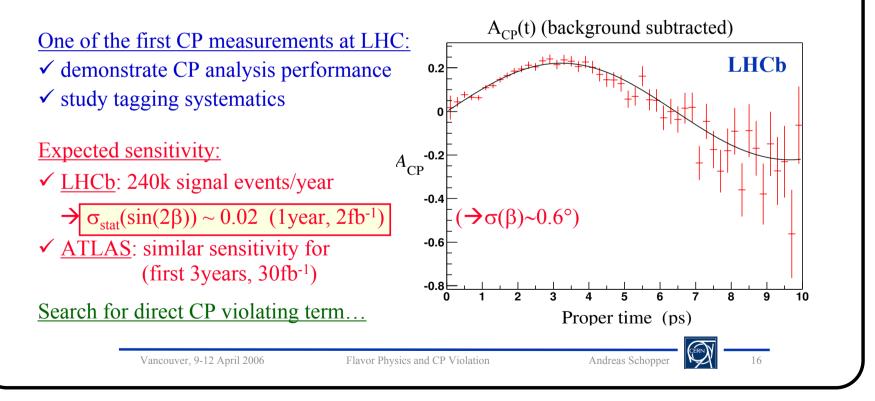

Expected sensitivity: (at $\Delta m_s = 20 \text{ ps}^{-1}$)

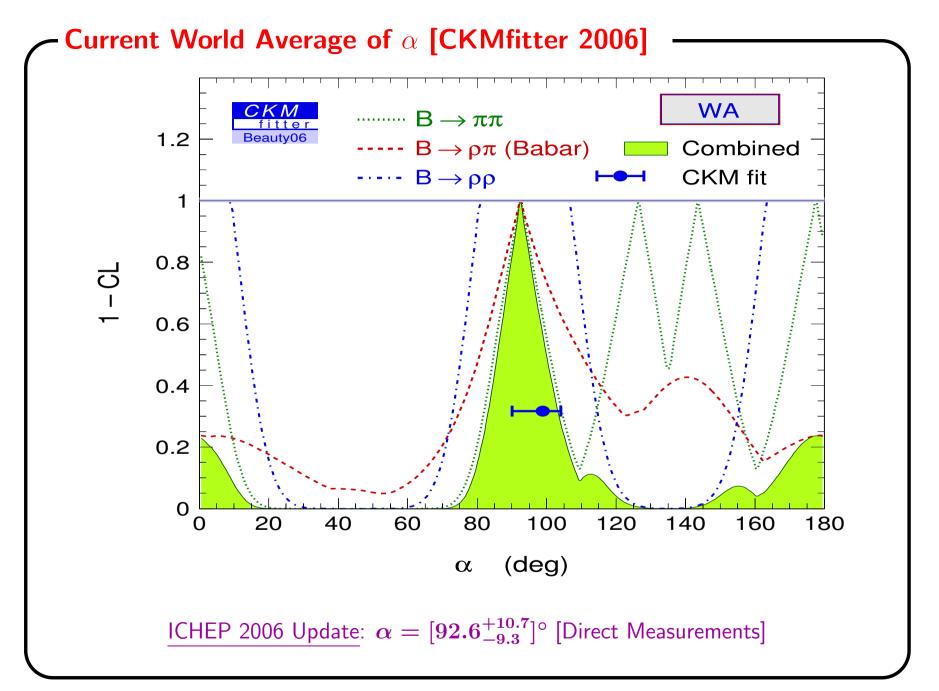
Vancouver, 9-12 April 2006

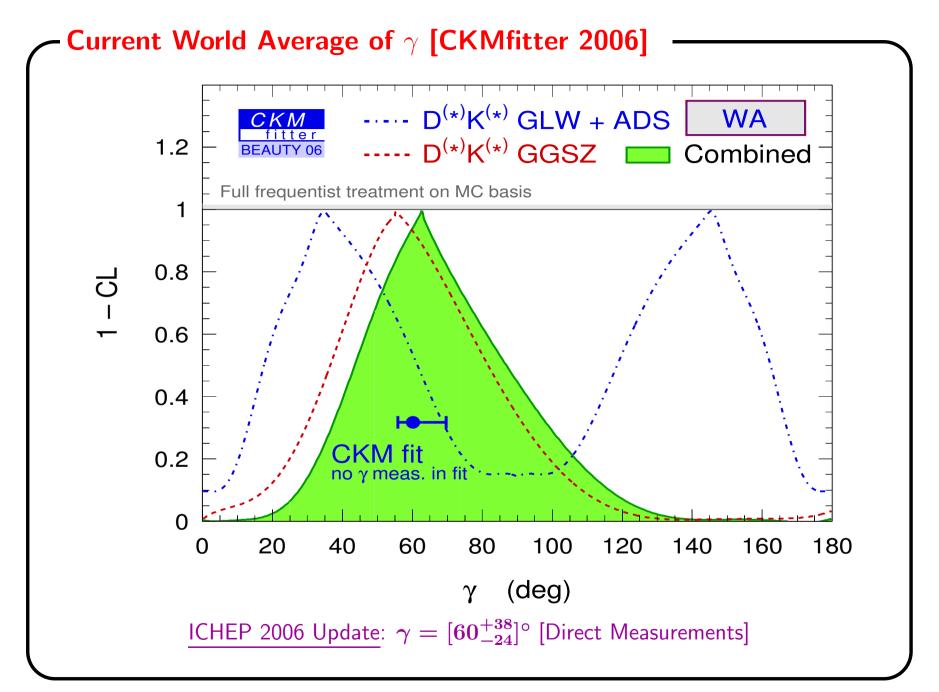

✓ <u>LHCb</u>: 125k Bs→J/ $\psi\phi$ signal events/year


- $\rightarrow \sigma_{\text{stat}}(\sin \phi_{\text{s}}) \sim 0.031, \sigma_{\text{stat}}(\Delta \Gamma_{\text{s}}/\Gamma_{\text{s}}) \sim 0.011 / (1 \text{ year}, 2 \text{ fb}^{-1})$
- → $\sigma_{\text{stat}}(\sin \phi_s) \sim 0.013$ after first 5 years, adding pure CP modes like J/ $\psi\eta$, J/ $\psi\eta$ ' (small improvement)
- ✓ <u>ATLAS</u>: similar event rate as LHCb but less sensitive → $\sigma_{\text{stat}}(\sin \phi_{\text{s}}) \sim 0.08$ (1year, 10fb⁻¹)
- \checkmark CMS: > 50k events/year, sensitivity study ongoing

Flavor Physics and CP Violation

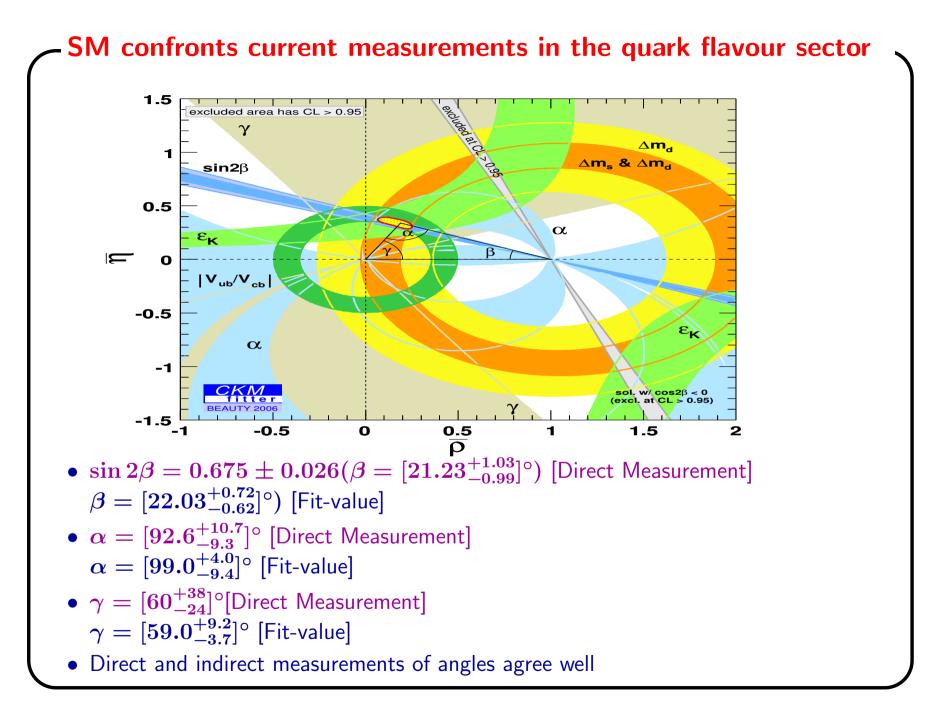



sin(2 β) from B⁰ \rightarrow J/ ψ K_S


 \succ "gold-plated" decay channel at B-factories for measuring the B_d- B_d mixing phase

- \succ needed for extracting γ from $B \to \pi\pi$ and $B_s \to K K$, or from $B \to D^*\pi$
- \succ in SM $A_{CP}^{dir} \sim 0$, non-vanishing value $\mathcal{O}(0.01)$ could be a signal of Physics Beyond SM

$$A_{CP}^{th}(t) = A_{CP}^{dir} \cdot \cos(\Delta m_d \cdot t) + A_{CP}^{mix} \cdot \sin(\Delta m_d \cdot t)$$



- Projected Precision on γ at LHC

- γ from $B_s o D_s K \implies \sigma(\gamma) \sim 14^\circ$ in 1 year at 2 fb $^{-1}$
- 2 time-dependent asymmetries from 4 decays: $B_s(\bar{B}_s) \rightarrow D_s^- K^+, D_s^+ K^-$
- 2 tree decays ($b \rightarrow c$ and $b \rightarrow u$) of same magnitude ($\sim \lambda^3$) interfere via B_s mixing
- γ from $B^0 o D^0 K^{*0} \implies \sigma(\gamma) \sim 8^\circ$ in 1 year at 2 fb $^{-1}$
- Dunietz variant of Gronau-Wyler method [Phys. Lett. B270, 75 (1991)]
- Two color-suppressed diagrams interfering via D^0 -meson mixing
- 6 decay rates, self-tagged and time-integrated
- γ from $B^\pm o D^0 K^\pm \quad \Longrightarrow \quad \sigma(\gamma) \sim 5^\circ$ in 1 year at 2 fb $^{-1}$
- based on Atwood-Dunietz-Soni method [Phys. Rev. Lett. 78, 3257 (1997)]
- measure relative rates of $B^- \to D^0(K\pi) K^-$ and $B^+ \to D^0(K\pi) K^+$
- γ from $B^0 o \pi^+\pi^-$ and $B_s o K^+K^- \implies \sigma(\gamma) \sim 5^\circ$ in 1 year at 2 fb $^{-1}$
- large penguin contributions in both decays \longrightarrow sensitive to New Physics
- measure time-dependent CP asymmetry for $B^0 \to \pi^+\pi^-$ and $B_s \to K^+K^-$
- C and S depend on γ , mixing phases, and penguin-to-tree amplitude ratio $d e^{i\theta}$
- exploit "U-spin" symmetry ($d \leftrightarrow s$) [R. Fleischer, Phys. Lett. B459, 306 (1999)]

Inclusive Rare B decays

Two inclusive rare *B*-decays of experimental interest

 $ar{B} o X_s \gamma$ and $ar{B} o X_s l^+ l^-$

 $X_s =$ any hadronic state with S = -1, containing no charmed particles

Theoretical Interest:

- Both measured; accurate measurements anticipated at B-factories and LHC
- Non-perturbative effects under control
- Sensitivity to new physics

Status of the NNLO perturbative calculations:

- $\bar{B} \rightarrow X_s l^+ l^-$: completed several years ago [Bobeth et al.; Gambino et al.; Asatrian et al.; Ghinculov et al.; Huber et al.]
- $ar{B} o X_s \gamma$: Just completed
 - The first estimate of ${\cal B}(ar B o X_s \gamma)$, Misiak et al. (17 authors), hep-ph/0609232
 - Analysis of $\mathcal{B}(\bar{B} \to X_s \gamma)$ at NNLO with a cut on Photon energy, T. Becher and M. Neubert, hep-ph/0610067

The effective Lagrangian:

$$\mathcal{L} = \mathcal{L}_{QCD \times QED}(q,l) + \frac{4G_F}{\sqrt{2}} V_{ts}^* V_{tb} \sum_{i=1}^{10} C_i(\mu) O_i$$

(q = u, d, s, c, b, l = e, \mu)

$$\int (\bar{s}\Gamma_i c)(\bar{c}\Gamma'_i b), \qquad i=1,2, \qquad |C_i(m_b)| \sim 1$$

$$(\bar{s}\Gamma_i b)\Sigma_q(\bar{q}\Gamma_i' q), \qquad i=3,4,5,6, \quad |C_i(m_b)| < 0.07$$

$$D_i = \begin{cases} \frac{em_b}{16\pi^2} \bar{s}_L \sigma^{\mu\nu} b_R F_{\mu\nu}, & i = 7, \\ 0 & 0.3 \end{cases}$$

$$\begin{cases} \frac{gm_b}{16\pi^2} \bar{s}_L \sigma^{\mu\nu} T^a b_R G^a_{\mu\nu}, & i = 8, \\ \frac{e^2}{16\pi^2} (\bar{s}_L \gamma_\mu b_L) (\bar{l} \gamma^\mu \gamma_5 l), & i = 9, \mathbf{10} \\ \end{cases} \quad C_8(m_b) \sim -0.15 \\ |C_i(m_b)| \sim 4 \end{cases}$$

Three steps of the calculation:

Matching: Evaluating $C_i(\mu_0)$ at $\mu_0 \sim M_W$ by requiring equality of the SM and the effective theory Green functions Mixing: Deriving the effective theory RGE and evolving $C_i(\mu)$ from μ_0 to $\mu_b \sim m_b$ Matrix elements: Evaluating the on-shell amplitudes at $\mu_b \sim m_b$ – Structure of the SM calculations for $ar{B} o X_s \, \gamma$.

$$\mathcal{H}_{ ext{eff}}~\sim~\sum_{i=1}^{10} C_i(\mu) O_i$$

• \mathcal{H}_{eff} independent of the scale μ , while $C_i(\mu)$ and $O_i(\mu)$ depend on μ \implies Renormalization Group Equation (RGE) for $C_i(\mu)$:

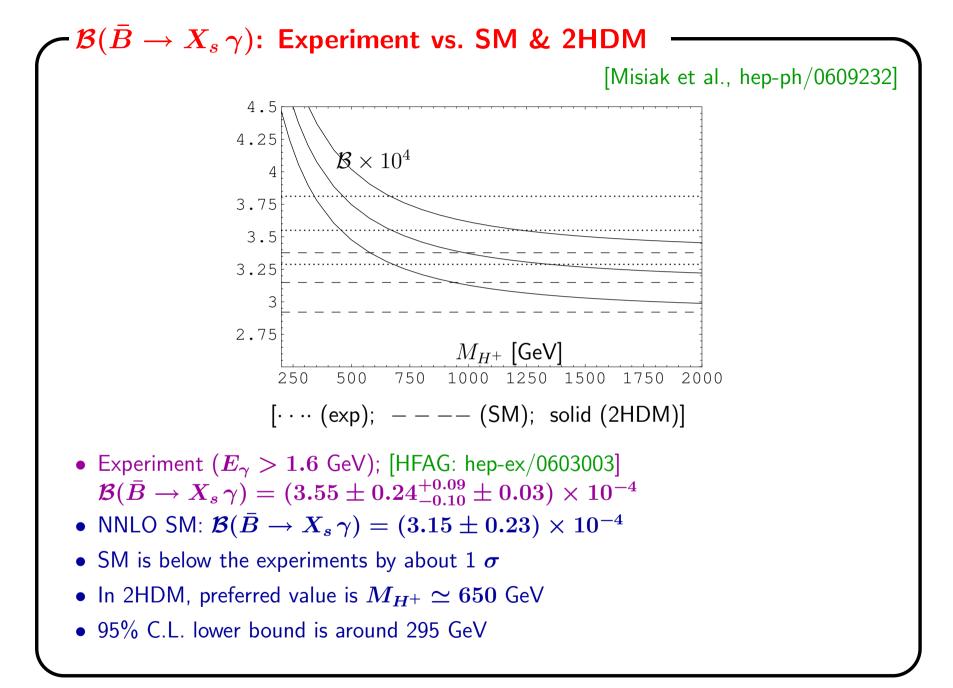
$$\mu rac{d}{d\mu} C_i(\mu) = \gamma_{ij}^{\mathrm{T}} C_j(\mu)$$

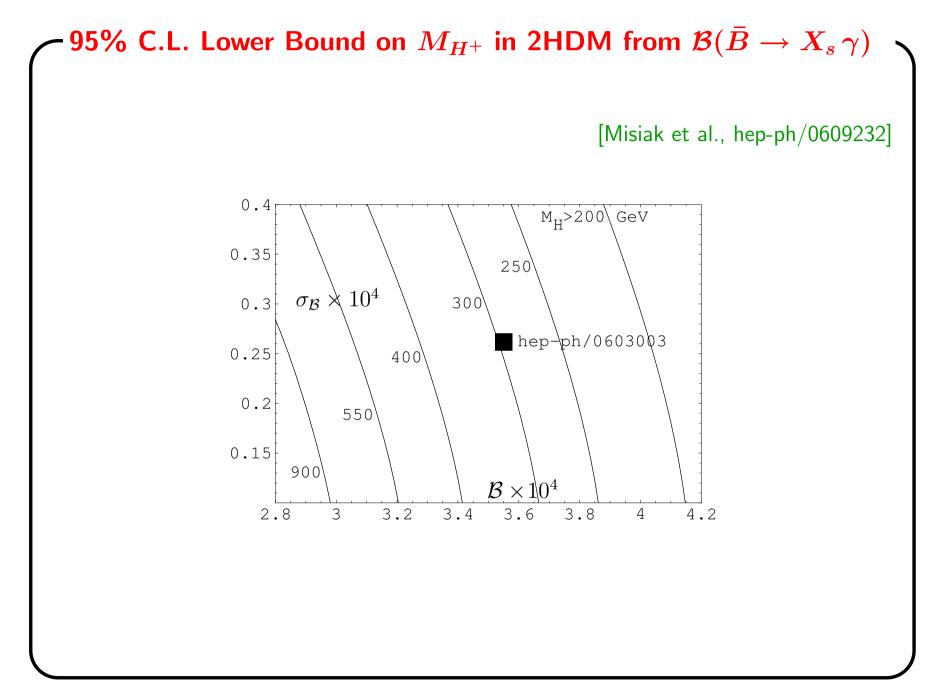
- γ_{ij} : anomalous dimension matrix
- ullet Matching usually done at high scale $(\mu_0 \sim M_W, m_t)$

• Full theory and the matrix elements of the effective operators have the same large logarithms

```
\mu_0 \sim O(M_W) | RGE
```

 $\mu_b \sim O(m_b)$: matrix elements of the operators at this scale don't have large logs; they are contained in the $C_i(\mu_b)$


• Evaluation of the on-shell amplitudes at $\mu_b \sim m_b$


- Experimental data -

Experimental Data on $B \to V \gamma$ Decays

Branching ratios (in units of 10^{-6}) [August 2006]

Mode	BABAR	BELLE	CLEO	Average [HFAG]		
$B \to X_s \gamma$	$327 \pm 18^{+55}_{-41}$	$355 \pm 32^{+30+11}_{-31-7}$	$321 \pm 43^{+32}_{-29}$	$355 \pm 24^{+9}_{-10} \pm 3^{\ddagger}$		
$B^+ \to K^*(892)^+ \gamma$	$38.7 \pm 2.8 \pm 2.6$	$42.5 \pm 3.1 \pm 2.4$	$37.6^{+8.9}_{-8.3}\pm2.8$	40.3 ± 2.6		
$B^0 \to K^*(892)^0 \gamma$	$39.2 \pm 2.0 \pm 2.4$	$40.1 \pm 2.1 \pm 1.7$	$45.5^{+7.2}_{-6.8}\pm3.4$	40.1 ± 2.0		
$B^+ \to K_1(1270)^+ \gamma$		$43\pm9\pm9$		43 ± 12		
$B^+ \to K_2^*(1430)^+ \gamma$	$14.5\pm4.0\pm1.5$			14.5 ± 4.3		
$B^0 \to K_2^*(1430)^0 \gamma$	$12.2 \pm 2.5 \pm 1.0$	$13.0\pm5.0\pm1.0$		12.4 ± 2.4		
$B^+ \to \rho^+ \gamma$	$1.06^{+0.35}_{-0.31} \pm 0.09$	$0.55\substack{+0.42+0.09\\-0.36-0.08}$	< 13.0	$0.87^{+0.27}_{-0.25}$		
$B^0 o ho^0 \gamma$	$0.77^{+0.21}_{-0.19}\pm0.07$	$1.25\substack{+0.37+0.07\\-0.33-0.06}$	< 17.0	$0.91\substack{+0.19 \\ -0.18}$		
$B^0 \to \omega \gamma$	$0.39^{+0.24}_{-0.20}\pm0.03$	$0.56\substack{+0.34+0.05\\-0.27-0.10}$	< 9.2	$0.45\substack{+0.20 \\ -0.17}$		
$B \to (\rho, \omega) \gamma$	$1.01 \pm 0.21 \pm 0.08$	$1.32^{+0.34}_{-0.31}{}^{+0.10}_{-0.09}$	< 14.0			
$B^0 \to \phi \gamma$	< 0.85		< 3.3	< 0.85		
$B^0 \to J/\psi \gamma$	< 1.6			< 1.6		
‡ Calculated for the photon energy range $E_\gamma > 1.6~{\rm GeV}$						

– Fraction $F(E_0)$ of BR $(m{B} ightarrow m{X}_s m{\gamma}m{)}$ above the cut $m{E}_{m{\gamma}} > m{E}_{m{0}}$ –

- Theory and experiment compared for $E_\gamma > E_0$; need to evaluate the fraction $F(E_0)$ of the events surviving this cut to get full BR
- $F(E_0)$ usually calculated using (model-dependent) shape functions [Kagan, Neubert; Benson, Bigi, Uraltsev,...]
- Recently, it has been pointed out [Neubert, hep-ph/0408179] that $R(E_0)$ can be calculated without reference to shape functions using a multi-scale OPE
- Theoretical framework for this calculation is the so-called Soft Collinear Effective Theory (SCET) involving several scales: m_b , $m_b\Delta$, and Δ , with $\Delta = m_b 2E_0$
- Large logarithms associated with these scales are summed at NLL order; sensitivity to the scale $\Delta \simeq 1.4$ GeV (for $E_0 = 1.6$ GeV) introduces additional uncertainties [Becher & Neubert hep-ph/0610067]:

 $T \equiv F(1.6 \text{ GeV})/F(1.0 \text{ GeV}) = (93^{+3}_{-5}(\text{pert}) \pm 2(\text{hadr}) \pm 2(\text{param}))\%$

$$\Longrightarrow \mathcal{B}(B
ightarrow X_s \gamma) = (2.98 \pm 0.26) imes 10^{-4}$$

• $\mathcal{B}(B \to X_s \gamma)$ in the multi-scale SM is about 1.4σ below Experiment $\frac{\mathcal{B}(B \to X_s \gamma)(\exp)}{\mathcal{B}(B \to X_s \gamma)(\mathrm{SM})} = 1.19 \pm 0.09(\exp) \pm 0.10(\mathrm{th})$ $B \rightarrow (\rho, \omega) \gamma$ Decays .

$B \to \rho \gamma$ Branching Fraction

[AA, Parkhomenko; Bosch, Buchalla; Ball, Zwicky; for an update see hep-ph/0610149]

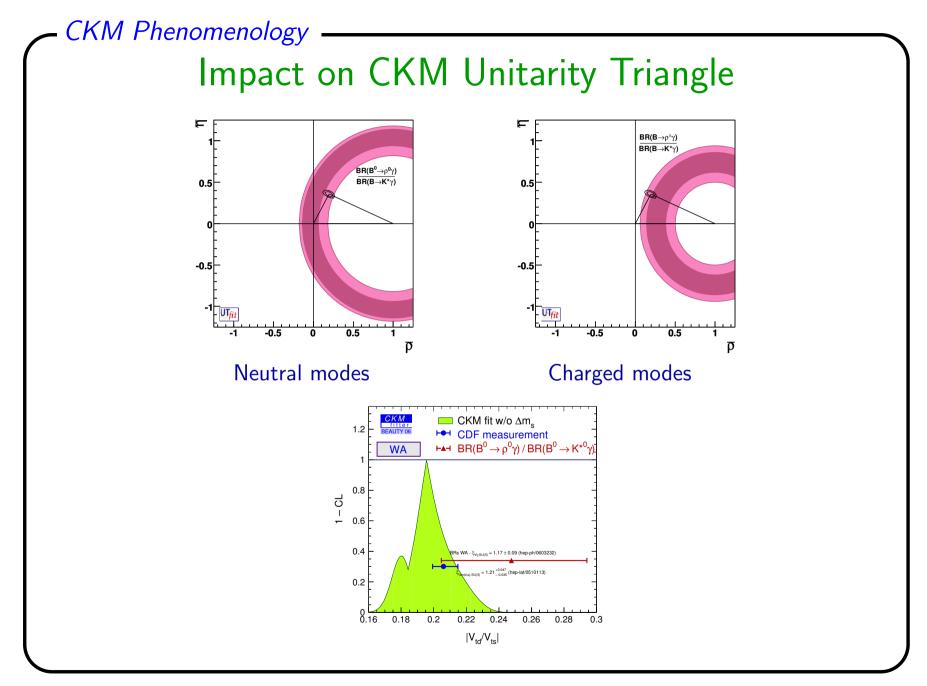
• In the leading order penguin and annihilation amplitudes, the ratio of the branching ratios for the charged and neutral *B*-meson decays can be written as

$$\frac{\mathcal{B}(B^- \to \rho^- \gamma)}{2\mathcal{B}(B^0 \to \rho^0 \gamma)} \simeq \left| 1 + \epsilon_A \mathrm{e}^{i\phi_A} \frac{V_{ub} V_{ud}^*}{V_{tb} V_{td}^*} \right|^2$$

- $\epsilon_A e^{i\phi_A}$ includes dominant W-annihilation and possible sub-dominant long-distance contributions
- \bullet Isospin-violating corrections depend on the unitarity triangle angle α

$$\frac{V_{ub}V_{ud}^*}{V_{tb}V_{td}^*} = -\left|\frac{V_{ub}V_{ud}^*}{V_{tb}V_{td}^*}\right|e^{i\alpha} = F_1 + iF_2$$

 $B \rightarrow (\rho, \omega) \gamma$ Decays


$B \to \rho \gamma$ Branching Fraction in NLO

• Including the annihilation contribution, the charged-conjugate averaged branching ratio in the NLO is

$$\bar{\mathcal{B}}_{\rm th}(B^{\pm} \to \rho^{\pm}\gamma) = \tau_{B^{\pm}} \frac{G_F^2 \alpha |V_{tb} V_{td}^*|^2}{32\pi^4} m_{b,\text{pole}}^2 M^3 \left[\xi_{\perp}^{(\rho)}(0)\right]^2 \\
\times \left\{ (C_7^{(0)\text{eff}} + A_R^{(1)t})^2 + (F_1^2 + F_2^2) (A_R^u + L_R^u)^2 \\
+ 2F_1 \left[C_7^{(0)\text{eff}} (A_R^u + L_R^u) + A_R^{(1)t} L_R^u \right] \right\}$$

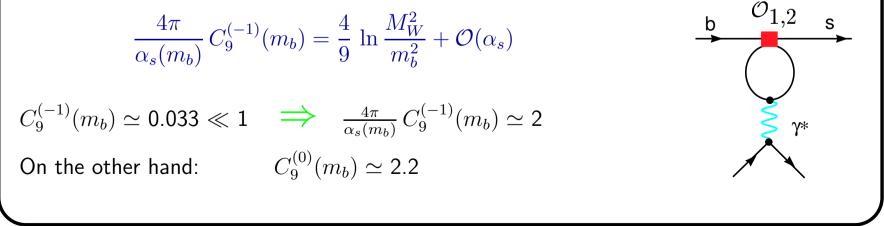
- The amplitude $A^{(1)t}(\mu)$ can be decomposed in three contributing parts $A^{(1)t}(\mu) = A^{(1)}_{C_7}(\mu) + A^{(1)}_{ver}(\mu) + A^{(1)\rho}_{sp}(\mu_{sp})$
- In addition to $A^{(1)t}(\mu)$, the *u*-quark contribution $A^u(\mu)$ from penguin diagrams can no longer be ignored
- $A^u(\mu)$ also contains vertex and hard-spectator contributions

 $B
ightarrow (
ho, \omega) \, \gamma \, \, {m {\sf Decays}} \, \cdot$ $B \rightarrow (\rho, \omega) \gamma$ Branching Fractions Taking into account the ratio of the CKM matrix elements \bullet $|V_{td}/V_{ts}| = 0.201 \pm 0.008$ $[\Delta M_s; \text{CDF Collab.} (2006)]$ the branching ratios can be estimated as $\bar{\mathcal{B}}_{th}(B^{\pm} \to \rho^{\pm} \gamma) = (1.37 \pm 0.26 [th] \pm 0.09 [exp]) \times 10^{-6}$ $\bar{\mathcal{B}}_{\rm th}(B^0 \to \rho^0 \gamma) = (0.65 \pm 0.12 [\rm th] \pm 0.03 [\rm exp]) \times 10^{-6}$ $\bar{\mathcal{B}}_{\rm th}(B^0 \to \omega \gamma) = (0.53 \pm 0.12 [\rm th] \pm 0.02 [\rm exp]) \times 10^{-6}$ • In the above estimates, the first error is defined by uncertainties of the theory and the second one is from the direct experimental data on the $B \to K^* \gamma$ branching fractions Branching ratios (in units of 10^{-6}) [August 2006] Average [HFAG] Mode BABAR CLEO BFIIF $B^+ \to \rho^+ \gamma$ $1.06^{+0.35}_{-0.31} \pm 0.09$ $0.55^{+0.42+0.09}_{-0.36-0.08}$ < 13.0 $0.87^{+0.27}_{-0.25}$ $B^0 \to \rho^0 \gamma$ $0.77^{+0.21}_{-0.19} \pm 0.07$ $1.25^{+0.37}_{-0.33}_{-0.06}$ $0.91^{+0.19}_{-0.18}$ < 17.0 $B^0 \to \omega \gamma$ | $0.39^{+0.24}_{-0.20} \pm 0.03$ | $0.56^{+0.34}_{-0.27}_{-0.10}$ $0.45^{+0.20}_{-0.17}$ < 9.2

 $ullet ar{B} o X_s l^+ l^-$

• The NNLO calculation of $\bar{B} \to X_s l^+ l^-$ corresponds to the NLO calculation of $\bar{B} \to X_s \gamma$, as far as the number of loops in the diagrams is concerned.

• Coefficients of the two additional operators


$$O_i = \frac{e^2}{16\pi^2} (\bar{s}_L \gamma_\mu b_L) (\bar{l}\gamma^\mu \gamma_5 l), \qquad i = 9, \mathbf{10}$$

have the following perturbative expansion:

$$C_{9}(\mu) = \frac{4\pi}{\alpha_{s}(\mu)}C_{9}^{(-1)}(\mu) + C_{9}^{(0)}(\mu) + \frac{\alpha_{s}(\mu)}{4\pi}C_{9}^{(1)}(\mu) + \dots$$

$$C_{10} = C_{10}^{(0)} + \frac{\alpha_{s}(M_{W})}{4\pi}C_{10}^{(1)} + \dots$$

• After an expansion in α_s , the term $C_9^{(-1)}(\mu)$ reproduces (the dominant part of) the electro-weak logarithm that originates from photonic penguins with charm quark loops:

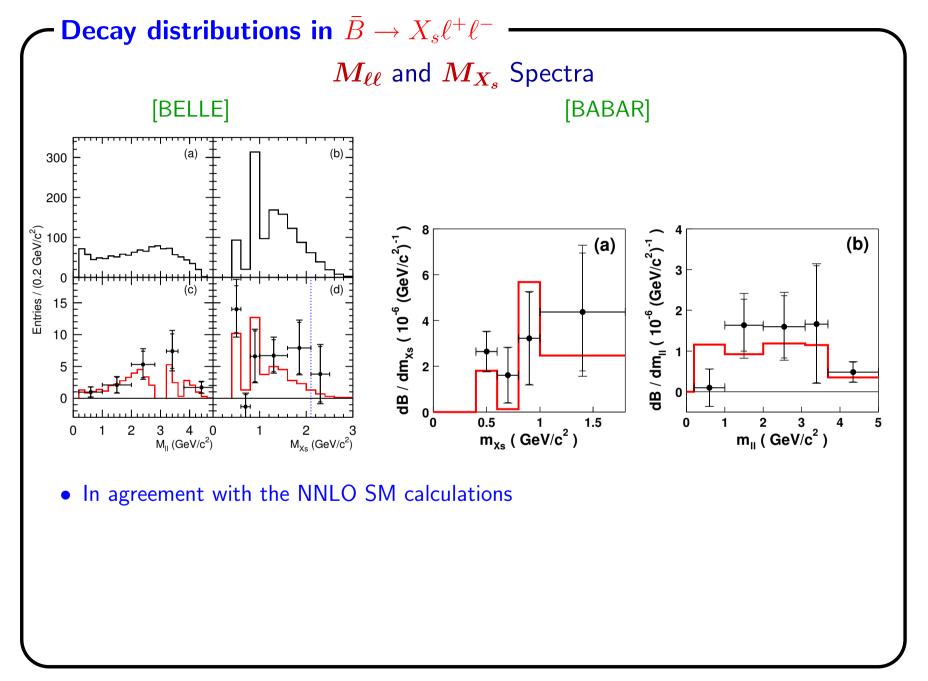
– Electroweak Penguins $b ightarrow s \ell^+ \ell^-$

• $B
ightarrow X_s \ell^+ \ell^-$ decay rate

 $\mathcal{B}(B \to X_s \ell^+ \ell^-) = (4.46^{+0.98}_{-0.96}) \times 10^{-6} \ [\mathrm{HFAG'05}]$

 $SM: (4.2 \pm 0.7) \times 10^{-6} \ [ext{AGHL'01}]; \ (4.6 \pm 0.8) \times 10^{-6} \ [ext{GHIY'04}]$

• Differential distributions in $B o X_s \ell^+ \ell^-$


• $M(X_s)$ -distribution: tests $s \to X_s$ fragmentation model; current FMs provide reasonable fit to data

• $q^2 = M_{\ell^+\ell^-}^2$ -distribution away from the $J/\psi, \psi', ...$ resonances is sensitive to short-distance physics; current data in agreement with the SM estimates but the precision is not better than 25%

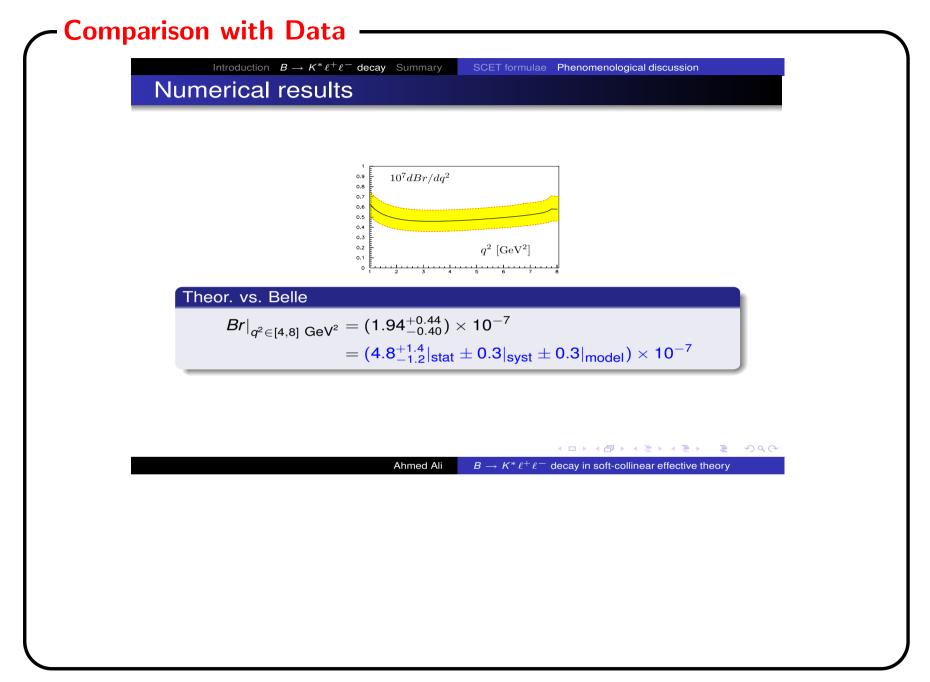
• Forward-Backward Asymmetry (FBA) is likewise sensitive to the SM and BSM effects, in particular encoded in the Wilson coefficients C_7 , C_9 and C_{10}

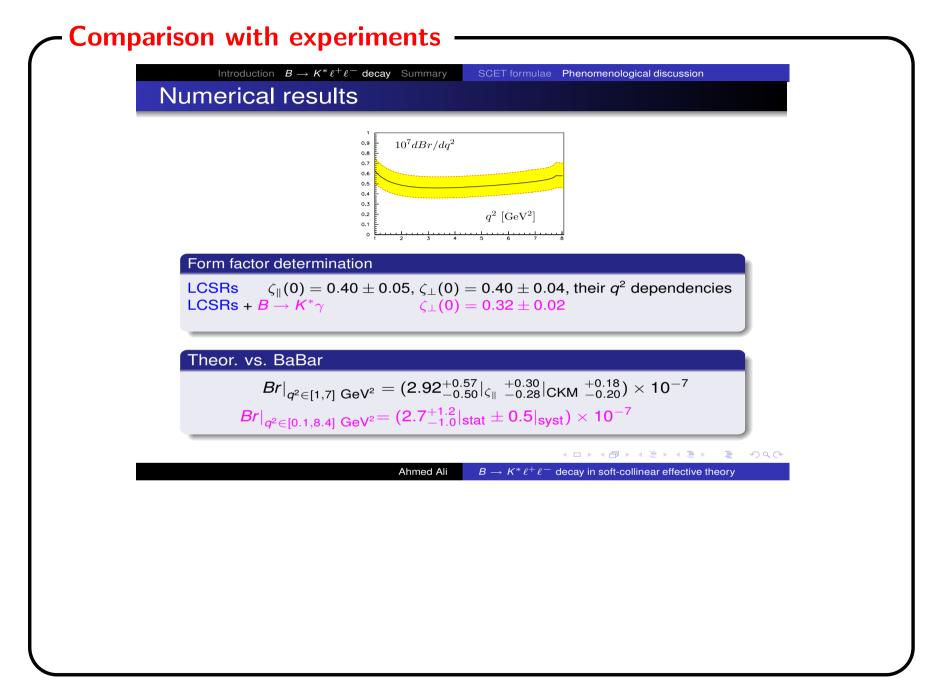
$$A_{
m FB}(\hat{s}\sim C_{10}(2C_7+C_9(\hat{s})\hat{s}); ~~~ \hat{s}=q^2/M_B^2$$

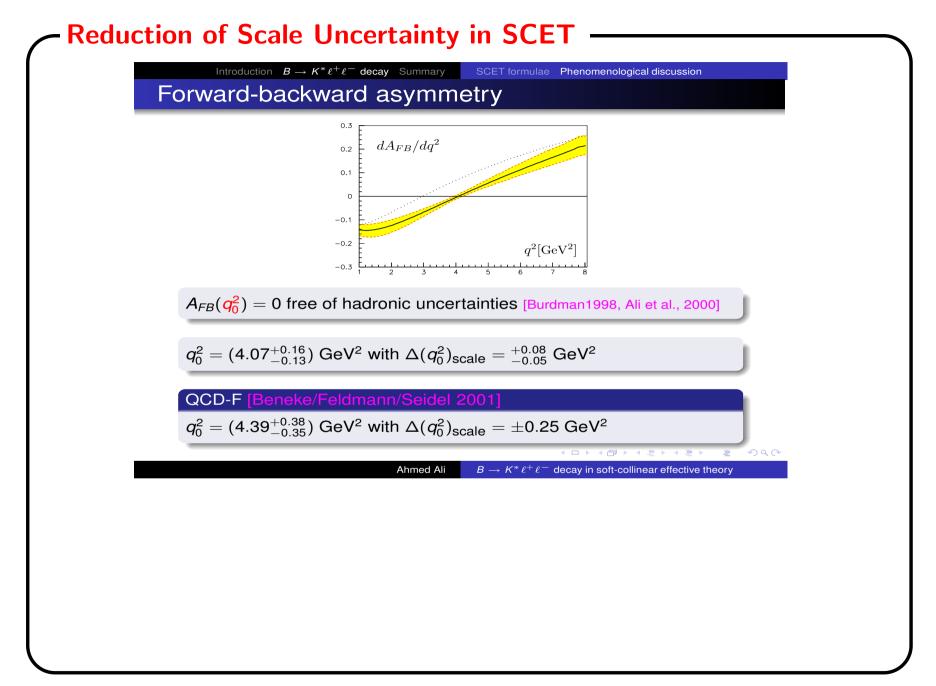
• $A_{\rm FB}(\hat{s})$ not yet measured; possible only in experiments at B factories

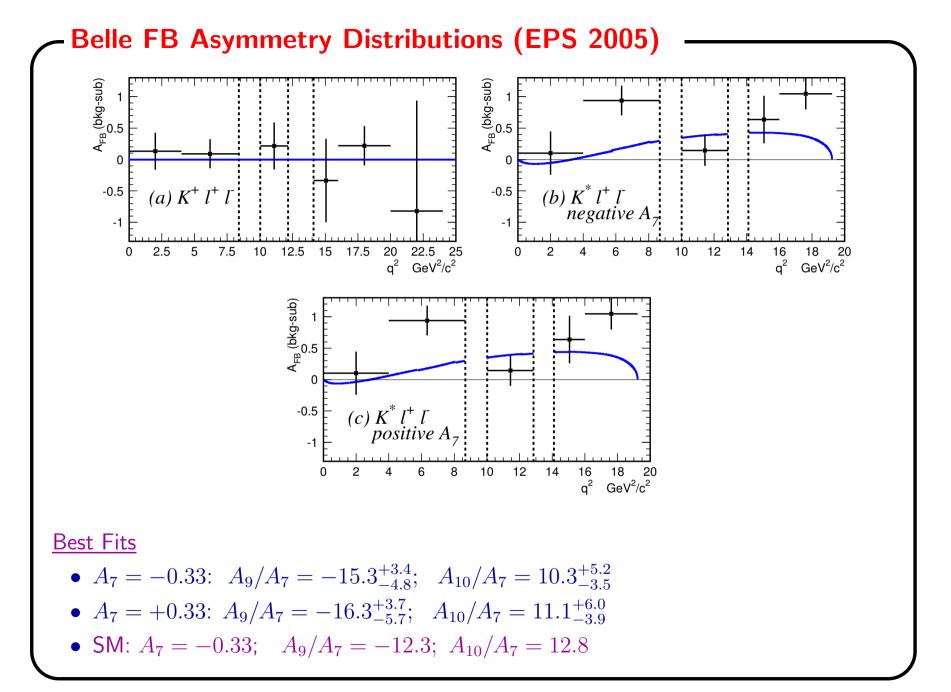
 $-B \rightarrow K^* \ell^+ \ell^-$ decay in SCET

[AA, Gustav Kramer, Guohuai Zhu; hep-ph/0601034 (EPJC (2006))]

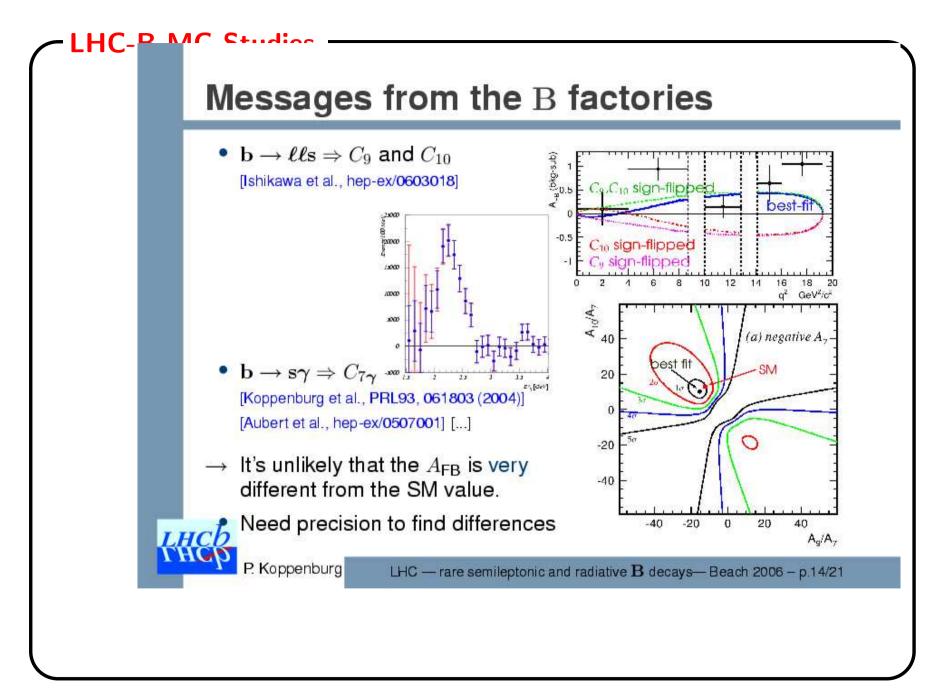

- Soft Collinear Effective Theory (SCET): Applicable to any QCD processes which contain collinear meson or jet, i.e. $P^2 \ll Q^2$, in the final states
- The idea is borrowed from HQET and NRQCD, but technically SCET is more involved than HQET because of the collinear degrees of freedom

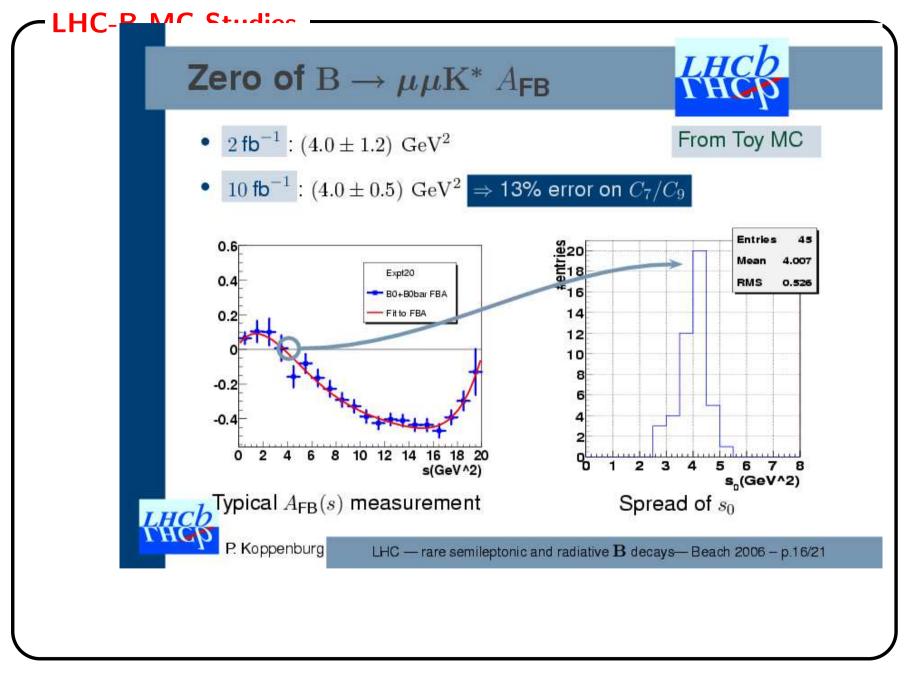

• For
$$B o K^* \ell^+ \ell^-$$
 decay, in the region 1 GeV $^2 \le q^2 \le 8$ GeV 2
 $P^\mu_{K^*} = (\mathbf{2.34}, 0, 0, \mathbf{2.16})$ GeV $[q^2 = 4$ GeV 2


• Light-cone vectors $n^\mu=(1,0,0,1)$, $ar{n}^\mu=(1,0,0,-1)$, satisfying $n^2=ar{n}^2=0$ and $n\cdotar{n}=2$


$$P^{\mu} = n \cdot P rac{ar{n}^{\mu}}{2} + ar{n} \cdot P rac{n^{\mu}}{2} + P^{\mu}_{\perp} = (P_{+}, P_{-}, P_{\perp}) \sim E(\lambda^{2}, 1, \lambda)$$

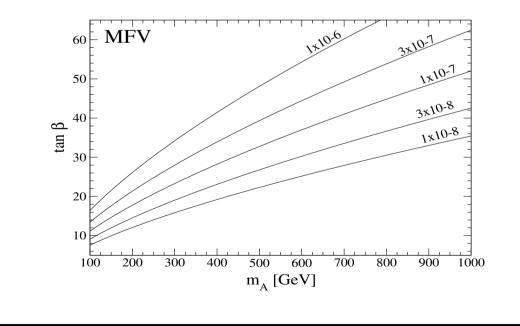
 $[P_{+} = 0.18 \text{ GeV}, P_{-} = 4.5 \text{ GeV}, \lambda \sim 0.2]$


• Power counting and expansion in λ , $\lambda \sim rac{\Lambda_{QCD}}{E}$



$$\begin{split} \textbf{B}_{s} & \rightarrow \mu^{+}\mu^{-} \text{ in SM} \\ \bullet \text{ Effective Hamiltonian} \\ \mathcal{H}_{eff} &= -\frac{G_{F}\alpha}{\sqrt{2\pi}} V_{ts}^{*} V_{tb} \sum_{i} \left[C_{i}(\mu) \mathcal{O}_{i}(\mu) + C_{i}'(\mu) \mathcal{O}_{i}'(\mu) \right] \\ \mathcal{O}_{10} &= \left(\bar{s}_{\alpha} \gamma^{\mu} P_{L} b_{\alpha} \right) \left(\bar{l} \gamma_{\mu} \gamma_{5} l \right), \qquad \mathcal{O}_{10}' &= \left(\bar{s}_{\alpha} \gamma^{\mu} P_{R} b_{\alpha} \right) \left(\bar{l} \gamma_{\mu} \gamma_{5} l \right) \\ \mathcal{O}_{S} &= m_{b} \left(\bar{s}_{\alpha} P_{R} b_{\alpha} \right) \left(\bar{l} l \right), \qquad \mathcal{O}_{S}' &= m_{s} \left(\bar{s}_{\alpha} P_{L} b_{\alpha} \right) \left(\bar{l} \gamma_{5} l \right) \\ \mathcal{O}_{P} &= m_{b} \left(\bar{s}_{\alpha} P_{R} b_{\alpha} \right) \left(\bar{l} \gamma_{5} l \right), \qquad \mathcal{O}_{P}' &= m_{s} \left(\bar{s}_{\alpha} P_{L} b_{\alpha} \right) \left(\bar{l} \gamma_{5} l \right) \\ \text{BR} \left(\bar{B}_{s} \rightarrow \mu^{+} \mu^{-} \right) &= \frac{G_{F}^{2} \alpha^{2} m_{B_{s}}^{2} f_{B_{s}}^{2} \tau_{B_{s}}}{64 \pi^{3}} |V_{ts}^{*} V_{tb}|^{2} \sqrt{1 - 4 \hat{m}_{\mu}^{2}} \\ \times \left[\left(1 - 4 \hat{m}_{\mu}^{2} \right) |F_{S}|^{2} + |F_{P} + 2 \hat{m}_{\mu}^{2} F_{10}|^{2} \right] \\ \text{where } \hat{m}_{\mu} &= m_{\mu} / m_{B_{s}} \text{ and} \\ F_{S,P} &= m_{B_{s}} \left[\frac{C_{S,P} m_{b} - C_{S,P}' m_{s}}{m_{b} + m_{s}} \right], \qquad F_{10} &= C_{10} - C_{10}' \\ \text{BR} \left(\bar{B}_{s} \rightarrow \mu^{+} \mu^{-} \right)_{\text{SM}} &= \left(3.46 \pm 1.5 \right) \times 10^{-9} \left[\text{Buchalla, Buras} \right] \\ f_{B_{s}} &= \left(230 \pm 30 \right) \text{MeV} \end{split}$$

 $B_s
ightarrow \mu^+ \mu^-$ in Supersymmetric Models • The decay $B_s \rightarrow \mu^+ \mu^-$ probes essentially the Higgs sector of Supersymmetry, a type-II two-Higgs doublet model $\mathcal{L} = \overline{Q}Y_U U_B H_u + \overline{Q}_T Y_D D_B H_d$ • Higgs-induced FCNC interactions are generated through loops s_L Ĥ" \tilde{H}_{d} (b)(a) • As H_u gets a VEV (v_u) , it contributes an off-diagonal piece to the down-type fermion mass matrix, mixing s_L and b_L by an angle θ $\sin heta=y_b\epsilon v_u/m_b;$ as $m_b=y_bv_d$, $\sin heta=\epsilon aneta$ • $\mathcal{A}(b\bar{s} \to \mu^+\mu^-) \simeq \sin\theta \mathcal{A}(b\bar{b} \to \mu^+\mu^-) \propto \tan\beta/\cos^2\beta \Longrightarrow \tan^3\beta$ for large-tan β

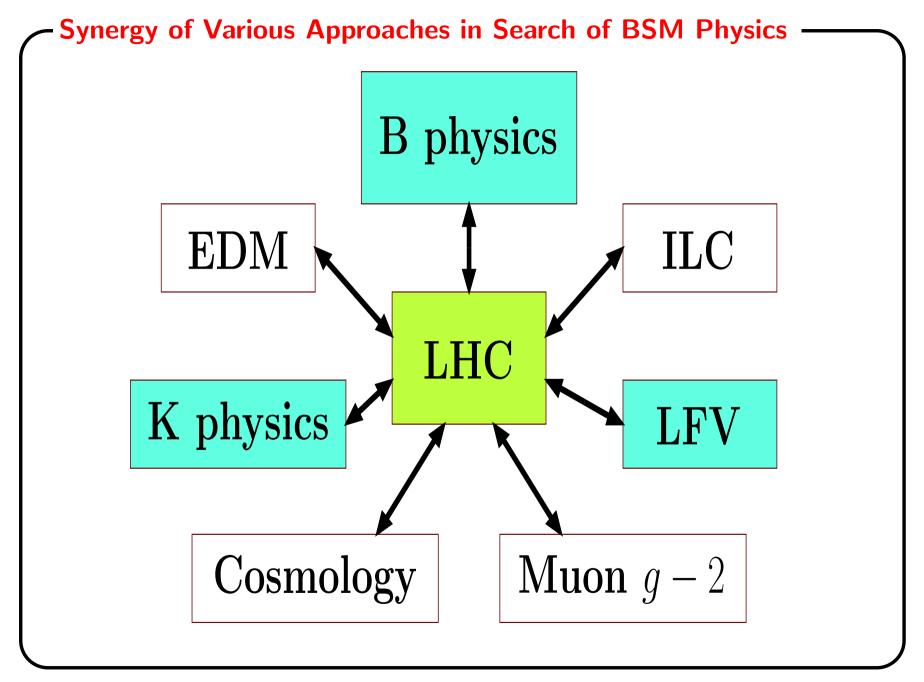

 ${\sc }B_s
ightarrow \mu^+ \mu^-$ in Minimal Flavor Violation SUSY Models —

• Higgsino contribution to ${\cal B}(B_s o \mu^+ \mu^-)$ [Babu, Kolda;...]

$${\cal B}(B_s o \mu \mu) \simeq {G_F^2 \over 8\pi} \, \eta^2_{
m QCD} m^3_{B_s} f^2_{B_s} au_{B_s} m^2_b \, m^2_\mu \left({{{
m tan}^2\,eta}\over{\cos^4eta}}
ight) \left({\kappa^2_{\widetilde H}\over m^4_A}
ight).$$

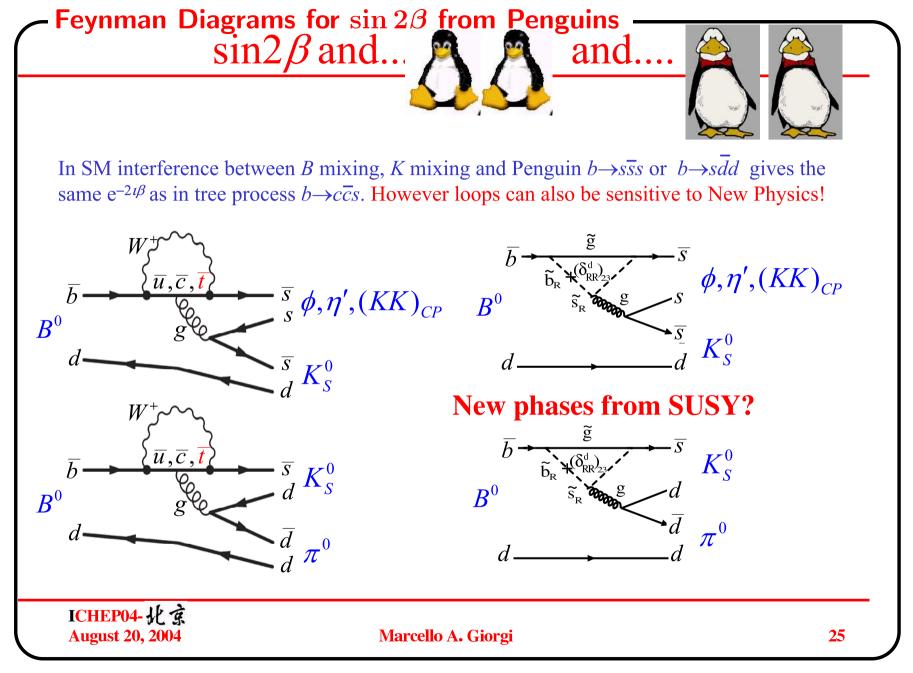
• $\eta_{
m QCD}\simeq 1.5$ is the QCD correction due to the RG between the SUSY and B_s scales

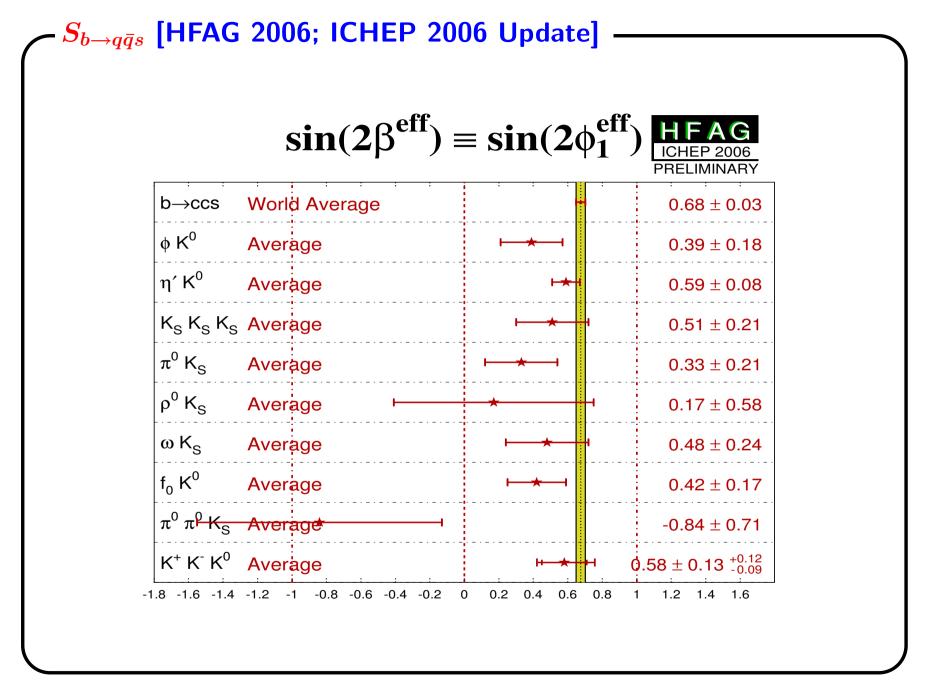
$$\kappa_{\widetilde{H}}=-rac{G_F\,m_t^2\,V_{ts}V_{tb}}{4\sqrt{2}\pi^2\sin^2eta}\,\mu A_t\,f(\mu^2,m_{\widetilde{t}_L}^2,m_{\widetilde{t}_R}^2)$$

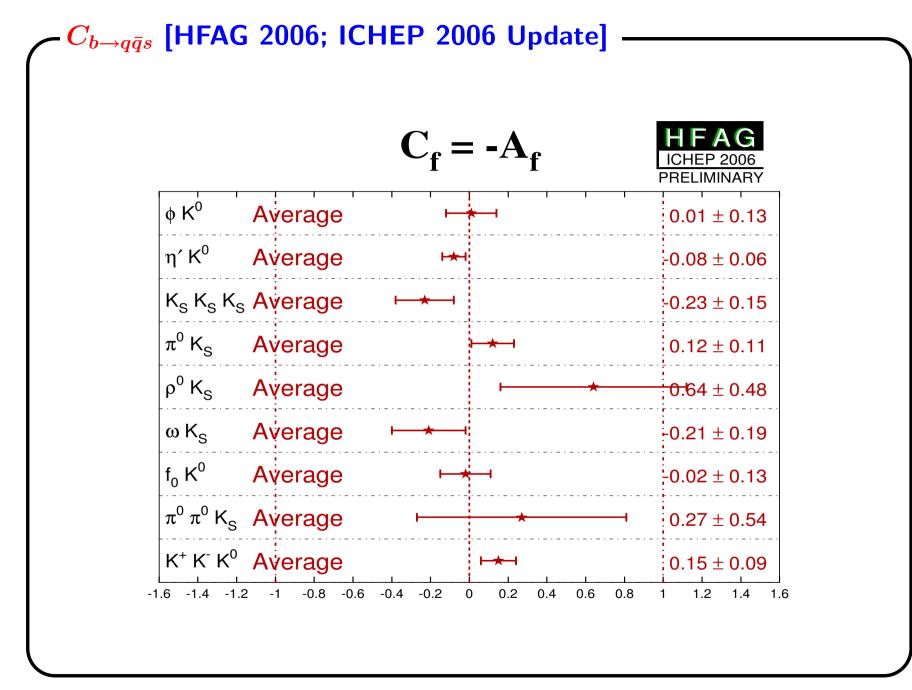

		$B_s \rightarrow$	p p				
Very rare dec	cay, sensit	ive to new phy	ysics				
$\blacktriangleright BR \sim 3.5 \times 1$	-		gly enhanced in	n SUSY			
Current limit							
	2.3×10 ⁻⁷ at 95% CL						
✓ CDF:	1.0×10 ⁻⁷ at 95% CL						
LHC has prospe	ect for sign	nificant measu	<u>irement</u>				
•			expected backg bb events + 10		vents (all rejected		
✓LHCb: ✓ATLAS: ✓CMS:	Full simula 80k bb→µ 10k b→µ,	ation: 10M incl. μ events with g $b \rightarrow \mu$ events wi iency assuming	bb events $+ 101$ generator cuts, ef th generator cuts cut factorization	M b $\rightarrow \mu$, b $\rightarrow \mu$ ev ficiency assuming s, trigger simulation	ng cut factorization ted at generator		
✓LHCb: ✓ATLAS: ✓CMS:	Full simula 80k bb→µ 10k b→µ,	ation: 10M incl. μ events with g $b \rightarrow \mu$ events wi iency assuming	bb events $+ 101$ generator cuts, ef th generator cuts cut factorization	M b $\rightarrow \mu$, b $\rightarrow \mu$ ev ficiency assuming s, trigger simulation	ng cut factorization ted at generator Other		
✓LHCb: ✓ATLAS: ✓CMS:	Full simula 80k bb $\rightarrow \mu$ 10k b $\rightarrow \mu$, level, effic	ation: 10M incl. μ events with g $b \rightarrow \mu$ events wi iency assuming	bb events + 10 generator cuts, ef th generator cuts	M b $\rightarrow \mu$, b $\rightarrow \mu$ ev ficiency assuming s, trigger simulation	ng cut factorization ted at generator		
✓LHCb: ✓ATLAS: ✓CMS:	Full simula 80k bb $\rightarrow \mu$ 10k b $\rightarrow \mu$, level, effic 1 year	ation: 10M incl. μ events with g $b \rightarrow \mu$ events wi iency assuming $B_s \rightarrow \mu^+ \mu^-$ signal (SM)	bb events + 10 generator cuts, eff th generator cuts cut factorization $b \rightarrow \mu, b \rightarrow \mu$ background	$M b \rightarrow \mu, b \rightarrow \mu ev$ ficiency assumings, trigger simulation Inclusive bb background	ng cut factorization ted at generator Other		
 ✓ LHCb: ✓ ATLAS: ✓ CMS: 	Full simula $80k bb \rightarrow \mu$ $10k b \rightarrow \mu$, level, efficient 1 year 2 fb⁻¹	ation: 10M incl. μ events with g $b \rightarrow \mu$ events wi iency assuming $B_s \rightarrow \mu^+ \mu^-$ signal (SM) 30	bb events + 10 generator cuts, eff th generator cuts cut factorization $b \rightarrow \mu, b \rightarrow \mu$ background < 100	$M b \rightarrow \mu, b \rightarrow \mu ev$ ficiency assumings, trigger simulation Inclusive bb background	ng cut factorization ted at generator Other		

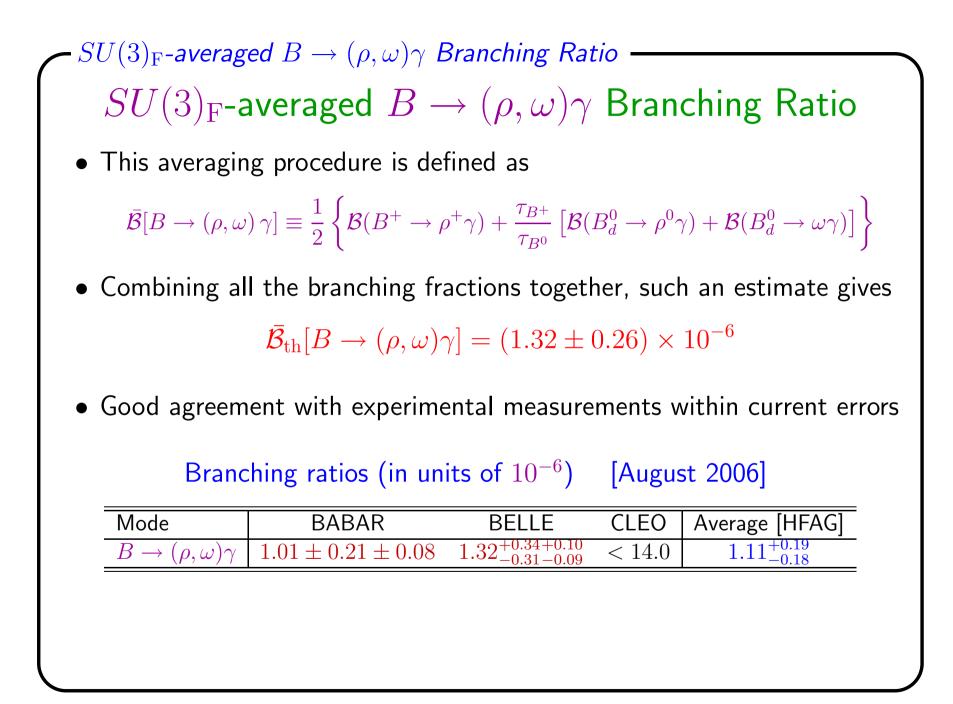
- LHC B-Meson Physics Program

- Experiments at LHC will pursue an extensive program on B-physics
- with high statistics
- access to ${\it B}_{\it s}\text{-meson}$ decays
- LHCb can fully exploit large *B*-meson yields at LHC from the start-up
- ATLAS and CMS will also contribute significantly
- competitive for modes with muons and small BR
- After 5 years:


Quantity	σ	SM expectat	tion
$\phi_s(B_s \to \bar{c}c\bar{s}s)$	~ 0.013	~ 0.035	
$Br(B_s \to \mu^+ \mu^-)$	$\sim 0.7 \times 10^{-9}$	$\sim 3.5 \times 10^{-5}$	-9
$\gamma(D_sK,DK)$	$\sim 1^{\circ}$	$\sim 60^{\circ}$	(tree only)
$\gamma(KK + \pi\pi)$	$\sim 2^{\circ}$	$\sim 60^{\circ}$	(tree + penguin)


Flavor Physics at LHC will contribute significantly to search for New Physics via precise and complementary measurements of CKM angles and study of loop decays




24 October 2006

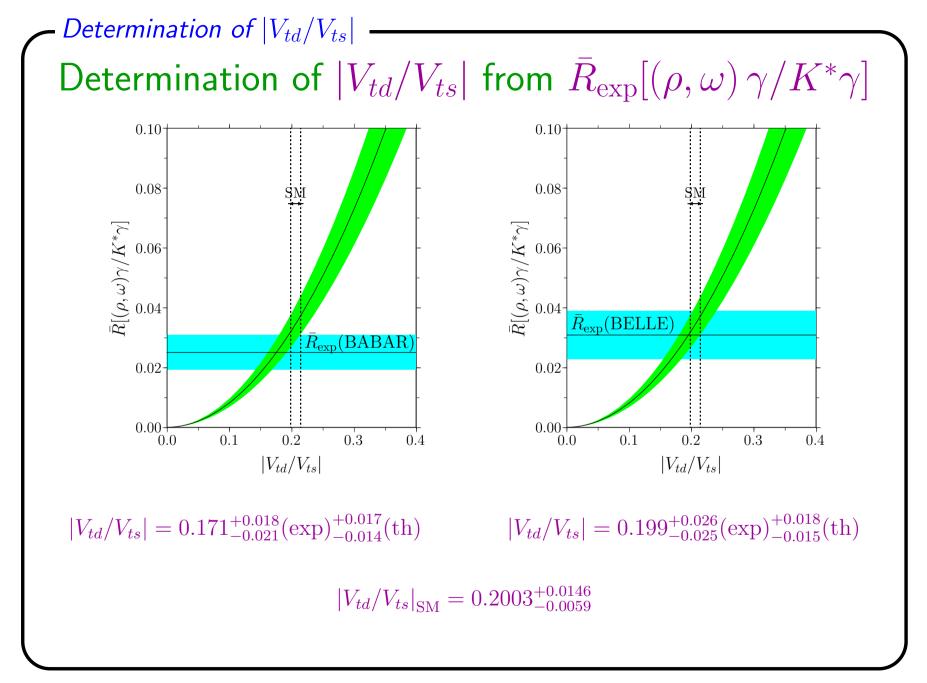
– Backup Slides –

- Determination of $|V_{td}/V_{ts}|$

Determination of $|V_{td}/V_{ts}|$ from $\bar{R}_{\exp}[(
ho,\omega)\,\gamma/K^*\gamma]$

• To extract the value of $|V_{td}/V_{ts}|$ from the $B\to (K^*,\rho,\omega)\,\gamma$ decays, one can use the ratio

$$\bar{R}_{\exp}[(\rho,\omega)\gamma/K^*\gamma] = \frac{\bar{\mathcal{B}}_{\exp}[B \to (\rho,\omega)\gamma]}{\bar{\mathcal{B}}_{\exp}(B \to K^*\gamma)} = r_{\mathrm{th}}^{(\rho/\omega)} \left|\frac{V_{td}}{V_{ts}}\right|^2 \zeta^2$$


• ζ and $|V_{td}/V_{ts}|$ are treated as free variables

• All other parametric uncertainties are combined in $r_{\rm th}^{(
ho/\omega)}$ error

 $r_{\rm th}^{(
ho/\omega)} = 1.09 \pm 0.06$

• Recent result $\zeta = 0.86 \pm 0.07$ by Ball and Zwicky can be used

Quantity	BABAR	BELLE	Average [HFAG]
$R_{ m exp}[(ho,\omega)\gamma/K^*\gamma]$	0.025 ± 0.006	$0.032 \pm 0.008 \pm 0.002$	0.027 ± 0.005
$\left V_{td}/V_{ts} ight \zeta$	$0.151^{+0.017}_{-0.019}$	$0.171\substack{+0.021\\-0.024}$	0.156 ± 0.014
$\left V_{td}/V_{ts} ight $	0.176 ± 0.026	0.199 ± 0.031	0.181 ± 0.022
• From global CKM f	its: $ V_{td}/V_{ts} $	$ =0.2003^{+0.0146}_{-0.0059}$	[CKMfitter]
	$ V_{td}/V_{ts} $	$ = 0.208 \pm 0.007$	[UTfit]

