QCD Instantons at the LHC

M. Petermann F. Schrempp DESY

1. Introduction

- □ Huge effort to experimentally verify SM perturbation theory (PT) for hard processes..
- Yet 't Hooft '76: hard processes must exist that cannot be described by PT, despite α << 1! Induced by topological fluctuations of gauge fields.</p>
- □ Rich vacuum structure of non-abelian gauge theories (QCD) ← Topology! Gauge fields carry an integer topological charge Q = 0, ±1,...↔ winding number

Classical ground states energetically degenerate, but topologically distinct (fig)!

□ (Anti) Instantons [Belavin *et al.* '75] → a basic aspect of the SM! explicitly known tunneling transitions between vacua differing by Q = +1 (-1), "instantaneous" in time and space.

Introduction

- □ Theoretically: QCD instantons known to play an important rôle in interface regime: partons → hadrons. E.g. chiral symmetry breaking, spectroscopy.. [Diakonov '96]
 Also: Instanton-driven gluon saturation at small x [F. Sch & Utermann '01-'04]
- □ Yet... Direct experimental evidence for instantons still lacking!
- □ However: [A. Ringwald & F. Sch. '94]

Characteristic **short**-distance manifestation of instantons may be exploited for experimental search!

- QCD *I*'s induce hard, calculable, chirality-violating processes, forbidden in usual PT ! ['t Hooft '76]
- o Theoretical prediction of rate and characteristic event signature achieved in **DIS** (strict *I* perturbation theory) \rightarrow

rate in measurable range at HERA. [Ringwald & F. Sch. '94 - '01]

Two dedicated *I* - search experiments by H1, ZEUS
 demonstrated that required exp. sensitivity is within reach!

Study in detail discovery potential for QCD instanton processes @LHC!
 Looking forward to data reanalysis in 2007 with ~750 pb⁻¹ @ HERA!
 24. Oct 2006 DESY LHC Standard Model Workshop, Zeuthen

Introduction

1.1 Instantons at DESY

□ A quick reminder:

- Extensive theoretical work Ringwald & F. Sch. '94 - '01 & Moch (PhD '94-'97) & Utermann (PhD '00 - '03) & Petermann (PhD '04 - '07),
- □ Instanton Monte Carlo generator for HERA: **QCDINS** [Ringwald & F. Sch.] (fig. right)
- □ 2 instanton search experiments based on our work:

• H1
$$\begin{cases} \int \mathcal{L}dt = \mathbf{21} \text{ pb}^{-1}, \ \theta_{e^+} > 156^\circ, \ 0 < y < 0.6 \\ x > 10^{-3}, \ \mathbf{10} \lesssim \mathbf{Q}^2 \lesssim \mathbf{100} \text{ GeV}^2 \end{cases} \text{ • ZEUS } \begin{cases} \int \mathcal{L}dt = \mathbf{38} \text{ pb}^{-1}, \ y > 0.05 \\ x > 10^{-3}, \ \mathbf{Q}^2 \gtrsim \mathbf{100} \text{ GeV}^2 \end{cases}$$

[H1 Coll., Eur.Phys. J. C 25 (2002) 495; ZEUS Coll., Eur. Phys. J. C 34 (2004)]

□ While H1 saw significant excess over MC's in accord with our predictions, large remaining uncertainties from normal DIS event generators remained challenging...

24. Oct 2006

2. Setting the stage for the LHC

- Gold-plated" *I* induced events @LHC ↔ best compromise between rate and bg-freedom!
- Very promising new method for bg-suppression @HERA & @LHC [Barakbayev, Boos, Lohrmann, Petermann & F.Sch. '06] in prep.
- □ Three main aspects to select dominant *I* subrocess,
 - 1) counting powers of $\alpha_{\rm s}~$ and $\alpha_{\rm em}$,
 - o each external **non**-perturbative gluon: $\sigma \propto \frac{1}{\alpha_s}$
 - o each external quark (zero mode): $\sigma \propto \mathcal{O}(1)$
 - 2) enhancements from parton densities
 - 3) subprocess dependent power-growth in $\hat{s} = E^2$, at lower energies for exlusive, exp-growth for inclusive processes!
- □ (1) & (2) \rightarrow *g* + *g* initial state strongly dominant as in usual **PT**
- Focus on general topology as in fig. (top). Interesting variant with 2 rapidity gaps and central "fireball" in fig. (bottom): "diffractive instanton" events...

Setting the stage for the LHC

2.1 Energy constraint

□ The (inclusive) sum over multi-gauge boson final states is known to exponentiate,

$$\sigma_{\rm t\,Hooft}^{(I)} \sim \exp\left[-\frac{4\pi}{\alpha}\right] \quad \Rightarrow \quad \sigma^{(I)} \sim \exp\left[-\frac{4\pi}{\alpha}F_{\rm hg}(\frac{E}{m_{\rm sph}})\right]$$

with the "holy grail" function F_{hg} and $0 \le F_{hg} \le 1$, turning 't Hooft's tunneling factor (left) into a much weaker suppression (right), since $F_{hg} \downarrow$ for E \uparrow .

 \square The scale \mathcal{m}_{sph} denotes the "sphaleron mass" (barrier height) for QFD and QCD:

$$m_{\rm sph} \approx \frac{3\pi}{4} \frac{1}{\alpha \,\rho_{\rm eff}} \approx \begin{cases} 4\frac{m_W}{\alpha_W} \approx 10 \,\,{\rm TeV} & (m_{\rm Higgs} \approx 115 \,\,{\rm GeV}) & \text{for QFD} \\ \mathcal{O}(1) \,\mathcal{Q} & (\text{virtuality } \mathcal{Q}) & \text{for QCD} \end{cases}$$

 $\rho_{\rm eff}$ = effective instanton size

[Klinkhamer & Manton '84 (QFD); Ringwald & F. Sch '94 (QCD)]

□ Resummation of gauge bosons (gluons) in final state via "valley approximation" & optical theorem. → [Yung '88] valley action $S_{\text{valley}}^{I\bar{I}}$ formally known for all $\frac{E}{m_{\text{sph}}} \leftrightarrow F_{\text{hg}}$ "known"! [Khoze & Ringwald '91, Verbaarschot '91]

24. Oct 2006

Setting the stage for the LHC Energy constraint

Crucial: when does the valley approximation break down??

2 direct, independent evidences for requirement: $\frac{E}{m_{\rm sph}} \leq O(1)$ QCD: [F. Sch. & Utermann '02]; QFD: [Rubakov, Rebbi *et al.* '03]

□ This energy constraint is implemented in our LHC analysis.

Since cross section increases with E until $E \approx m_{\rm sph}$, always work effectively near the "sphaleron"!

Matches widely believed "square root rule" for instanton cross sections, which was also implemented for predictions @HERA:

$$E \text{ large}: \sigma^{(I)} \sim \sqrt{\sigma^{(I)}_{\prime t \text{ Hooft}}} \sim \exp\left[-2\frac{\pi}{\alpha}\right], \text{ i.e. } F_{\text{hg}} \rightarrow \frac{1}{2}$$

Note: observability of B+L violation in QFD at the LHC would require a far less conservative assumption, i.e.

$$F_{\text{hg}} \stackrel{E \to \infty}{\Rightarrow} 0$$

Setting the stage for the LHC 2.2 From HERA to the LHC by crossing

□ @HERA, the I-subprocess virtuality Q'^2 not bounded by Q^2 , hence need Q'^2 reconstruction and a respective cut!

(@LHC: $Q'^2 > Q^2$ kinematically! **Timelike virtuality** Q'^2 enforced in *I* – subprocess, by requiring a final state vector boson (fig)

$$\gamma(q_T), \gamma^*(Q)_{\to l^+ l^-}, W^{\pm}(m_W)$$
 + 1 jet

24. Oct 2006

Setting the stage for the LHC

2.2 Event signature

□ In *I* - rest system: "fireball" decaying isotropically to

$$n_f \cdot (q + \bar{q}) + \mathcal{O}\left(\frac{1}{\alpha_s}\right) \cdot g = \mathcal{O}(20) \text{ partons} \sim \mathcal{O}(60 - 80) \text{ hadrons}$$

 $\Box \ u, \bar{u}, d, \bar{d}, s, \bar{s} \text{ flavor "democracy" in each event!}$ strangeness $\Rightarrow K's, \Lambda's$

$$\Box$$
 Lego plot (η , φ , E_T) \Rightarrow "*I*-band"

Isotropy \Rightarrow small width $\Delta \eta = \pm 1$ in (pseudo-) rapidity η and isotropy in azimuth φ , large total E_T

Every exclusive I-process grows initially with energy like a high power:

$$\hat{\sigma}\sim \hat{\mathbf{s}}\;^{3n_{f}+2n_{g}-5}$$

(like a contact term)

"fireball" + vector boson + 1 jet

3. The simplest I-induced LHC process

□ Like for HERA, idealized simplest I-process @LHC, $n_f = 1 \oplus no$ final-state gluons is very instructive (fig left)! Being exactly calculable in I-perturbation theory, many of its features remain valid after final state gluon resummation. Focus on such aspects.

□ Fig. right illustrates that sphaleron mass constraint may be characterized in terms of vector boson virtuality: $3 \leq \frac{\sqrt{\hat{s}}}{Q} \leq 5 \Leftrightarrow \frac{\sqrt{\hat{s}}}{m_{\rm sph}} = \mathcal{O}(1) \text{ more/less conservatively}$

resulting from (known) form of Vqq' vertex in I-background!

□ While rigorous calculation being still in progress, consider "poor man's" gluon resummation in terms of dominant effect: $I_{Fhg} \rightarrow \frac{1}{2}$

The simplest I-induced LHC process

3.1 Results

 $g + g \Rightarrow \bar{q} + q + \gamma^*(Q)$ $g + g \Rightarrow \bar{u} + d + W^+ + cc$

- Display a set of characteristic results for simplest processes and enhancements via "poor man's" gluon resummation that are expected to survive in fully realistic case.
- □ Fig. left: relative energy dependence and our two "sphaleron limits" (green, red lines)
- Fig. right: huge enhancement via "poor man's" gluon resummation. W final state not too small!
 shaded region: normal, perturbative background, calculated with Comphep

The simplest I-induced LHC process

Results

$$g + g \Rightarrow \bar{u} + d + W^+ + cc.$$

- **Rapidity distributions** for final state quark-iet and W, first for conservative "benchmark": $\sqrt{\hat{s}} = 3 m_W$, and using "poor man's" gluon resummation.
- □ Normal SM background calculated with **Comphep.** "Errors" are Monte Carlo errors.
- □ Note: widths of rapidity profiles are uniformly ±1 unit, due to isotropy!
- □ Next: $\sqrt{\hat{s}} = 5 m_W$: signal / background improves a lot!

The simplest I-induced LHC process

Results

$$g + g \Rightarrow \bar{u} + d + W^+ + cc.$$

- **Transverse momentum distributions** for final state quark-jet and W, first for conservative "benchmark": $\sqrt{\hat{s}} = 3 m_W$, and using "poor man's" gluon resummation.
- □ Normal SM background calculated with **Comphep.** "Errors" are Monte Carlo errors.
- □ Again for $\sqrt{\hat{s}} = 5 m_W$: signal / background improves a lot!

4. Conclusions & Outlook

- □ Search for instanton processes concerns a **basic** non-perturbative aspect of QCD!
- □ Calculations for the "simplest I-induced LHC process": completed & promising.
- Explicit gluon resummation via the "valley method" and (saddle point) integration over the 9 (!) collective instanton coordinates is difficult (timelike virtuality!) and still in progress.
- □ Yet, the presented "poor man's" gluon resummation estimates give rise to optimism!
- ❑ Higher "fireballness" of I-events is expected compared to HERA, due to increased phase space @LHC!
- □ Important relations of I-predictions @LHC to those @HERA due to crossing.

Outlook:

- Explore new method of background suppression for LHC
 [Barakbayev, Boos, Lohrmann, Petermann & F.Sch. '06]
- □ With Tancredi Carli/CERN & friends: LHC observables...QCDINS@LHC (C++)...