SIGNIFICANCE OF NON-PERTURBATIVE INPUT TO TMD GLUON DENSITY IN HARD PROCESSES AT LHC

Gennady Lykasov*
in collaboration with
Andrey Grinyuk *,
Artem Lipatov**
and
Nikolay Zotov**

*JINR, Dubna
**MSU, Moscow

OUTLINE

1. Inclusive spectra of charge hadrons in p-p within soft QCD model including gluon

2. Gluon distribution in proton

3. Modified un-integrated gluon distribution

4. CCFM-evolution and structure functions

5. Summary

SOFT PP->hX

The inclusive spectrum is presented in the following form:

$$\rho (x=0, p_t) = \rho_q (x=0, p_t) + \rho_g (x=0, p_t)$$

Here
$$\rho_{q} = g \left(\frac{S}{S_{0}}\right)^{\Delta} \varphi_{q}; \varphi_{q}(0, p_{t}) = A_{q} \exp(-b_{q} p_{t})$$

$$\rho_{g} = g \left[\left(\frac{S}{S_{0}}\right)^{\Delta} - \sigma_{nd}\right] \varphi_{g}; \varphi_{g}(0, p_{t}) = \sqrt{p_{t}} A_{g} \exp(-b_{g} p_{t})$$

$$A_{q} = 11.91 \pm 0.39, \ b_{q} = 7.29 \pm 0.11 \quad g \approx 21 \text{ mb}$$

$$A_{g} = 3.76 \pm 0.13 \quad b_{g} = 3.51 \pm 0.02 \quad \Delta \approx 0.12$$

V.A. Bednyakov, A.V. Grinyuk, G.L., M. Poghosyan, Int. J.Mod.Phys. A 27 (2012) 1250012. hep-ph/11040532 (2011); hep-ph/1109.1469 (2011); Nucl.Phys. B 219 (2011) 225.

One-Pomeron exchange (left) and the cut one-Pomeron exchange (right); P-proton, g-gluon, h-hadron produced in PP

In the light cone dynamics the proton has a general decomposition:

 $|uud\rangle$, $|uudg\rangle$, $|uudq\overline{q}\rangle$,... S.J.Brodsky, C.Peterson, N.Sakai, Phys.Rev. D 23 (1981) 2745.

THE CUT ONE-POMERON EXCHANGE

$$\rho(x,p_{ht}) = F(x_+,p_{ht})F(x_-,p_{ht})$$

Here

$$F(x_{+}, p_{ht}) = \int dx_{1} \int d^{2}k_{1t} f_{Rq}(x_{1}, k_{1t}) G_{q}^{h} \left(\frac{x_{+}}{x_{1}}, p_{ht} - k_{1t}\right)$$

where

$$G_q^h(z,k_t)=zD_q^h(z,k_t)$$
 $f_q=g\otimes P_{g-qq}$

where P_{g-qq}^{-} is the splitting function of a gluon to the quark-antiquark pair

A.A.Grinyuk, A.V.Lipatov, G.L., N.P. Zotov, Phys.Rev. D87, 074017 (2013).

UN-INTEGRATED GLUON DISTRIBUTION IN PROTON

$$xA(x,k_t^2,Q_0^2) = \frac{3\sigma_0}{4\pi^2\alpha_s}R_0^2(x)k_t^2\exp(-R_0^2(x)k_t^2)$$

where $R_0 = C_1 (x/x_0)^{\lambda/2}$, $C_1 = 1/GeV$

K.Golec-Biernat & M.Wuesthoff, Phys.Rev. D60, 114023 (1999); Phys.Rev. D59, 014017 (1998)

H.Jung, hep-ph/0411287, Proc. DIS'2004 Strbske Pleco, Slovakia

MODIFIED UGD AT Q₀

$$xg(x,k_{t},Q_{0}) = C_{0}C_{3}(1-x)^{b_{g}}(R_{0}^{2}(x)k_{t}^{2} + C_{2}(R_{0}(x)k_{t})^{a})$$

$$\exp(-R_{0}(x)k_{t} - d(R_{0}(x)k_{t})^{3}),$$
where
$$C_{0} = 3\sigma_{0}/(4\pi^{2}\alpha_{s}(Q_{0}^{2}))$$

The coefficient C_3 is found from the relation

$$xg(x,Q_0^2) = \int_0^{Q_0^2} xg(x,k_t^2,Q_0^2) dk_t^2$$

A.Grinyuk, H.Jung, G.L., A.Lipatov, N.Zotov, hep-ph/1203.0939; Proc.MPI-11, DESY, Hamburg, 2012.

At $k_t - > 0$ our UGD goes to zero as k_t^a where a < 1

It has been confirmed by B.I.Ermolaev, V.Greco, S.I.Troyan, Eur.Phys.J. C 72 (2012) 1253; hep-ph/1112.1854.

Green line is the GBW u.g.d. K. Golec-Biernat & M. Wuesthoff, Phys.Rev.D60, 114023 (1999).Red line is the modified u.g.d. A.Grinyuk, H.Jung, G.L., A.Lipatov, N.Zotov, hep-ph/1203.0939; Proc.MPI-11, DESY, Hamburg, 2012; A.A.Grinyuk, A.V.Lipatov, G.L., N.P.Zotov, Phys.Rev. D87, 074017 (2013); hep-ph/1301.45

CCFM evolution equation

$$f_{g}(x,k_{T}^{2},\overline{q}^{2}) = f_{g}^{0}(x,k_{T}^{2},Q_{0}^{2})\Delta_{s}(\overline{q}^{2},Q_{0}^{2}) + \int \frac{dz}{z}\int \frac{dq^{2}}{q^{2}} \times$$

$$heta(\overline{q}-zq)\Delta_{s}(\overline{q}^{2},q^{2})P_{gq\overline{q}}(z,q^{2},k_{T}^{2})f_{g}(\overline{z},k_{T}^{2},q^{2})$$

Here $k_T = q(1-z)/z + k_T$ and the Sudakov form factor $\Delta_s(q_1^2, q_2^2)$ describes the probability of no radiation between q_2 and q_1 , $P_{gq\bar{q}}$ is the splitting function, f_g is the gluon density.

The first term means the contribution of non resolvable branchings between the starting scale Q_0 and the factorization scale \overline{q} .

A.V.Lipatov, G.L., N.P.Zotov, Phys.Rev. D89 (2014) 1, 014001

MODIFICATION OF U.G.D. AT LARGE k_T

We construct the new U.G.D. matching their form at low k_T (k_T <2-3 GeV/c) to the one, which is the exact solution of the BFKL outside of the saturation region obtained by Yuri V. Kovchegov (Phys.Rev.D61 (2000) 074018)...

$$xg_1(x, k_T, Q_0) = xg_0(x, k_T, Q_0) + F_M(x, k_T, Q_0)P_1(x, k_T)$$

Here xg_1 is the new U.G.D., xg_0 is our old U.G.D., P_1 is the Kovchegov's solution at $k_T > 1$. GeV/c, F_M is the matching function of xg_0 to P_1

Kovchegov's solution

(Yri V. Kovchegov, Phys.Rev.D61 (2000) 074018)

$$P_1(k_T, Y) = C_{-1} \frac{\Lambda}{k_T} \frac{\exp[(\alpha_P - 1)Y]}{\sqrt{14\alpha_s N_c \varsigma(3)Y}} \exp\left(-\frac{\pi}{14\alpha_s N_c \varsigma(3)Y} \ln^2 \frac{k_T}{\Lambda}\right)$$

 α_P is the intercept of the subcritical Pomeron, $Y = \ln(1/x)$

For the initial conditions, as the two gluon exchange approximation $C_{-1} \sim \alpha_s^2$

Our matching function

$$F_M(x, k_T, Q_0) = B(x/x_0)^d \exp(-aR_0/k_T)$$

where $R_0 = (x/x_0)^{\lambda}$, B,d,a are parameters, which were found from matching of our old U.G.D. to the Kovchegov's solution

Spectrum of π^- - mesons produced in pp collision

Gluon distribution as a function of k_T^2

$$f_{g}^{(0)}\big(x\,,k_{T}^{2}\,,Q_{0}^{2}\big)\!\!\to\!f_{g}^{(0)}\big(x\,,k_{T}^{2}\,,Q_{0}^{2}\big)\!\!+\!f_{g}^{(k)}\big(x\,,k_{T}^{2}\big)$$

$$F_L(x, Q^2) = \sum_f e_f^2 \int \frac{dy}{y} \int d\mathbf{k}_T^2 C_L(x/y, \mathbf{k}_T^2, Q^2, m_f^2, \mu^2) f_g(y, \mathbf{k}_T^2, \mu^2).$$

Solid line corresponds to μ_R = Q, the dash top line is for μ_R =Q/2, the bottom line corresponds to μ_R =2Q. Circles are the ZEUS data, squares are H1 data

Solid line corresponds to μ_R = Q, the dash top line is for μ_R =Q/2, the bottom line corresponds to μ_R =2Q. Circles are the H1 data, squares are H1 data.

Dotted line is the calculations using the set A0, Hannes Jung hep-ph/0411287

HEAVY FLAVOUR JET PRODUCTION

$$\sigma = \int \frac{|\bar{\mathcal{M}}|^2}{16\pi (x_1 x_2 s)^2} f_g(x_1, \mathbf{k}_{1T}^2, \mu^2) f_g(x_2, \mathbf{k}_{2T}^2, \mu^2) d\mathbf{p}_{1T}^2 d\mathbf{k}_{1T}^2 d\mathbf{k}_{2T}^2 dy_1 dy_2 \frac{d\phi_1}{2\pi} \frac{d\phi_2}{2\pi}$$

b-Jets production in p-p collision at s^{1/2} = 7 TeV

CMS Collaboration, JHEP 1204, 084 (2012)

Solid histogram is our new calculation, the dashed one is results obtained using set A0, see Hannes Jung, Proc. 12th Int. Workshop DIS'2004, Strbske Pleso, Slovakia, 2004, hep-ph/0411287.

b-Jets production in p-p collision at s^{1/2} = 7 TeV

ATLAS Collaboration, EPJ C 71, 1846 (2011)

Solid histogram is our new calculation, the dashed one is results obtained using set A0, see Hannes Jung, Proc. 12th Int. Workshop DIS'2004, Strbske Pleso, Slovakia, 2004. hep-ph/0411287.

Rapidity didtribution of b-jet produced in pp at $s^{1/2}=7$ TeV

$\Delta \phi$ -Distribution between b and b jets in pp collisions

Solid histogram is our new calculation, the dashed one is results obtained using set A0, see Hannes Jung, Proc. 12th Int. Workshop DIS'2004, Strbske Pleso, Slovakia, 2004. hep-ph/0411287.

Higgs-boson production in pp collision

$$\mathcal{L}_{ggH} = \frac{\alpha_s}{12\pi} \left(G_F \sqrt{2} \right)^{1/2} G^a_{\mu\nu} G^{a\mu\nu} H.$$

$$T_{ggH}^{\mu\nu,ab}(k_1,k_2) = i\delta^{ab} \frac{\alpha_s}{3\pi} \left(G_F \sqrt{2} \right)^{1/2} \left[k_2^{\mu} k_1^{\nu} - (k_1 \cdot k_2) g^{\mu\nu} \right]$$

$$\mathcal{L}_{H\gamma\gamma} = \frac{\alpha}{8\pi} \mathcal{A} \left(G_F \sqrt{2} \right)^{1/2} F_{\mu\nu} F^{\mu\nu} H$$

$$\mathcal{A} = \mathcal{A}_W (\tau_W) + N_c \sum_f Q_f^2 \mathcal{A}_f (\tau_f)$$

$$\tau_f = \frac{m_H^2}{4m_f^2}, \quad \tau_W = \frac{m_H^2}{4m_W^2}$$

J.R. Ellis, M.K. Gaillard, D.V. Nanopulos, NPB 106, 292 (1976)
M.A. Shifman, A.I. Vainstein, M.B. Voloshin, V.I. Zakharov, Sov. J. Nucl. Phys. 30, 711 (1979)

Higgs-boson production in pp at $s^{1/2} = 8 \text{ TeV}$

Solid histogram is our calculation, the dashed one is results using set A0, see Hannes Jung, Proc. 12th Int. Workshop DIS'2004Strbske Pleso, Slovakia, 2004. he-ph/0411287.

Solid histogram is results of Hannes Jung, hep-ph/0411287; the light lilac area corresponds to NNLO+NNLL

SUMMARY

- 1. The new TMD gluon density is proposed at initial $Q_0 = 1.1 \text{ GeV/c}$. and their parameters are verified by the description of the LHC data on the hadron spectra in the soft kinematical region.
- 2. The CCFM evolution equation was solved using the proposed TMD g.d. at starting Q_0^2 .
- 3. The CCFM-evolved u.g.d. results in a satisfactory description of the H1 and ZEUS data on $\mathbf{F_L}$, $\mathbf{F_{2b}}$.
- 4. The modification of the u.g.d. at large k_T is suggested matching the solution of the BFKL obtained by Kovchegov at $k_T > 1$ GeV/c and our u.g.d. at $k_T < 1$ GeV/c.
- 5. The CCFM-evolved new u.g.d. results in a satisfactory description of hard production of heavy flavour jets and Higgs bosons.
- 6. The application of the new u.g.d. to the analysis of these processes allows us to describe rather well the azimuthal correlations of two b-jets.
- 7. The connection between the soft processes at LHC and small x-physics at HERA has been confirmed using the new input for the gluon density

THANK YOU VERY MUCH FOR YOUR ATTENTION!

Longitudinal structure function

$$f_g^{(0)}(x, k_T^2, Q_0^2) \rightarrow f_g^{(0)}(x, k_T^2, Q_0^2) + f_g^{(k)}(x, k_T^2)$$

Longitudinal structure function as a function of x

The solid lines correspond to the proposed CCFM – evolved TMD gluon density; the dashed curves mean the contribution from the our non evolved gluon density; the dottet lines correspond to the CCFM-evolved GBW g.d

A.V.Lipatov, G.L., N.P.Zotov, Phys.Rev. D89 (2014) 1, 014001

Kt-factorization

Photo-production cross section

$$\sigma = \int \frac{dz}{z} d^2k_t \sigma_{part} \left(\frac{x}{z}, k_t^2\right) F\left(z, k_t^2\right)$$

Here $F(z,k_t^2)$ is the un-integrated parton density function, $\sigma_{part}(x/z,k_t^2)$ is the partonic cross section.

Classification scheme:

$$xF\left(x,k_{t}^{2}\right)$$
 is used by BFKL $xA\left(x,k_{t}^{2},\overline{Q}^{2}\right)$ describes the CCFM type UGD with an additional factorization scale Q (such as $\alpha_{s}\left(Q^{2}\right) \le 1$) $xG\left(x,k_{t}^{2}\right)$ describes the DGLAP type UGD

Longitudinal structure function within the kt-factorization

$$F_{L}(x,Q^{2}) = \int_{x}^{1} \frac{dz}{z} \int_{0}^{Q^{2}} dk_{t}^{2} \sum_{i=u,d,s} e_{i}^{2} C_{L}^{g} \left(\frac{x}{z},Q^{2},m_{i}^{2},k_{t}^{2}\right) \phi_{g}(z,k_{t}^{2}),$$

$$\phi_{g}(x,k_{t}^{2}) = xg(x,k_{t}^{2}), \quad xg(x,Q^{2}) = xg(x,Q_{0}^{2}) + \int_{Q_{0}^{2}}^{Q^{2}} dk_{t}^{2} \phi_{g}(x,k_{t}^{2})$$

A.V. Kotikov, A.V. Lipatov, N.P. Zotov, Eur.Phys.J., C27 92003)219. H. Jung, A.V. Kotikov, A.V. Lipatov, N.P. Zotov, DIS 2007, hep-ph/07063793.

 F_L as a function of Q^2 at W=276 GeV and μ_R^2 = 127 Q^2

Red line:
$$\sigma_{dipole}^{GBW}(x,r) = \sigma_0 \left\{ 1 - \exp\left(-\frac{a_1 r}{R_0(x)} - \frac{a_2 r^2}{R_0^2(x)}\right) \right\}$$

Effective dipole cross section

Red line corresponds to $\sigma_{dipole}^{r, [fm]} = \sigma_0 \ln \left(1 + \frac{\sigma_{dipole}}{\sigma_{dipole}}\right)$

The x-dependence of F_L at $Q^2 = 2.2 (GeV/c)^2$ assuming

$$\mu_R^2 = KQ^2$$
 and $\mu_R^2 = Q^2$, where $K = 127$

Inclusive hadron production in central region and the AGK cancellation

According to the AGK, the n-Pomeron contributions to the inclusive hadron spectrum at y=0 are cancelled and only the one-Pomeron contributes. This was proved asymptotically, i.e., at very high energies.

Using this AGK we estimate the inclusive spectrum of the charged hadrons produced in p-p at y=0 as a function of the transverse momentum including the quark and gluon components in the proton.

$$\rho_{q}(x=0,p_{t}) = \phi_{q}(0,p_{t}) \sum_{n=1}^{\infty} n\sigma_{n}(s) = gs^{\Delta}\phi_{q}(0,p_{t})$$

$$\rho_{g}(x=0,p_{t}) = \varphi_{g}(0,p_{t}) \sum_{n=2}^{\infty} (n-1)\sigma_{n}(s) =$$

$$\varphi_{g}(0,p_{t})(gs^{\Delta}-\sigma_{nd})$$

2012

DESY, March 26, 2015

Inclusive hadron production in central region and the AGK cancellation

According to the AGK, the n-Pomeron contributions to the inclusive hadron spectrum at y=0 are cancelled and only the one-Pomeron contributes. This was proved asymptotically, i.e., at very high energies.

Using this AGK we estimate the inclusive spectrum of the charged hadrons produced in p-p at y=0 as a function of the transverse momentum including the quark and gluon components in the proton.

$$\rho_{q}(x=0,p_{t}) = \phi_{q}(0,p_{t}) \sum_{n=1}^{\infty} n\sigma_{n}(s) = gs^{\Delta}\phi_{q}(0,p_{t})$$

$$\rho_{g}(x=0,p_{t}) = \varphi_{g}(0,p_{t}) \sum_{n=2}^{\infty} (n-1)\sigma_{n}(s) =$$

$$\varphi_{g}(0,p_{t})(gs^{\Delta}-\sigma_{nd})$$

Effective dipole cross section

N.Nikolaev, B.Zakharov, Z.Phys.C49, 607 (1990)

K. Golec-Biernat, M Wuesthoff, Phys.Rev. D60, 114023 (1999); D59, 014017 (1998)

Saturation dynamics

$$\sigma_{dipole}^{GBW}(x,r) = \sigma_0 \left\{ 1 - \exp\left(-\frac{r^2}{4R_0^2}\right) \right\}$$

$$R_0 = GeV^{-1}(x/x_0)^{\lambda/2} \quad \text{at} \quad x < x_0 \quad \text{we have} \quad \sigma_{dipole} \approx \sigma_0$$

Saturation becomes when $r \sim 2R_0$. It leads to $G_{Te} \approx G_{Te} \approx G_{Te}$

Effective dipole cross section and unintegrated gluon distribution

$$\sigma_{dipole}(x,r) = \frac{4\pi}{3} \int \frac{dk_{t}^{2}}{k_{t}^{2}} [1 - J_{0}(k_{t},r)] \alpha_{s} x g(x,k_{t})$$

Here α_s is the QCD running constant, J_0 is the Bessel function of the zero order.

Structure of an event

Multiple parton-parton interactions

