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Lattice QCD and the sign problem
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The slippery slope of (my) research….
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DESY:  grad student of  Wilfried

Electroweak phase transition: crossover for m_H>70 GeV

Non-perturbative physics, lattice QCD

QCD thermal transition   ~ 200 MeV

Nucl. liquid gas transition   ~ 10 MeV
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Successes of Lattice QCD 
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Nuclear matter as we know it: 
light hadron spectrum from the lattice

                     BMW collaboration  (Budapest, Marseille, Wuppertal) 2010

                     QCD is correct theory for strong interactions also at low energy!

mesons=
quark anti-quark states

baryons=
three-quark states

The nucleon mass splitting 

High precision:  isospin breaking mu 6= md,↵em 6= 0

Budapest - Wuppertal 2014

Enlarge the theory by including electromagnetic  coupling
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Nuclear matter as we know it: 
light hadron spectrum from the lattice

                     BMW collaboration  (Budapest, Marseille, Wuppertal) 2010

                     QCD is correct theory for strong interactions also at low energy!

mesons=
quark anti-quark states

baryons=
three-quark statesHigh precision hadron spectrum

QED effects included

Used as discovery tool:  
 
exotic hadron states, quark gluon plasma, axions,  
beyond SM models, hadronic matrix elements for g-2, relic WIMP abundance….

Group leader: Z. Fodor,  former DESY postdoc 



Completely unsolved: bulk nuclear matter
Nuclear physics

~100 years old, still no fundamental description, Bethe-Weizsäcker droplet model: 

Z

N

Binding energy per nucleon

QFT descriptions: Fetter-Walecka model, Skyrme model, ...

Ab initio Hamiltonian descriptions



What are compact stars made of?

Radius  ~ 10-12 km
Mass    ~  1.2-2.2 x Solar Mass

�0 : nuclear density

  few

What are compact stars made of?

Radius  ~ 10-12 km
Mass    ~  1.2-2.2 x Solar Mass

�0 : nuclear density

  few

EoS affects:

-mass-radius relationship
-frequency of pulsars 
-gravitational wave emission of binaries



QCD phase diagram: theorist’s view (science fiction)

T

µ

confined

QGP

Color superconductor

Tc

!
~170 MeV

~1 GeV?

Expectation based on simplifying models (NJL, linear sigma model, random matrix models, ...)

Check this from first principles QCD! 

Until 2001: no finite density lattice calculations, sign problem!
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The QCD phase diagram established by experiment:

B

Nuclear liquid gas transition with critical end point
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The sign problem for finite density QCD
How to identify the critical surface: Binder cumulant

B4(ψ̄ψ) ≡
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Intro Tc CEP Results Discussion Concl. Others Strategy

Observable: Binder cumulant

• Probability distribution of order parameter

- distinguishes crossover (Gaussian) vs 1rst order (2 peaks)

- 2nd order: scale-invariant distribution with known Ising exponents

- encoded in Binder cumulant

• Measure B4(!̄!) ≡ ⟨("!̄!)4⟩
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How to identify the order of the phase transition

x� xc

parameter along  phase boundary, T = Tc(x)

The ‘sign problem’ is a phase problem

importance sampling requires
positive weights

Dirac operator:  

Lattice QCD at finite temperature and density

Difficult (impossible?): sign problem of lattice QCD

Z =

∫

DU [detM(µ)]fe−Sg[U ]

positivity governed by γ5-hermiticity: D/ (µ)† = γ5D/ (−µ∗)γ5

⇒det(M) complex for SU(3), µ ̸= 0

⇒real positive for SU(2), µ = iµi

N.B.: all expectation values are real, but MC importance sampling impossible

The following methods evade the sign problem, they don’t cure it!

N.B.: all expectation values real, imaginary parts cancel, 
but importance sampling config. by config. impossible!
        

D/ (µ)† = γ5D/ (−µ∗)γ5

Z =

∫
DU [detM(µ)]fe−Sg[U ]

Lattice QCD at finite temperature and density
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µu = −µd

Same problem in many condensed matter systems!
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The lattice-calculable region of the phase diagram

T

µ

confined

QGP

Color superconductor

Tc

!

Sign problem prohibits direct simulation, circumvented by approximate methods:
reweigthing, Taylor expansion, imaginary chem. pot., need

No critical point in the controllable region, some signals beyond 

µ/T <� 1 (µ = µB/3)



The calculable region of the phase diagram

T

µ

confined

QGP

Color superconductor

Tc
♥

need

Upper region: equation of state, screening masses, quark number susceptibilities etc.  
under control, but no chiral critical point; some (not yet confirmed) signals at larger 
densities

µ/T <� 1 (µ = µB/3)

New computational avenues in LQCD:

CPU GPU

Here, very old-fashioned approach: BPU!



Biological Processing Unit!

Large densities?     Effective theories!



Effective lattice theory for heavy dense QCD
The effective lattice theory approach I

Two-step treatment: 

1. Calculate effective theory analytically 
II. Simulate effective theory  

Step I.:  split temporal and spatial link integrations:     

Spatial integration after analytic strong coupling and hopping expansion
                                                                           

Result: 3d spin model of QCD, infinitely many couplings, ordered parametrically

Truncation: valid for heavy quarks, sufficiently close to the continuum

Step II:  sign problem milder: Monte Carlo, complex Langevin

Numerical simulations in 3d without fermion matrix inversion,  very cheap! 

Z =
�

DU0DUi det Q eSg[U ] �
�

DU0e
�Seff [U0] =

�
DL e�Seff [L]

3
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O.P.  with M.Fromm, J.Langelage, S.Lottini, M.Neuman



Starting point:  Wilson’s lattice Yang-Mills action

Plaquette:

4



Expansion parameter:

5



Effective one-coupling theory for SU(3) YM

L Re L

Im L
(L= Tr W)

6



Numerical results for SU(3), one coupling
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Comparison with 4d Monte Carlo
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Continuum limit feasible!

-error bars: difference between last two orders in strong coupling exp.

-using non-perturbative beta-function (4d T=0 lattice)

-all data points from one single 3d MC simulation!
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Including heavy, dynamical Wilson fermions

Accuracy ~5%, predictions for Nt=6,8,... available!

� �2
NLO:

12

Deconfinement transition for heavy quarks



The fully calculated deconfinement transition
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Cold and dense, interacting:  onset to nuclear matter

Onset transition to cold nuclear matter 

... with very heavy quarks

continuum limit with 5-7 lattice spacings per point

µ

T
� 4000

m� = 20 GeV, T = 10 MeV, a = 0.17 fm
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Nuclear physics

~100 years old, still no fundamental description, Bethe-Weizsäcker droplet model: 

Z

N

Binding energy per nucleon

QFT descriptions: Fetter-Walecka model, Skyrme model, ...

Ab initio Hamiltonian descriptions

New computational avenues in LQCD:

CPU GPU

Here, very old-fashioned approach: BPU!

Biological Processing Unit!

Large densities?     Effective theories!

The effective lattice theory approach I

Two-step treatment: 

1. Calculate effective theory analytically 
II. Simulate effective theory  

Step I.:  split temporal and spatial link integrations:     

Spatial integration after analytic strong coupling and hopping expansion
                                                                           

Result: 3d spin model of QCD, infinitely many couplings, ordered parametrically

Truncation: valid for heavy quarks, sufficiently close to the continuum

Step II:  sign problem milder: Monte Carlo, complex Langevin

Numerical simulations in 3d without fermion matrix inversion,  very cheap! 
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Lighter quarks:  first order + endpoint!
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nuclear liquid gas transition!!!

Liquid gas transition: first order + endpoint



Binding energy per nucleon 
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... to be continued...

consistent with the location of the onset transition 

Minimum:  access to nucl. binding energy, nucl. saturation density!
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Cold and dense QCD: static strong coupling limitCold and dense QCD I: static, strong coupling limit

For T=0 (at finite density) anti-fermions decouple

Free gas of baryons!

Sivler blaze property + saturation!

Nf = 1, h1 = C, h2 = 0

Quarkyonic?



3.3 The static strong coupling limit for Nf = 2 at finite baryon density

For β = 0, the partition function consists of the static determinant factors only

Z(β = 0) =
[

∫

[dW ]
∏

x⃗

(1 + huLx⃗ + h2
uL

∗
x⃗ + h3

u)
2(1 + h̄uL

∗
x⃗ + h̄2

uLx⃗ + h̄3
u)

2 (3.10)

(1 + hdLx⃗ + h2
dL

∗
x⃗ + h3

d)
2(1 + h̄dL

∗
x⃗ + h̄2

dLx⃗ + h̄3
d)

2
]V

= zV0 .

We again consider the zero temperature limit at µ > 0, for which the anti-quark
contributions vanish. After the gauge integration the result reads

z0 = (1 + 4h3
d + h6

d) + (6h2
d + 4h5

d)hu + (6hd + 10h4
d)h

2
u + (4 + 20h3

d + 4h6
d)h

3
u

+(10h2
d + 6h5

d)h
4
u + (4hd + 6h4

d)h
5
u + (1 + 4h3

d + h6
d)h

6
u . (3.11)

All exponents of hn
uh

m
d come in multiples of three, n + m = mod 3. Just as in the

one-flavour case (with hd = 0), this has the form of a free baryon gas where the
prefactors give the degeneracy of the spin multiplets. Note that for Nf = 2 we also

find the standard spin 1/2 nucleons and many more combinations. To illustrate the
prefactors, consider the example h2

uhd. There is the spin 1/2 doublet, the proton,

as well as a spin 3/2 quadruplet, the ∆+, i.e. six states altogether. The states
corresponding to h2

dhu are the neutron and the ∆0, while h3
u, h

3
d are the ∆++,∆−

quadruplets, respectively. It continues with six-quark states. For example, h4
uh

2
d has

10 allowed spin-flavour combinations, corresponding to three spin 1 triplets and one
spin 0 singlet. These are consistent with an interpretation as di-baryon states built of

∆++∆0 or pp. Thus, eq. (3.11) contains all baryonic spin-flavour multiplets that are
consistent with the Pauli principle, i.e. up to a maximum of 12 constituent quarks.

The quark density reads

nB =
T

V

∂

∂µB

lnZ

= 2
[

h3
u(2 + h3

u) + hdh
2
u(3 + 4h3

u) + h5
dhu(4 + 9h3

u)

+h4
dh

2
u(10 + 9h3

u) + h2
dhu(3 + 10h3

u)

+h6
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d(2 + 20h3
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u)
]

/
[
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dh
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u(5 + 3h3

u) + 2h2
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u)

+hd(6h
2
u + 4h5

u) + h6
d(1 + 4h3

u + h6
u) + 4h3

d(1 + 5h3
u + h6

u)
]

. (3.12)

In the high density limit numerator and denominator are dominated by the term
with the highest power and we obtain

lim
µ→∞

(a3n) = 2 · 2 ·Nc ≡ 4(a3nB,sat) . (3.13)
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Perturbation theory also possible!

n
B
/m

3 B

µB/mB

analytical
simulatedEffective couplings small

Linked cluster expansion  
in effective couplings 

=expansion about static, strong  
coupling limit

Binding energy per nucleon:

a3
n
B

µB/mB

Nτ = 100
Nτ = 2

a3
n
B

µB/mB

κ = 0.05
κ = 0.01

Figure 2. The onset transition in lattice units, eq. (3.4), for κ = 0.01,β = 0 and different

Nτ (left) and for Nτ = 10,β = 0 and different κ (right).

in the original QCD action, is still contained in z0. Another limit of interest is that
of zero temperature. In this case we have

lim
T→0

a4p =

{

0, µ < m
2Nc(aµ− am), µ > m

,

lim
T→0

a3n =

{

0, µ < m
2Nc, µ > m

. (3.7)

Thus we find the so-called silver blaze property, i.e. the thermodynamic functions stay

zero as the chemical potential is raised until it crosses the constituent quark mass.
Then it is possible to excite baryons and the onset phase transition to nuclear matter
takes place. In the static strong coupling limit, this transition is a step function

from zero to saturation density. This step function gets immediately smeared out
to a smooth crossover as soon as a finite temperature (Nτ < ∞) or coupling h2 is

switched on, cf. figure 2.
We can unambiguously identify this transition as baryon condensation by also

looking at the energy density. Away from the static limit, there are non-vanishing

attractive quark-quark (and hence baryon-baryon) interactions parametrised by h2.
These are identified by the quantity

ϵ ≡
e− nBmB

nBmB

=
e

nBmB

− 1 , (3.8)

which gives the energy per baryon minus its rest mass in units of mB. For tem-
peratures approaching zero, this is the binding energy per baryon. In perturbation
theory, the result is

ϵ = −
4

3

1

a3nB

(

z3
z0

)2

κ2 = −
1

3

1

a3nB

(

z3
z0

)2

e−amM , (3.9)
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+   …





The effective lattice theory approach II

Two-step treatment: 

1. Calculate effective theory analytically 
II. Simulate effective theory  

Step I.:  integrate over gauge links in strong coupling expansion, leave fermions  

                                                                           

Result: 4d “polymer” model of QCD (hadronic degrees of freedom!)
Valid for all quark masses (also m=0!), at strong coupling (very coarse lattices)                                    

Step II:  sign problem milder: Monte Carlo with worm algorithm

Numerical simulations without fermion matrix inversion,  very cheap! 

de Forcrand, Langelage, O.P., Unger
Phys.Rev.Lett. 113 (2014) 152002
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Chiral QCD at strong couplingThe QCD Phase diagram at strong coupling

LO gauge correction included, simulation by worm algorithm

Chiral phase transition with 2nd order and 1st order line meeting in tricritical point

Nuclear liquid gas transition on top of first order chiral one at strong coupling
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Conclusions

LQCD for vacuum physics mature and precise, discovery tool

Finite density QCD enormous challenge, but urgently needed

QCD description of nuclear densities now possible for  
 
-heavy quarks near continuum  
 
-chiral quarks on coarse lattices

Can this be pushed far enough to cover light quarks near the continuum?


