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1 Introduction

The aim of this talk is to give an overview of the physical properties of black holes, including their

geometric description, and to derive the back hole thermodynamics from quantum mechanical

principles.

If not marked otherwise, I will refer to the results presented in the textbook [1] and the

reviews [2–4]. We will start with the general definition of a black hole.

1.1 Classification of black holes

In general, a black hole is a mathematically defined region of space with a sufficiently compact

mass M which exhibits such a strong gravitational force that no particle or electromagnetic

radiation can escape from it [5, 6].

Black holes are commonly classified according to their mass M . While one distinguishes be-

tween supermassive, intermediate-mass and stellar black holes in Astrophysics, a (hypothetical)

class of primordial black holes of cosmological origin exists (confer Tab. 1.0).

There is a general consensus that supermassive black holes, with masses of 105 . . . 1010 M� in

terms of the mass of the Sun M�, are found in the center of most galaxies, including the Milky

Way [7].
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Classification M rs

Supermassive 105 . . . 1010 M� 0.01 . . . 400AU

Intermediate-mass 103 M� 103 km ' RE

Stellar 10 M� 30 km

Primordial .M$ . 0.1 mm

Table 1.0: Classification of black holes by their mass M and/or the corresponding Schwarzschild

radius rs ∝ M . The reference masses are the mass of the Sun, M� ' 1030 kg, and the Moon,

M$ ' 1023 kg, whereas length specifications are given in terms of the distance between Earth

and Sun, 1AU ' 108 km, and the Earth radius RE .

Stellar black holes are formed by the gravitational collapse of a massive star at the end of

its lifetime [8] and have typical masses of the order of 10 M�. They can grow by accretion of

matter and by merging with other black holes.

Currently, the existence of intermediate-mass black holes [9] with masses around 103 M� is

only based on indirect detection methods. However, they are believed to form due to mergings

or collisions of stellar black holes or other compact objects.

(Hypothetical) primordial black holes are supposed not to have formed by gravitational

collapse of a star, but due to the extreme density of matter in the Early Universe. One estimates

their masses to be less or equal to the mass of the Moon M$. Furthermore, they have bee

proposed as a candidate for dark matter [10].

1.2 Schwarzschild radius

Instead of using the mass M as classification parameter, we can also classify black holes in terms

of the so-called Schwarzschild radius rs ∝ M . In order to illustrate the physical meaning of the

Schwarzschild radius, we use classical Newtonian mechanics as starting point.

Let us consider a particle with mass m in the gravitational field of a spherically symmetric

object with mass M . For escaping from this object, the kinetic energy of the particle has to be

bigger than its potential energy in the gravitational field. This condition allows us to determine

the necessary escape velocity of the particle,

1
2
mv2

esc >
GMm

r
⇒ vesc >

√
2GM

r
, (1.1)

which is independent of its mass m. Here, G denotes the Newtonian gravitational constant and

r corresponds to the distance between the particle and the object.

By definition black holes prevent any particle to escape from their gravitational force. In

other words, this requires the necessary escape velocity vesp of the particle to be bigger than the

speed of light c ≡ 1. The escape velocity exceeds the speed of light,

vesc > 1 ⇔ r < rs = 2GM , (1.2)

if the particle approaches closer than the Schwarzschild radius rs of the black hole. The boundary

at r = rs is referred to as horizon of the black hole.
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While the Schwarzschild radii rs of supermassive black holes lie in the range of 0.01 . . . 400AU,

they are of order 30 km for stellar black holes and even less than 0.1mm for primordial black

holes (see Tab. 1.0).

2 Geometry of Black Holes

Before studying the quantum theory of black holes, we review the geometry of classical black

holes in two different coordinate systems, namely in Schwarzschild coordinates and in so-called

near-horizon coordinates.

2.1 Schwarzschild coordinates

We begin with the simplest spherically symmetric, static, uncharged black hole described by the

(3 + 1) dimensional Schwarzschild metric,

ds2 = gμν dxμdxν

=
(
1 −

rs

r

)
dt2 −

(
1 −

rs

r

)−1
dr2 − r2dΩ2 ,

(2.1)

where dΩ2 = dθ2+sin2θ dϕ2. The coordinate t, corresponding to the time recorded by a standard

clock at spatial infinity, is named Schwarzschild time, whereas r denotes the Schwarzschild radial

coordinate and is defined so that the area of the 2-sphere at r is 4πr2. Moreover, the angles θ

and ϕ constitute the usual polar and azimuthal angles.

The horizon of the black hole, which is defined as the place where gtt = 0, arises at the

Schwarzschild radius r = rs (confer Sec. 1.2). At the horizon grr becomes singular. However,

as we will see in the following, the horizon does not constitute a usual local mathematical

singularity of the metric (such as r = 0), but is globally special. In particular, no local invariant

properties of the geometry become singular at r = rs.

For example, a radially infalling observer with a small laboratory would pass the horizon

smoothly and would record nothing unusual. For a distant observer, however, the crossing of

the horizon does not occur at any finite Schwarzschild time since r → rs in (2.1) implies t → ∞.

The other way round, a signal originating at (or behind) the horizon cannot reach the distant

observer until an infinite Schwarzschild time has passed. Thus, to a distant observer the horizon

represents the boundary of the world since no information can be transmitted from there.

Let us now investigate further the region near the horizon by introducing an appropriate

coordinate system.

2.2 Near-horizon coordinates (Rindler space)

We can study the near-horizon region by replacing the Schwarzschild radial coordinate r by a

coordinate ρ which measures the proper distance from the horizon,

ρ =
∫ r

rs

dr′
√

grr(r′) =
∫ r

rs

dr′
(
1 −

rs

r′

)− 1
2
' 2
√

rs (r − rs) , (2.2)
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where the last approximation is true near the horizon, r ' rs. Using dρ2 = [1 − (rs/r)]−1 dr2

allows us to rewrite the Schwarzschild metric (2.1) in terms of the coordinates t and ρ,

ds2 = ρ2

(
dt

2 rs

)2

− dρ2 − r2(ρ) dΩ2 , (2.3)

In addition, we introduce a dimensionless time ω, defined as

ω =
t

2 rs
=

t

4MG
, (2.4)

and restrict our considerations to a small angular region of the horizon arbitrarily centered

around θ = 0. Then, we can replace the angular coordinates by Cartesian coordinates

X = rs sin θ cos ϕ , Y = rs sin θ sin ϕ (2.5)

where sin θ ' θ. With r(ρ) ' rs and dΩ2 ' dθ2 + θ2dϕ2 the metric (2.3) then takes the form

ds2 = ρ2dω2 − dρ2 − dX2 − dY 2 . (2.6)

If we finally transform ρ and ω to the coordinates

T = ρ sinh ω , Z = ρ cosh ω , (2.7)

we end up with the familiar Minkowski metric,

ds2 = dT 2 − dZ2 − dX2 − dY 2 . (2.8)

Note that this relation is only valid near the horizon, where r ' rs or equivalently ρ ' 0 (confer

(2.2)), and only for a small angular region. However, it is now evident that ρ and ω are the

radial and hyperbolic angle coordinates of an ordinary Minkowski space. Consequently, the

near-horizon geometry is just Minkowski spacetime described in hyperbolic polar coordinates.

Thus, the horizon, for a large black hole, is locally almost indistinguishable from flat space-time.

In Fig. 2.1 the relation between the Minkowski coordinates T and Z and the near-horizon

coordinates ρ and ω is shown. As in particular illustrated in Fig. 2.1a, the black hole horizon,

constituting the boundary r = rs, is located at the origin where ρ = 0 and hence T = Z = 0 (see

(2.7)). Fig. 2.1b shows that the horizon divides the entire Minkowski space into four quadrants

labeled I, II, III and IV. Only one of those Minkowski regions, namely Region I, lies outside the

horizon. This region is called Rindler space. According to that, one denotes the dimensionless

time ω in (2.4) as Rindler time.

A useful way to illustrate the causal structure of spacetimes are Penrose diagrams. The

Penrose diagram of a black hole is explained in App. A.

3 Black Holes and Quantum Mechanics

So far, we have only discussed the behavior of classical particles near the black hole horizon.

However, to investigate the thermodynamic characteristics of the black hole like for example

its temperature and entropy, it is necessary to study the behavior of quantum fields in the

near-horizon region, i.e. in Rindler space.
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(a) Illustration of the black hole horizon, located at

the origin ρ = 0 or equivalently at T = Z = 0 [1].

(b) Illustration of the Rindler space (Region I) being the

Minkowski-space approximation outside the horizon [1].

Fig. 2.1: Relation between Minkowski coordinates T and Z and Rindler coordinates ρ and ω.

Let us imagine two quantum fields located at different spatial points on opposite sides of

the horizon. Although the correlation of those fields is not measurable by an observer outside

the horizon, it has significance. When two subsystems (here the fields inside and outside of the

horizon) become correlated, we say that they are quantum entangled. In consequence, none of

them can be described in terms of a pure state. The appropriate description of an entangled

subsystem is achieved by means of a density matrix.

3.1 Review of the density matrix and entropy

A quantum system consisting of two subsystems A and B, which have previously been in contact,

but are no longer interacting, has a wave function

Ψ = Ψ(α, β) , (3.1)

where α and β are appropriate commuting variables for the subsystems A and B. If we are

interested in the subsystem A (or B equivalently), the density matrix

ρA

(
α, α′) =

∑

β

Ψ∗(α, β) Ψ
(
α′, β

)
(3.2)

provides a complete description of all measurements in A. In particular, the expectation value of

an operator a is computed in terms of the density matrix as 〈a〉 = Tr(a ρA). Density matrices

have the properties that their total probability equals 1 (Tr ρ = 1), that they are hermitian
(
ρ = ρ†

)
and that all their eigenvalues are positive or zero (ρj ≥ 0). In the representation where

ρ is diagonal, an eigenvalue ρj correspond to the probability that the systems is in the state |j〉.

If only one eigenvalue ρj is non-zero, the density matrix is indistinguishable from a pure state

and the respective wave function is an uncorrelated product of the form

Ψ = ΨA(α) ΨB(β) . (3.3)
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A quantitative measure of the departure from a pure state and hence a measure of the degree

of entanglement is provided by the Von Neumann (entanglement) entropy,

SN = −Tr(ρ log ρ) = −
∑

j

ρj log ρj . (3.4)

Only for a pure state we have SN = 0 since then all eigenvalues except from one are zero and

due to the trace condition the non-trivial eigenvalue just equals 1. Moreover, the Von Neumann

entropy provides also a measure of the number of quantum states in the statistical ensemble.

The Von Neumann entropy should not be confused with the thermal entropy of the second law

of thermodynamics. If a system with Hamiltonian H is in thermal equilibrium at a temperature

T ≡ 1/β, it is described by a Maxwell-Boltzmann density matrix

ρMB =
e−βH

Tr(e−βH)
. (3.5)

In this case, the thermal entropy is given by

S = −Tr(ρMB log ρMB) . (3.6)

3.2 The Unruh density matrix

An observer in Rindler space outside the horizon has no access to the quantum states behind

the horizon. Consequently, all measurements of the observer have to be described in terms of a

Rindler-space density matrix ρR which is obtained by tracing over the degrees of freedom behind

the horizon.

To derive the form of the density matrix ρR, we first consider the flat Minkowski spacetime

as seen by the observer in Rindler space. Fig. 2.1 shows that the Rindler time ω = 0 coincides

with the half-surface in Minkowski space where T = 0 and Z > 0. The other half of the surface

where Z < 0 lies behind the horizon and consequently has to be traced over.

Let us now consider a set of quantum fields φ. In order to specify the field configuration at

T = 0, we need to assign values to φ both behind (inside) and outside the horizon,

φ =






φin for Z < 0

φout for Z > 0 .
(3.7)

The non-trivial entanglement between the degrees of freedom of φin and φout cause the density

matrix outside the horizon to be a mixed state. Hence, the wave function of the total system is

a functional of φin and φout (confer (3.1)),

Ψ(φ) = Ψ(φin, φout) . (3.8)

In order to determine Ψ, we assume that the field theory is described in terms of an action

denoted by I (to avoid confusion with the entropy S),

I =
∫

d3X dT L . (3.9)
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By transforming to imaginary time T = i τ with τ > 0, we obtain the Euclidean action IE .

This allows us to calculate Ψ by use of the standard Feynman path integral formula,

Ψ(φin, φout) =
∫

dφ e−IE , (3.10)

where the path integral is over all fields in the future half space τ > 0 with boundary condition

φ = φout = φin at τ = 0. The trick to compute (3.10) is now to divide the half plane τ > 0 in

infinitesimal angular wedges and then to evaluate the path integral in terms of a generator of

angular rotations (for more details see [11]). From the resulting expression,

Ψ(φin, φout) =
〈
φin

∣
∣ e−πHR

∣
∣φout

〉
, (3.11)

we see that Ψ arises as a transition matrix element between the states φout and φin. Moreover,

it turns out that the angular generator is just the Rindler-space Hamiltonian HR. By definition

it is conjugate to the dimensionless Rindler time ω and hence also dimensionless,

[HR, ω] = i . (3.12)

Inserting w = t/ (4MG) in the previous equation and using the fact that usual Minkowski-space

Hamiltonian H, which represents the energy of the black hole, is conjugate to the Schwarzschild

time t, i.e. [H, t] = i, we can derive the relation between the Hamiltonian in Minkowski and

Rindler space,

H =
1

4MG
HR . (3.13)

Now we are ready to compute the Rindler-space density matrix ρR from the definition (3.2),

ρR

(
φout, φ

′
out

)
=
∫

dφin Ψ∗(φin, φ
′
out

)
Ψ(φin, φout) . (3.14)

Using the result (3.11) and the completeness of the states |φin〉 yields

ρR

(
φout, φ

′
out

)
=
∫

dφin

〈
φout

∣
∣ e−πHR

∣
∣φin

〉 〈
φin

∣
∣ e−πHR

∣
∣φ′

out

〉

=
〈
φ′

out

∣
∣ e−2πHR

∣
∣φout

〉
.

(3.15)

More concisely, the density matrix is given by the operator

ρR = e−2πHR = e−βRHR (3.16)

with

TR =
1

βR
=

1
2π

. (3.17)

Thus, we conclude that the observer in Rindler space outside the horizon sees the vacuum as a

thermal ensemble with a density matrix of the Maxwell-Boltzmann type (3.5) and a temperature

TR. This remarkable result was discovered by William Unruh in 1976 [11].
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4 Black Hole Thermodynamics

4.1 Hawking temperature

Like the Rindler time ω and the corresponding Hamiltonian HR, the temperature TR is dimen-

sionless. To convert it into a proper temperature with dimensions of energy, we consider the

proper time in Rindler space. It can be read off from the metric (2.6), ds = ρ dω. Consequently,

an observer located at a distance ρ from the horizon converts dimensionless quantities by using

the conversion factor 1/ρ. According to that, the proper temperature at the distance ρ reads

T (ρ) =
1
ρ

TR =
1

2πρ
. (4.1)

with TR given in (3.17). Hence, an observer near the horizon of the black hole detects a tem-

perature which varies as the inverse distance from the horizon. When approaching the horizon,

ρ → 0, the temperature increases towards infinity, T (ρ) → ∞.

Let us now determine the temperature measured by a distant observer asymptotically far

from the black hole. Instead of the near-horizon Rindler time ω, the appropriate time variable

for such an observer is the Schwarzschild time t = 4MGω. Hence, a quantum field with Rindler

frequency νR is seen by the distant Schwarzschild observer to have a red-shifted frequency

v =
1

4MG
νR . (4.2)

This implies that the Rindler temperature TR is recognized to be red-shifted, too. Thus, the

temperature of the black hole measured by a distant observer equals

TH =
1

4MG
TR =

1
8πMG

. (4.3)

The temperature TH represents the true thermodynamic temperature of the black hole. It was

first calculated by Stephen Hawking in 1975 [12] and is therefore named Hawking temperature.

From the fact that the region near the horizon has a non-vanishing temperature, one expects

thermal effects, such as evaporation, to occur. Indeed, the black hole has a kind of thermal

atmosphere consisting of thermally excited quantum states [13]. Some of these quanta have

sufficient energy to escape the gravitational potential of the black hole and are emitted in form

of ordinary black body radiation. This thermal radiation of the black hole is the so-called

Hawking radiation.

4.2 Bekenstein-Hawking entropy

In the last section, we derived that a black hole appears to a distant observer as a body with

Hawking temperature TH and energy E = M equivalent to its mass. As a consequence of

thermodynamics, it follows that the black hole must also have an entropy S. The thermodynamic

relation between energy and temperature, i.e. the first law of thermodynamics,

dE = T dS , (4.4)

allows us to compute the entropy S of the black hole. Replacing the energy E by the black hole

mass M and inserting for T the Hawking temperature TH , given in (4.3), yields

dM =
1

8πMG
dS . (4.5)
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Therefore, the resulting expression for the entropy of the black hole reads

S = 4πM2G . (4.6)

Since the Schwarzschild radius is defined as rs = 2MG, the area of the black hole horizon equals

A = 4π r2
S = 16πM2G2 (4.7)

so that we can rewrite the entropy (4.6) in the following form,

SBH =
A

4G
. (4.8)

which is known as Bekenstein-Hawing entropy [14]. Note that the black hole entropy is not

proportional to the volume, as one would expect, but to the area of the horizon. We can

understand this since we have seen that the temperature gets large in the vicinity of the horizon.

Thus, the entropy is mainly stored near the horizon and therefore grows like the area.

The Bekenstein-Hawking entropy SBH has to be understood as both entanglement and ther-

mal entropy in the special case of the Rindler-space density matrix. Including the quantum

effects behind the horizon through integration over the fields φin in (3.14) led to the surprising

physical effect of producing a thermal density matrix (confer (3.16)). This allowed us to reduce

the computation of the black hole entropy to ordinary thermodynamic methods.

Note that equation (4.8) is far more general than one would expect from the derivation given

here. It holds for any kind of black hole no matter if rotating, charged or in arbitrary dimensions.

In the general (d + 1) dimensional case, the concept of a two dimensional area only needs to be

replaced by the (d + 1) dimensional measure of the horizon.

4.3 Maximum entropy

As an example for applying the Bekenstein-Hawing entropy (4.8), let us now consider the for-

mation of a black hole. Imagine a spherically symmetric shell of matter with a certain entropy

which collapses into a black hole. After the formation of the black hole, the total entropy of the

system is given by the Bekenstein-Hawking formula, SBH = A/ (4G).

According to the second law of thermodynamics, the entropy in a thermodynamic process

does always increase,

dS ≥ 0 . (4.9)

Consequently, the original entropy of the matter shell had to be less or equal than the entropy

of the black hole,

Smax ≤
A

4G
. (4.10)

This bound on the maximum entropy has to hold for any system and is called the holographic

limit.

However, it turns out that quantum field theory does not describe the degrees of freedom and

hence the entropy of a gravitational system consistently. Indeed, there are vastly fewer degrees

of freedom in string theory. The holographic principle is about counting the quantum states of

a system and hence determining its entropy correctly. We will hear more about the holographic

principle in the next talk.
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(a) Penrose diagram of Minkowski

space (adapted from [1]).

(b) Penrose diagram of a Schwarzschild black hole (adapted from [1]).

(c) Penrose diagram of black hole formation (adapted from [1]).

Fig. 1.2: Penrose diagrams describing the full evolution of a black hole.

A Penrose diagram of a black hole

A.1 Review of Penrose diagrams

Penrose diagrams illustrate the causal structure of spacetimes very intuitively. They represent

the geometry of a two-dimensional surface of fixed angular coordinates in spacetime. Further-

more, they “compactify” the geometry so that it can be drawn in total on a finite plane. The

coordinates mapping the entire geometry to the finite plane should be chosen such that radial

light rays correspond to lines oriented at 45◦ to the vertical axis. As an example, the Penrose

diagram for a flat Minkowski space, parametrized by spherical coordinates with time t and radial

distance r, is shown in Fig. 1.2a. The vertical axis represents the spatial origin r = 0. Apart

from that, there are several infinities such as a space-like infinity (r = ∞) and future and past

time-like infinities (t = ±∞). Light rays enter from past light-like infinity I− and exit at future

light-like infinity I+.
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A.2 Penrose diagram of black hole formation

The Penrose diagram of a Schwarzschild black hole is depicted in Fig. 1.2b. While Region I, the

Rindler space, corresponds to the outside of the black hole and possesses space-like, time-like as

well as past and future light-like infinities, Region II is identified as being behind the horizon.

Any future-directed light ray which begins in Region II will reach r = 0.

A real black hole forms by gravitational collapse. In the remote past before the formation of

the black hole, the geometry just corresponds to the lower portion of Minkowski space in Fig.

1.2a, whereas at late times, when the black hole has formed, it is described by the Schwarzschild

geometry. Thus, we obtain the Penrose diagram for the full evolution of the black hole by

“gluing” the lower left and the upper right region of Fig. 1.2a and Fig. 1.2b together. Note that

thereby the continuity of the variable r is respected since it varies monotonically from r = ∞

at I− to r = 0 in both cases. The resulting Penrose diagram for the black hole formation is

depicted in Fig. 1.2c.
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