Scalable Machine Learning on HPC

LSDMA LTM6: Data Intensive Computing

June, 1st 2015 | Markus Götz and Christian Bodenstein

Agenda

- Introduction
- Machine Learning
- DBSCAN
- HPDBSCAN
- Demo
- Use Cases
- Conclusion

Introduction High Productivity Data Processing

- Research Group
- Focus on Machine Learning and Data Mining
- Evaluation of Existing Parallel and Scalable Data Analysis Tools
- Develop "Big Data Analytics" Tools on HPC
- Analysis of Scientific Data in Use Cases

Machine Learning

- Increasing Size of Data
- Only a Fraction can by Analyzed by Hand
- Generalization from Few Examples to the Whole Data Set Desired
- Machine Learning Subjects:
 - Supervised / Unsupervised Learning Methods
 - Feature Engineering
 - Dimensionality Reduction

Machine Learning

Classification

- Supervised Learning Technique
- Ground Truth Samples needed to Train a Classification Model
- Predicts for each new Data Point Membership to Certain Category
- Well Known Representatives
 - K-Nearest Neighbors
 - Neural Networks
 - Support Vector Machines

Machine Learning

- Unsupervised Learning Technique
- Subdevides Datasets into Similar Groups
- Facilitates Similarity Metrics (e.g. Euclidean Distance)
- Well Known Representatives:
 - K-Means
 - Hierarchical Clustering

Related Work

- Single-Core Implementations Broadly Available
 - Programming Libraries
 - GUI Tools
 - All Common Languages
- Scalable Implementations Starting to Appear
 - Apache Spark/Mahout
 - Standalone Codes
 - Almost Nothing on HPC
- Only Simple Analysis Algorithms

DBSCAN

- Density Based Spatial Clustering for Applications wit Noise
- Formulated 1996 by Kriegel et. al.
- Two Parameters

 - minPts Density Threshold
- Detects Arbitrarily Shaped Clusters
- Filters Signal for Noise

HPDBSCAN

- Highly Parallel DBSCAN
- Developed by JSC
- MPI + OpenMP Hybrid Application
- Uses HDF5 I/O Capabilities

HPDBSCAN Parallelization Strategy

- Each Processor reads a Equal-Sized Chunk of the Data
- 2 Overlay Space with Spatial Hyper Grid
- 3 Apply Cost Heuristic to Balance Load
- 4 Redistribute Points to Achieve Data Locality
- 5 Execution of DBSCAN Locally
- Cluster Merging using Halo Conflict Resolution
- 7 Restore Initial Order

HPDBSCAN

Use Cases

- PANGAEA Earth Science Data Repository
 - Koljoefjords in Sweden
 - Automatic Quality Control
 - Detect Outliers and Water-Mixing Events
- Human Brain Data Set
 - Microscopy Images of Brain Slices
 - Find Cell Nuclei
 - Analyze Cell-Density in the Cerebral Cortex

Bremen Demo

Bremen Point Cloud

- Laser Scan Representing the Inner City of Bremen
- ~81.000.000 Data Points
- ~2 GB
- 1 Core \rightarrow 22 h
- 768 Cores \rightarrow 3 min

Other Activities

- Parallel Support Vector Machines
 - PiSVM
 - CascadeSVM
- Deep Neural Networks
 - Compare and Evaluate recent Software Solutions
 - First Scalable Parallelized MPI Prototype
- Close Cooperation with Domain Experts in
 - Earth Science
 - Neuro Science

Conclusion

- Various Machiene Learning Problems in Science
- Scalable Codes are Scarcely Available
 - Parallelization Issues
 - I/O Issues
- Trying to Bridge the Gap
- Huge Diversity in File Formats and Programming Languages
- Unify in a HPC Machine Learning Framework

Thank you for the Attention

Contact:

{m.goetz,c.bodenstein}@fz-juelich.de

LSDMA LTM6: Data Intensive Computing June, 1st 2015 Juelich Supercomputing Center Slides: Send us a Mail with a Request