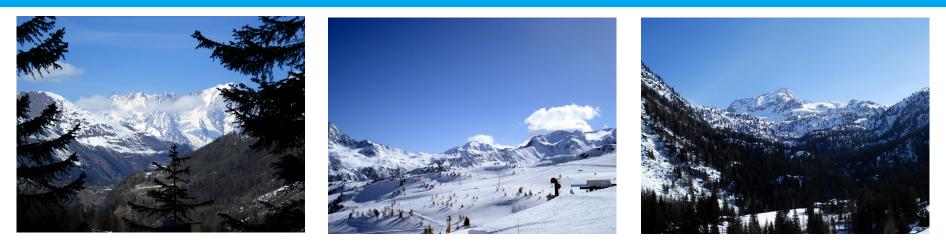

Highlights from Moriond Electroweak.

A selection of Interesting results from the LHC experiments



N. Styles, DESY LHC Physics Discussions, 04/05/15

Introduction

- > In March, 50th Rencontres de Moriond took place
 - La Thuile, Val d'Aosta, Italy
- > A Very Intensive Week of interesting Physics
 - With some fringe benefits...

> Will present a selection of Highlights from the LHC Physics talks

- Far, far too many talks to mention every interesting item presented
- A personal selection, apologies if I miss something of particular interest
- Many interesting talks on Dark Matter, Neutrinos, Tevatron... not covered here

A Bit of History...

G. Altarelli

TABLE DES HATTLERIN '66 almost all speakers were french107 TOMEProceedings mostly in french107 TOMEProceedings mostly in french20 part. mainly from Orsay, Ec. Polytechnique....

I - PEOTOPRODUCTION ET ELECTROPRODUCTION

M. GOURDIN	Some applications of the Algebra of Current to Electromagnetic Interactions
J. PEREZ-Y	-JORBA Spectronêtre à triple focalisation de la Salle du GeV à Orsay
J. PEREZ-Y	-JORBA Photoproduction des * et des * à Orsay
P. LEHMANN	Double Photoproduction sur le Proton
J. LEFRANÇ	DIS Photoproduction du π° sur le Proton
J. PEREZ-Y	-JORBA Mesure de la Polarisation du Proton de Recu dans la Photoproduction du T _o sur le Proton entre 500 et 950 MeV
J. LEFRANÇ	DIS Photoproduction de K [*] sur le Deutérium
P. LEHMANN	Photoproduction Cohérente des Mésons x^o sur D $_2$ et He ⁴
G. MENNESS	IER Le Renversement du Temps en Photoproduction
J.P. LOUBA	PON Pion Electroproduction

II - PROBLEMES AVEC LE DEUTERON

J. TRAN THANE VAN	Sur la Fonction d'Onde du Deutéron
D. SCHIFF	Photodésintégration du Deutéron et Rôle du
	N dans des Réactions comportant le Deutéron
B. GROSSETETE	Diffusion Electron Deutéron
Y. RENARD	Diffusion Elastique Electron Deutéron
F.M. REMARD	Etat des Connaissances Actuelles sur la
	Diffusion Inélastique Electron Deutéron

A gathering of friends and colleagues to discuss topics of mutual current interest

III - EXPERIENCES SUR LES ANNEAUX DE COLLISIONS

J. HAISSINSKI	Expériences	auprès des	Anneaux de
	Collisions à	Electrons	et Positrons

IV - ECHANGE DE PLUSIEURS PHOTONS

M. GO	OURDIN	Quelques	Aspect	ts Théori	ques de
		l'Echange	de Pi	lusieurs	Photons
B. GI	ROSSETETE	Expérienc	es Por	sitrons	

V - SUJETS THEORIQUES DIVERS

P. BOUNIN

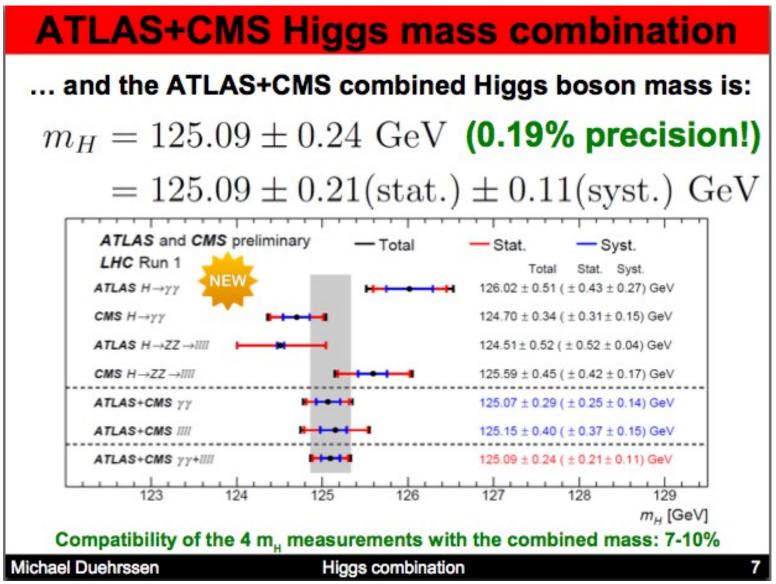
F.M. REMARD	Interaction dans l'Etat Final
	à deux Particules
J. MICHELI	Vertex Electromagnétiques Elastiques
	et Inélastiques
G. MENNESSIER	Les Nouvelles Résonances Pion Nucléon
F. GUERIN	Structure Hyperfine de l'Hydrogène
C. DE CALAN	Corrections Radiatives

VI - BUJETS EXPERIMENTAUX DIVERS only 2 from abroad

G.	WEBER	Experiments at	DE
c.	SCHAERF	Experiments at	Fr
P.	BOUNIN	Possibilités d	'Ex

Possibilités d'Expériences avec une cible de Protons Polarisés

> Expérience de Coïncidences sur un Accélérateur d'Electrons



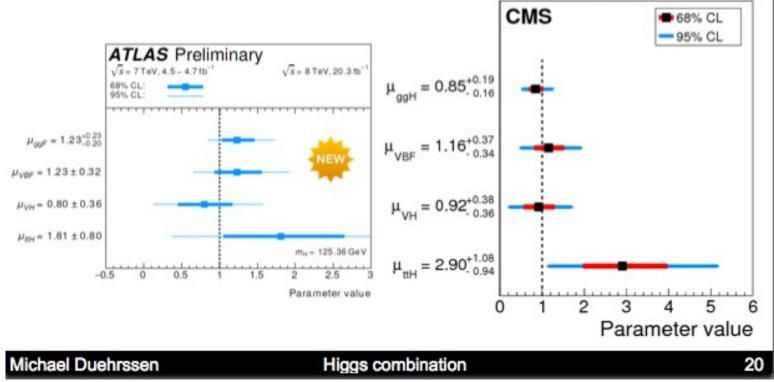
Higgs Results

- > Overviews of Run 1 Higgs results presented by G. Piacquadio (ATLAS) and J. Bendavid (CMS)
 - Showed the highly impressive amount of measurement made by the experiments
 - Already know a lot about this particle a relatively short time after its discovery!
 - Plans for Run 2 (and beyond) were outlined
- > Will focus on a few items
 - Combinations of ATLAS+CMS Higgs results (M. Duehrssen)
 - Indirect Width constraints from Higgs decaying 4 leptons (J. Bendavid)
 - ATLAS evidence for Higgs decaying to taus (A. Tuna)
 - Searches for rare Higgs decays (P. Meridiani)
- > Also interesting talks on
 - Searches for additional high-mass Higgs states (M. Pelliccioni, E. Navarro De Martino)

ATLAS + CMS Higgs Combinations

ATLAS + CMS Higgs Combinations

Signal strength: grouping by decay SM values for ratios between different production cross sections are assumed Results are consistent with the SM ! 19.7 fb⁻¹ (8 TeV) + 5.1 fb⁻¹ (7 TeV) ATLAS Preliminary σ(stat.) Total uncertainty sys inc.) m, = 125 GeV CMS m_ = 125.36 GeV heory Combined $\pm 1\sigma$ on μ – a(theory) $\mu = 1.00 \pm 0.14$ P_sm = 0.96 $H \rightarrow TT$ μ = 1.17^{-0.28} 0.26 $H \rightarrow \gamma \gamma$ tagged $H \rightarrow ZZ^*$ $\mu = 1.12 \pm 0.24$ $\mu = 1.46^{+0.40}$ $H \rightarrow WW^*$ $H \rightarrow ZZ$ tagged μ = 1.18^{-0.24} $\mu = 1.00 \pm 0.29$ $H \rightarrow b\overline{b}$ $\mu = 0.63^{+0.39}$ H → WW tagged $H \rightarrow \tau \tau$ $\mu = 0.83 \pm 0.21$ $\mu = 1.44^{+0.42}$ $H \rightarrow \mu\mu$ -15 $H \rightarrow \tau \tau$ tagged $\mu = -0.7^{-3.7}$ 37 $\mu = 0.91 \pm 0.28$ $H \rightarrow Z_{T}$ $\mu = 2.7^{+4.6}$ $H \rightarrow bb tagged$ Combined $\mu = 0.84 \pm 0.44$ μ = 1.18^{-0.15} 1.5 0.5 1 2 0 Best fit σ/σ_{SM} 2 0 (s = 7 TeV, 4.5-4.7 fb) Signal strength (µ) (s = 8 TeV, 20.3 fb1 Michael Duehrssen 19 Higgs combination

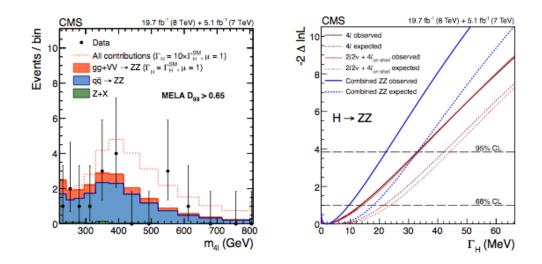

N. Styles | Moriond EW Report | 04/05/2015 | Slide 6

ATLAS + CMS Higgs Combinations

Signal strength: grouping by production

- SM values for ratios between different branching fractions are assumed
- Results are consistent with the SM ! (but we can keep hoping for a ttH excess beyond the SM)

DESY


N. Styles | Moriond EW Report | 04/05/2015 | Slide 7

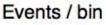
19.7 fb⁻¹ (8 TeV) + 5.1 fb¹ (7 TeV)

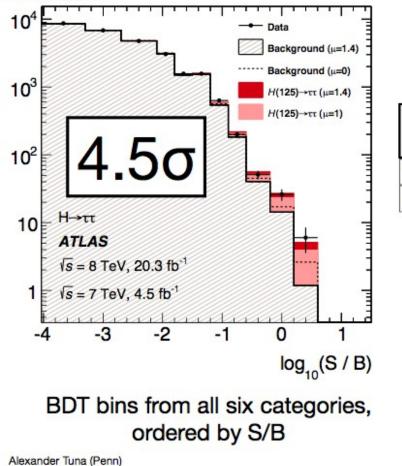
Indirect Width Constraints

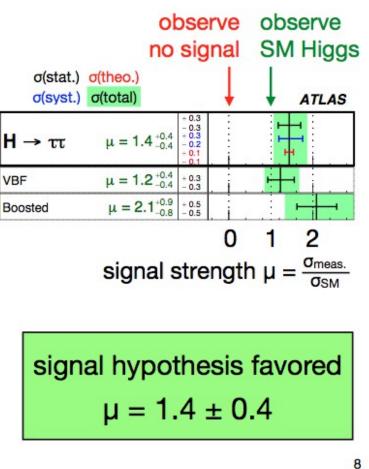
$H \rightarrow ZZ \rightarrow 4\ell$: Indirect Width Constraint

- High mass tail sensitive to Higgs width through $gg \rightarrow H^* \rightarrow ZZ + gg \rightarrow ZZ + interference$
- Indirect constraint on width with simultaneous fit to high mass region (assuming no new particles in the gluon fusion production loop)

• $\Gamma_H < 22 \text{ MeV} (95\% \text{ C.L.}) (\Gamma_{SM} \sim = 4 \text{ MeV})$


9 2 C

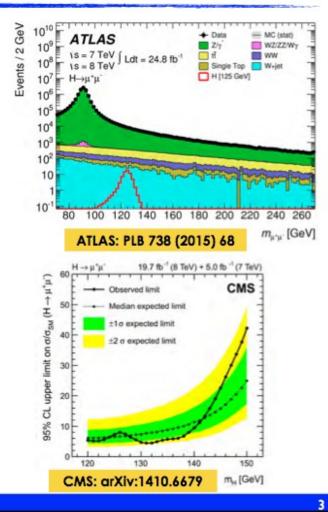

ᆂ


ATLAS Evidence for H→TT

H→ττ results

Search for rare Higgs decays

BR(H→µµ)=2.2x10⁻⁴~ 1/10 x BR(H→γγ)

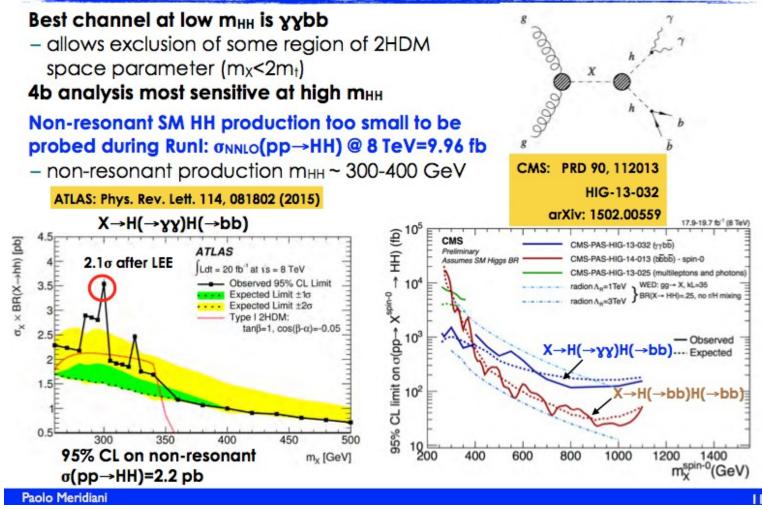

H(125) $\rightarrow \mu\mu$ 95% CL observed (expected) limits on σ/σ_{SM}

ATLAS: PLB 738 (2015)	7.0(7.2)
ATLAS: PLB 738 (2015) CMS: arXiv:1410.6679	7.4(6.5)

Together with evidence of $H \rightarrow \tau \tau$, confirm lepton non-universality

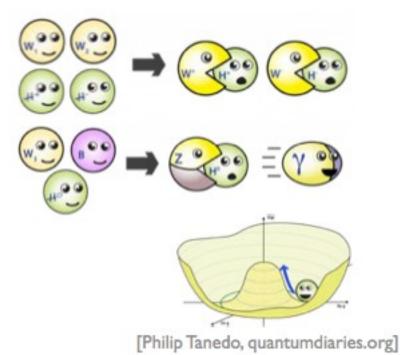
With 300 fb⁻¹ @ 13 TeV sensitivity to ~exclude $H \rightarrow \mu \mu$

H→ee: CMS put 95% CL exclusion limit on σ x BR(H(125)→ee)=41fb



Search for Higgs pair production

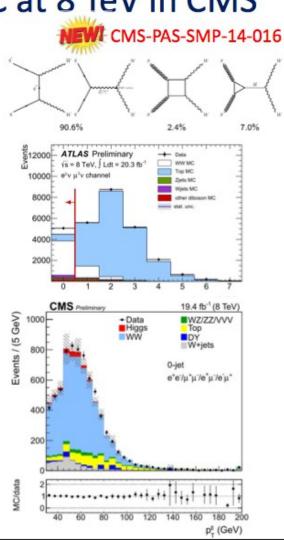
HH SEARCHES IN RUN I



Standard Model Electroweak Results

- > Given that this was the Electroweak edition of Moriond, should show some EW results ;-)
- Interesting new LHC Results
 - Presented by L. Perozzi
- Latest Global Electroweak fits from Gfitter group
 - Presented by R. Kogler
- Many interesting new Tevatron results in addition
 - M. Bauce, Not shown here here...

WW Cross Section


aTGC

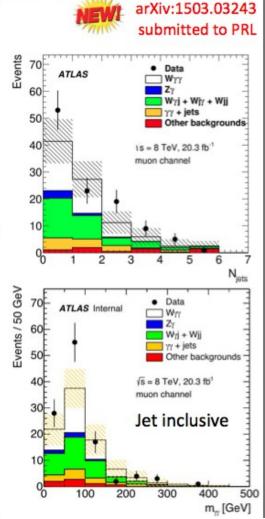
W⁺W⁻ production and aTGC at 8 TeV in CMS

- ATLAS (ATLAS-CONF-2014-033) reports 2σ excess wrt to NLO (also previous CMS meas., see backup)
- Measurement in electron and muon channels, with 19.4 fb⁻¹ at 8 TeV
 - $\begin{array}{l} & \mbox{Selection: 2 isolated leptons, kinematic range $p_{T,l}$>20 GeV, $|\eta_{ele}|<2.5, |\eta_{\mu}|<2.4, $projected$ missing E_T>20 GeV, $p_{T,ll}$>45 GeV$ \end{array}$
- Several techniques to reduce the large background
 - Anti b-tagging and jet veto (N_{jets} < 2) for t-tbar
 - Dilepton boost and Z mass veto to reject Z→II events
 - Third lepton veto for WZ and ZZ contamination
 - Multiple control regions to estimate the yields
- Systematics dominated by jet veto and lepton efficiency uncertainties
- Total measured cross section (after removing Higgs contribution)

 $\sigma_{W^+W^-} = 60.1 \pm 0.9 \,(\text{stat.}) \pm 3.2 \,(\text{exp.}) \pm 3.1 \,(\text{th.}) \pm 1.6 \,(\text{lum.}) \,\text{pb}$

compatible with NNLO theory prediction: 59.8^{+1.3}_{-1.1} pb

11


Evidence for Wyy

aQGC

Evidence of Wyy production in ATLAS

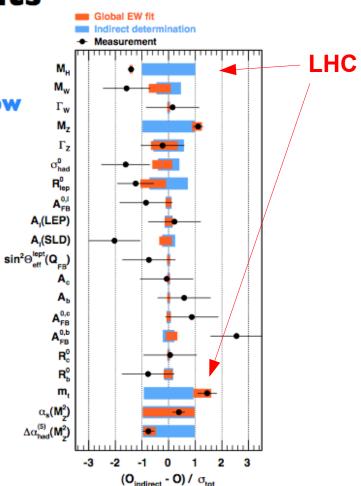
- Cross section measured in muon and electron channels, with 20.3 fb⁻¹ at 8 TeV
- Analysis performed in jet inclusive (≥0) and exclusive (=0) in the fiducial phase spaces
- Dominant systematic uncertainties from data-driven background and jet energy scale
 - Data-driven fake photon background in Wγj+Wjj events estimated with 2D template fit of the isolation distributions of the two γ candidates
- Total significance is 3.7 σ in the inclusive case, and 2.2 σ in the exclusive case (no expected quoted) \rightarrow first Wyy evidence
 - Electron and muon channels are compatible within 1σ
- The fiducial cross sections is 1.9 σ higher than MCFM predictions in the inclusive case, 1.3 σ in the exclusive case

	$\sigma^{\rm fid}$ [fb]	$\sigma^{\rm MCFM}$ [fb]
Inclusive $(N_{jet} \ge 0)$		
μνγγ ενγγ ℓνγγ	$\begin{array}{l} 7.1 \ \ ^{+1.3}_{-1.2} \ (\text{stat.}) \ \pm 1.5 \ (\text{syst.}) \ \pm 0.2 \ (\text{lumi.}) \\ 4.3 \ \ ^{+1.8}_{-1.6} \ (\text{stat.}) \ \ ^{+1.9}_{-1.8} \ (\text{syst.}) \ \pm 0.2 \ (\text{lumi.}) \\ 6.1 \ \ ^{+1.1}_{-1.0} \ (\text{stat.}) \ \pm 1.2 \ (\text{syst.}) \ \pm 0.2 \ (\text{lumi.}) \end{array}$	2.90 ± 0.16
Exclusive $(N_{jet} = 0)$	10	
μνγγ ενγγ ενγγ	$\begin{array}{l} 3.5 \pm 0.9 \; (\text{stat.}) \; {}^{+1.1}_{-1.0} \; (\text{syst.}) \; \pm 0.1 \; (\text{lumi.}) \\ 1.9 \; {}^{+1.4}_{-1.4} \; (\text{stat.}) \; {}^{+1.1}_{-1.2} \; (\text{syst.}) \; \pm 0.1 \; (\text{lumi.}) \\ 2.9 \; {}^{+0.8}_{-0.7} \; (\text{stat.}) \; {}^{+1.0}_{-0.9} \; (\text{syst.}) \; \pm 0.1 \; (\text{lumi.}) \end{array}$	1.88 ± 0.20

15

Global Electroweak Fit

SM Fit Results


black: direct measurement (data)

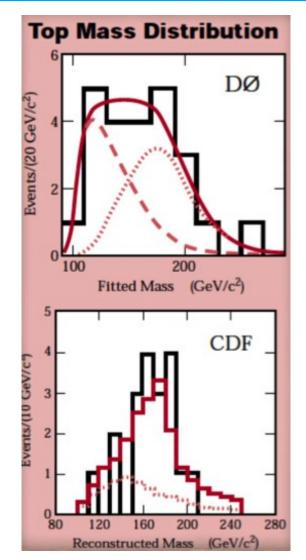
orange: full fit

light-blue: fit excluding input from row

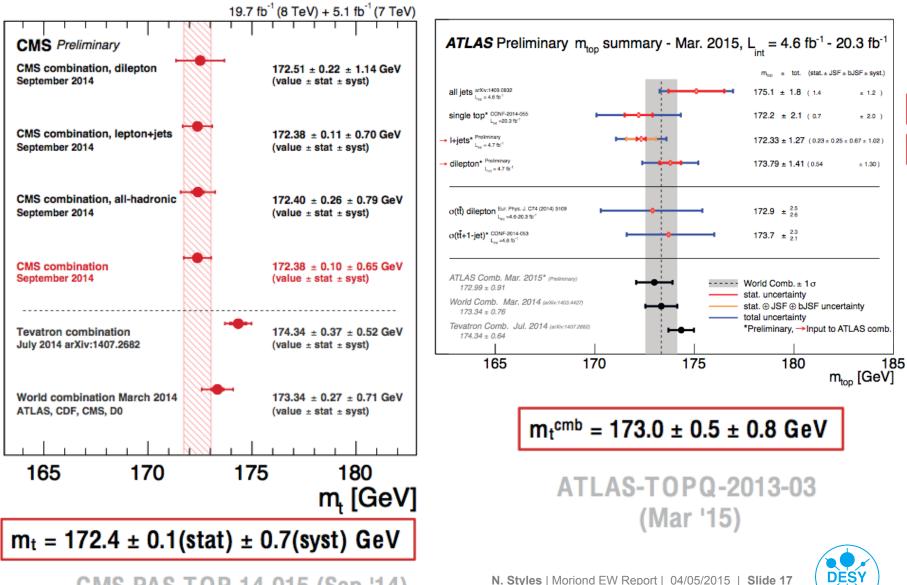
- goodness of fit, p-value: χ²min= 17.8 Prob(χ²min, 14) = 21% Pseudo experiments: 21 ± 2 (theo)%
 - $\chi^2_{min}(\mathbb{Z} \text{ widths in } 1\text{-loop}) = 18.0$
 - χ^{2}_{min} (no theory uncertainties) = 18.2
- no individual value exceeds 3σ
- Iargest deviations in b-sector:
 - $A^{0,b}_{FB}$ with 2.5σ
 - \rightarrow largest contribution to χ^2
- small pulls for M_H, M_Z

input accuracies exceed fit requirements

The global electroweak fit



9

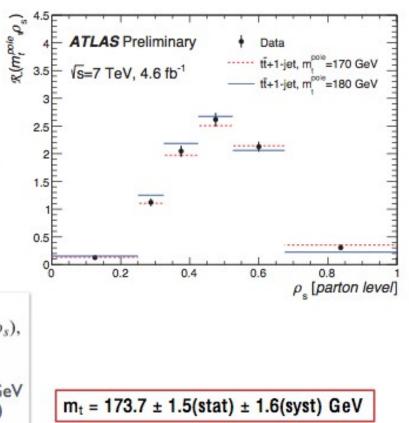

Top Physics Results

- > As well as 50th anniversary of Moriond, also celebrated 20th anniversary of Top quark discovery!
 - Treated to a historical overview of the discovery by P. Azzi
 - A. Jung presented latest results from the Tevatron, showing that the interesting work continues 20 years on...
- > Two very nice overview talks for LHC experiments
 - Top mass (M. Voutilainen)
 - Top properties (A. Loginov)

ATLAS+CMS Top mass combinations

CMS-PAS-TOP-14-015 (Sep '14)

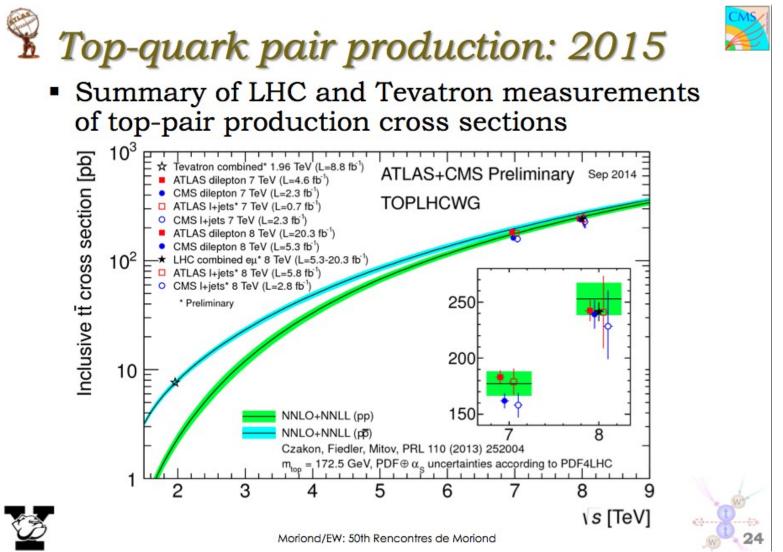
Pole mass measurement


tt+jet differential

- Most precise mt^{pole} to date
 - Differential tt+jet cross section enhances mt sensitivity w.r.t. σtt
- Theoretical calculations at NLO+PS (σ_{tt} NNLO)
 - theory syst.: scale (+0.99, -0.44 GeV)
- Competitive with standard methods
 - experimental syst.: JES (0.94 GeV)
- Limited by statistical uncertainty so will further improve at 8 TeV

$$\mathcal{R}(m_{t}^{\text{pole}}, \rho_{s}) = \frac{1}{\sigma_{t\bar{t}+1-\text{jet}}} \frac{d\sigma_{t\bar{t}+1-\text{jet}}}{d\rho_{s}} (m_{t}^{\text{pole}}, \rho_{s}),$$
$$\rho_{s} = \frac{2m_{0}}{\sqrt{s_{t\bar{t}j}}}, \quad \begin{array}{c} \text{m}_{0}=170 \text{ GeV}\\ (\text{arbitrary}) \end{array}$$

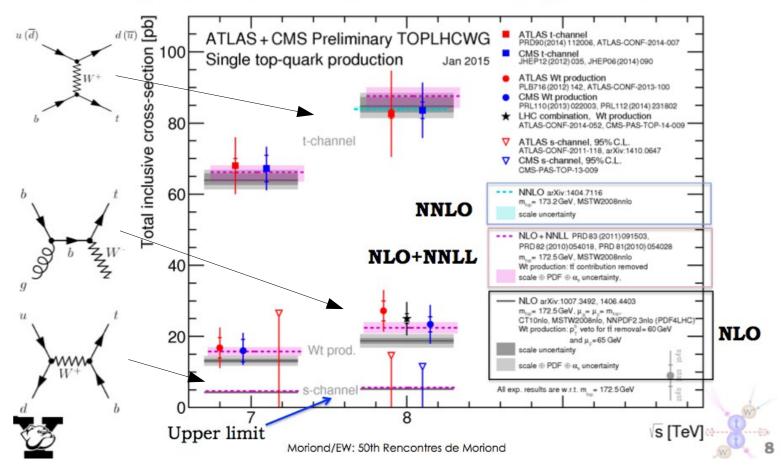
ATLAS+CMS top mass, Moriond EW, March 14-21, 2015 8/21


ATLAS-CONF-2014-053 (Sep '14)

N. Styles | Moriond EW Report | 04/05/2015 | Slide 18

Mikko Voutilainen, Helsinki Institute of Physics

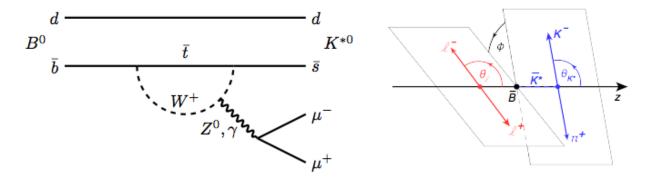
Top Pair Production



Single Top Production

Different processes sensitive to different new physics mechanisms

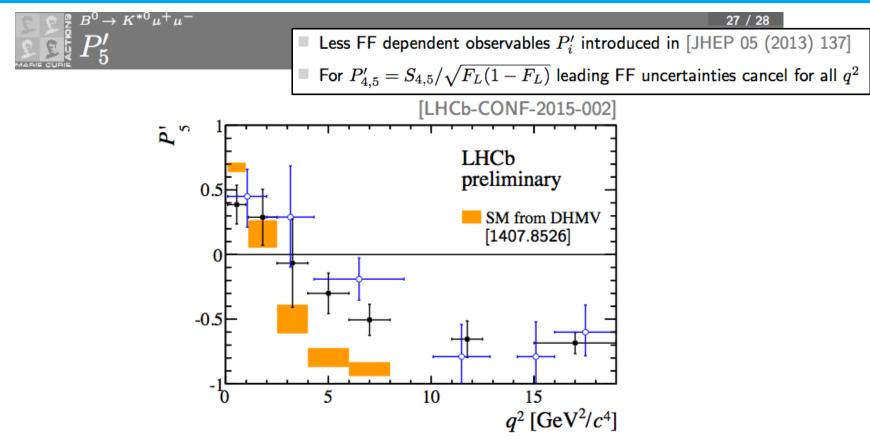
B-Physics Results


> LHCb results were among the most anticipated of the conference

- Intriguing deviations from SM in rare decays (C. Langenbruch)
- Interesting tension in CKM matrix element determination (W. Sutcliffe)
- > Much interesting Theoretical discussion
 - Can effect be due to larger-than-expected charm-loop contribution?
- > Again, many other interesting talks
 - CP Violation in B⁰_s sector (J. Wishahi)
 - Constraint of CKM γ angle (A. Vallier)
 - Search for Mixing and CP Violation in Charm sector (E. Gersabeck)
 - ATLAS +CMS b-physics measurements (P. Ronchese)

Decay fully described by three helicity angles $\vec{\Omega} = (\theta_{\ell}, \theta_K, \phi)$ and $q^2 = m_{\mu\mu}^2$ $\frac{1}{d(\Gamma + \bar{\Gamma})/dq^2} \frac{d^3(\Gamma + \bar{\Gamma})}{d\vec{\Omega}} = \frac{9}{32\pi} \left[\frac{3}{4} (1 - F_L) \sin^2 \theta_K + F_L \cos^2 \theta_K + \frac{1}{4} (1 - F_L) \sin^2 \theta_K \cos 2\theta_\ell \right]$ $-F_L \cos^2 \theta_K \cos 2\theta_\ell + S_3 \sin^2 \theta_K \sin^2 \theta_\ell \cos 2\phi$ $+S_4 \sin 2\theta_K \sin 2\theta_\ell \cos \phi + S_5 \sin 2\theta_K \sin \theta_\ell \cos \phi$ $+\frac{4}{3} A_{FB} \sin^2 \theta_K \cos \theta_\ell + S_7 \sin 2\theta_K \sin \theta_\ell \sin \phi$ $+S_8 \sin 2\theta_K \sin 2\theta_\ell \sin \phi + S_9 \sin^2 \theta_K \sin^2 \theta_\ell \sin 2\phi_\ell \sin 2\phi_\ell$

- **F**_L, A_{FB} , S_i combinations of K^{*0} spin amplitudes depending on Wilson coefficients $C_7^{(\prime)}$, $C_9^{(\prime)}$, $C_{10}^{(\prime)}$
- Large part of theory uncertainty due to hadronic form-factors

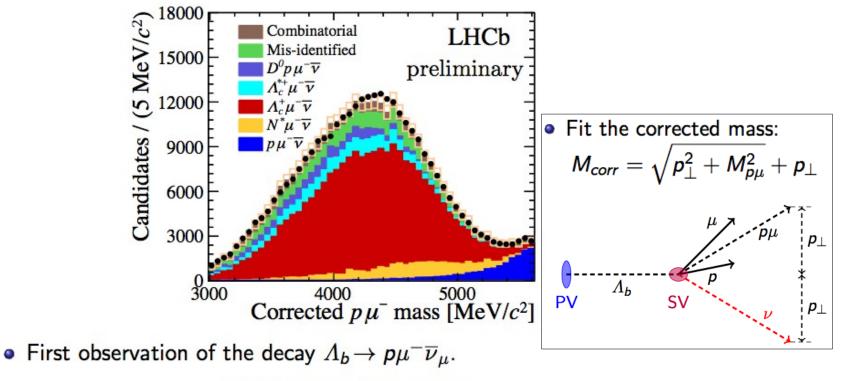

C. Langenbruch (Warwick), Moriond EW 2015

Rare decays from LHCb

3 / 28

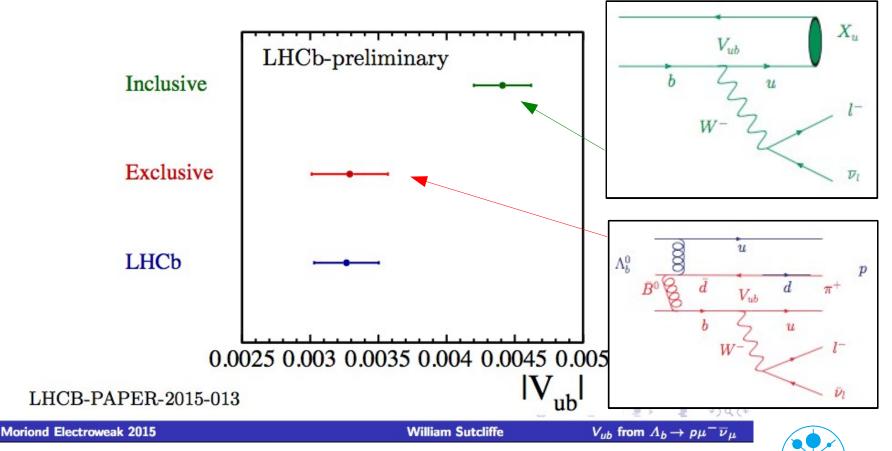
P'_{5} in B0 $\rightarrow K^{*0}\mu^{+}\mu^{-}$

- Tension seen in P'_5 in [PRL 111, 191801 (2013)] confirmed
- [4.0, 6.0] and [6.0, 8.0] GeV²/ c^4 show deviations of 2.9σ each
- Naive combination results in a significance of 3.7σ
- Compatible with 1 fb⁻¹ measurement


Rare decays from LHCb

$|V_{ub}|$ determination from $\Lambda \rightarrow p\mu v$

• Fit $p\mu$ corrected mass, $N(\Lambda_b \rightarrow p\mu^- \overline{\nu}_\mu) = 17687 \pm 733$.



LHCB-PAPER-2015-013

$|V_{\mu\nu}|$ determination from $\Lambda \rightarrow p\mu\nu$

 $|V_{ub}| = (3.27 \pm 0.15(exp) \pm 0.17(theory) \pm 0.06(|V_{cb}|)) \times 10^{-3}$

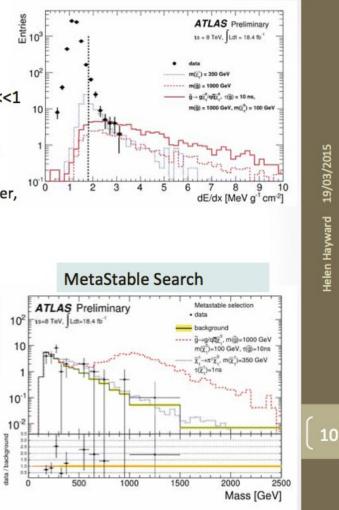
N. Styles | Moriond EW Report | 04/05/2015 | Slide 25

DES

BSM Searches

- > Huge number of BSM searches presented
 - Unfortunately no sign of New Physics <u>YET</u>
- > To quote Terry Wyatt's Experimental Summary:
 - All the 'easy' stuff was done by Moriond 2013! Subsequently: great ingenuity in 'leaving no stone unturned'
- > Will show a few searches using interesting techniques
 - presented by H. Hayward and J. Stupak
- See also very interesting and thorough overviews from
 - K. Leney on Exotics
 - S. Majewski on using top quarks for searches at ATLAS
 - R. Bainbridge on 'Compressed' SUSY scenarios with CMS

Meta-stable LLP search using Pixel dE/dX


New! Using the pixel detector to search for meta-stable LLP

- Search for heavy muon-like particles with β<<1
 - high dE/dx measured from pixel detector
- If particle travels at least 45 cm (in r) can be studied,
 - Little dependence on interactions in calorimeter, muon spectrometer or on LLP decay mode
- Met Trigger, Met> 100 GeV,
- Rejection of muons from W decays
 - M_T> 130 GeV
 - For stable signal region : veto on the track candidate being matched to a reconstructed muon

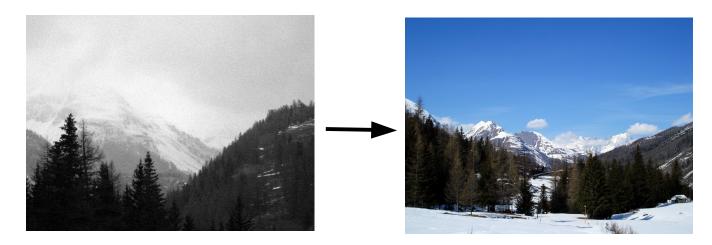
Entries / 50 GeV

- Track level (at least one track with):
 - High momentum, isolated track: pT>80 GeV
 - high ionization:
 - dE/dx > 1.800 0.034|η| + 0.101|η|² -0.029|η|³ MeV/g cm⁻²

ATLAS-CONF-2015-013

10

Event Selection


Z'-->tt using boosted topologies

Finally... Run 2 Outlook

- In many presentations, the preparations outlook for Run 2 were discussed
 - To summarise: All physics groups are ready to hit the ground running when first data arrives
 - Everyone extremely excited to see what surprises (hopefully) will appear with the increases in energy and luminosity
- Rather than go through all the Run 2 outlooks...
 - ...lets look forward to the 51st Rencontres de Moriond in 2016 where we will see the results for real

